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Abstract—We develop a method for the estimation of the
location of sources from measurements at multiple frequencies,
including wideband measurements, recorded by a linear array
of sensors. We employ interpolation matrices to address unequal
sampling at different frequencies and make use of the Kronecker
theorem to cast the nonlinear least squares problem associated
with direction of arrival estimation into an optimization problem
in the space of sequences generating Hankel matrices of fixed
rank. We then obtain approximate solutions to this problem using
the alternating direction method of multipliers. The resulting
algorithm is simple and easy to implement. We provide numerical
simulations that illustrate its excellent practical performance,
significantly outperforming subspace-based methods both at low
and high signal-to-noise ratio.

I. INTRODUCTION

The problem of estimating the location of sources emitting

energy, or direction of arrival (DOA) estimation, from mea-

surements registered by an array of passive sensors occurs

in a large variety of applications of various fields, including

telecommunications, radar, sonar, astrophysics and surveil-

lance, to name but a few. Let 2J + 1 identical receivers be

located in a uniform linear array (ULA) with spacing ∆, i.e.

at positions xj = j∆, j = −J, . . . , J , let the P sources be

located sufficiently far away from the array so that the signals

emitted by source p, p = 1, . . . , P , can be assumed to be plane

waves at arrival at the array after travelling through a homo-

geneous medium. Furthermore, we assume P to be known.

Denote by rp(x, t) the signal from source p recorded by the

receiver at location x, and r̂p(x, ω) =
∫∞

−∞
rp(x, t)e

−2πitω dt
its Fourier transform with respect to time. From the plane wave

assumption on the incident waves it follows that

r̂p(x, ω) = e2πix cos(θp)ω r̂p(0, ω), (1)

a relation that holds for each frequency ω.

Let r(x, t) =
∑P

p=1 rp(x, t) + np(x, t) denote the actual

measurements and r̂(x, ω) their Fourier transforms, where

np(x, t) is additive noise (below, we will omit the noise

term whenever appropriate). It then holds that for each fixed

frequency ω the function r̂(x, ω) is a sum of P exponentials,

r̂(x, ω) =
P∑

p=1

r̂p(0, ω)e
2πix cos(θp)ω =

P∑

p=1

cp,ωe
xηp ,

ηp = 2πi cos(θp)ω and cp,ω = r̂p(0, ω). (2)

For single fixed frequency ω = ωc (and approximately so for

narrowband sources), the DOA estimation problem is therefore

equivalent to the problem of estimating the parameters η =
(η1, · · · , ηP )

T that determine the position of P spectral lines.

Many of the classical spectral estimation techniques can be

directly applied to this problem (cf., e.g., [1] for an overview),

in particular high-resolution methods specifically designed for

the estimation of line spectra, such as the popular subspace

methods (e.g., MUSIC [2] and ESPRIT [3]), methods aiming

at solving the nonlinear least squares problem associated with

(2), cf. [4], as well as the Hankel matrix and alternating

direction method of multipliers (ADMM) based formulation

recently developed by the authors in [5].

The objective of the present contribution is to develop

a novel high-resolution methodology for the estimation of

the parameters η, and thus obtain the directions θ =
(θ1, · · · , θP )

T , by jointly using information from multiple

frequencies ω = (ω1, · · · , ωM )T , without any specific as-

sumptions on the spectra of the sources. To this end, we

will construct operators (matrices) from the measurements and

enforce special structure on the operators that will allow us

to make estimations of η. More specifically, the proposed

methodology relies on the following original key ingredients:

First, we make use of Kronecker’s theorem for complex

symmetric matrices, which essentially states that the Hankel

matrix that is generated by a vector of uniform samples

r̂(j∆, ω)|ω=ωc
of a function r̂(x, ω)|ω=ωc

has rank P if

and only if r̂(x, ω)|ω=ωc
coincides at the sample points with

a function that is a linear combination of P exponential

functions. Second, for different values of ωm, the data en-

tering the frequency estimation procedure are sampled at the

stretched or contracted sample points xjωm (compare (2)).

In our formulation, we address this problem of unequally

sampled data through the introduction of an auxiliary equally

spaced grid and appropriate interpolation matrices. Finally, we

reformulate the resulting minimization problem such that it can

be effectively solved by ADMM [6], a robust and scalable

iterative technique that has recently gained popularity due to

its versatility while at the same time enjoying state-of-the-art

performance. Although the optimization problem considered

here can be non convex, numerical experiments indicate that

the proposed ADMM procedure generically yields excellent

estimates. The resulting algorithm is simple and easy to im-



plement, and numerical results demonstrate the real practical

benefits and excellent estimation performance as compared to

classical subspace method based DOA estimation.

Alternative methods for high-resolution wideband direction

of arrival methods include Coherent Signal Subspace Methods

(CMS), cf. [7], [8] and approaches using extended ESPRIT [9].

II. PROBLEM FORMULATION USING HANKEL MATRICES

To simplify the presentation, we rescale the units so that

∆ = 1 in the remainder of the paper. Recall that a Hankel ma-

trix A has constant values on the anti-diagonals, i.e., A(j, k) =
A(j′, k′) if j + k = j′ + k′. It can thus be generated element

wise from a vector f, i.e., A(j, k) = fj+k−1, 1 ≤ j, k ≤ N+1.

We denote the generation of the Hankel matrix A from a

vector f by A = Hf, and we denote the (adjoint) operation

of summing a matrix A over its antidiagonals with H∗A, i.e.,

H∗A(n) =
∑

l1+l2=n A(l1, l2). Hankel matrices are complex

symmetric and can be factorized as A = UΣU∗, where Σ is

a diagonal matrix with non-increasing diagonal elements σl,

and the column vectors ul are the so-called con-eigenvectors

which are orthonormal and satisfy Aul = σlul.

It is well known that the Hankel matrix A = Hf is of rank

P then, with the exception of degenerate cases, there exist

{ηp}
P
p=1 and {cp}

P
p=1 in C such that f is sampled from the

function
f(x) =

P∑

p=1

cpe
ηpx, (3)

and the converse holds as well. This is usually referred to as

Kronecker’s theorem, (see e.g. [10], [11], [12] for different

versions). Moreover, if σl = 0 then the polynomial generated

from ul Qul(η) =
∑N

k=0 ul(k + 1)ηk has the property

Qul(ηp) = 0. This can be seen using (3):

0=(Aul)(j) =

N+1∑

k=1

A(j, k)ul(k)=

N+1∑

k=1

P∑

p=1

cpe
ηp(j+k−1)ul(k)

=

P∑

p=1

cpe
ηpj

N+1∑

k=1

eηp(k−1)ul(k) =
P∑

p=1

cpe
ηpjQul(ηp),

which holds for 1 ≤ j ≤ N + 1 and as long as P < N + 1,

this is an overdetermined system for the values of Qul(ηp),
and hence Qul(ηp) = 0 except for degenerate systems. A unit

sampling distance was used here, yet the argument holds for

arbitrary fixed distance. Consequently, it is possible to find the

exponentials parameters ηp for a function of the form (3) by

sampling it, selecting a vector in the nullspace of the Hankel

matrix generated from the samples, and determining the roots

of the polynomial generated by this vector. The polynomial

Qul has N roots, thus N − P false roots are obtained by this

procedure. The coefficients cp in (3) can be found by solving a

linear (Vandermonde) system, and those associated with false

roots equal zero in the absence of noise and are discarded.

Another important (generic) property of non-full rank Han-

kel matrices is that the con-eigenvectors ul, 1 ≤ l ≤ P are

also linear combination of exponentials as in (3), i.e.,

ul(j) =
P∑

p=1

dl,pe
ηpj . (4)

A requirement for two vectors (sampled functions) f1 and f2
to be generated by the same set of P exponentials is thus

that there exist orthonormal vectors u1, . . . , uP such that if

UP = [u1, . . . , uP ], then

PUP
Hf1PUP

= Hf1, PUP
Hf2PUP

= Hf2,

where PUP
= UPU

∗
P is the projection onto the span of UP .

The conditions above mean that Hf1 and Hf2 both have

rank P (because of the projection operator UPU
∗
P ) and that

both f1 and f2 are generated by the exponentials that generate

u1, . . . , uP . Clearly, the same argument can be used to com-

pare if f1, . . . fM are generated by the same set of exponentials.

In the noise free case, estimates of the exponential parameters

can thus be immediately obtained for each fixed value of ω.

In the presence of noise, one can consider rank P approx-

imations of Hankel matrices to estimate the exponential pa-

rameters. This can be formulated as an optimization problem,

minimize
g

1

2
‖f − g‖22

subject to rank(Hg) = P,
(5)

which is equivalent to the nonlinear least squares problem for

estimating the parameters of the function (3) from samples

with noise, cp. [5]. In [5] a method for obtaining an approxi-

mate solution to (5) is proposed for equally spaced data using

the Alternate Direction Method of Multipliers (ADMM), and

we follow a similar strategy here. To phrase the problem we

need to make use of an auxiliary equally spaced grid and

interpolation. If we can assume that the sampling at the equally

spaced grid is sufficiently dense to represent the exponentials

that we want to recover (i.e., the Nyquist sampling rate with

proper adjustments for finite intervals), we can construct an

interpolation matrix K that maps samples between equally

and unequally spaced grids xeq and x, respectively.

Let xeq(j) = j
2J , −J ≤ j ≤ J and let

K(j, k) =
ϕ(2J(xeq(j)− x(k)))∑
l ϕ(2J(x

eq(l)− x(k)))
.

A commonly used ϕ is the Lanczos function with a lobes,

ϕ(x) =

{
sinc(x)sinc(x/a) if 0 ≤ |x| < a,

0 if |x| ≤ a.

The counterpart of (5) for unequally spaced data is then

minimize
g

1

2
‖f −Kg‖22

subject to rank(Hg) = P.
(6)

III. AN ADMM FORMULATION FOR DOA

Assume that the measured data originate from P sources

and are contaminated by noise, and assume that there are

measurements of r̂(j, ωm) available where ωm < ωm+1,

m = 1, . . . ,M , and J is as in the previous section. Let

r(j,m) = r̂(j, ωm), and let rm denote the vector obtained

by fixing m. Also set xm(j) = jωm/(2JωM ). All the

nodes xm(j) are then contained in the unit length inter-

val [−1/2, 1/2]. Let N > J , and let xeq(n) = n/(2N),
−N ≤ n ≤ N , be an equally spaced lattice. Let Km be an

interpolation matrix that interpolates from the equally spaced



data xeq to the (scaled) points xm. By (1), the functions

x 7→ r̂(ωM

ωm
x, ωm) are then linear combinations of the same

P exponential functions (plus noice) whose frequencies reveal

θ. If gm denotes the above function sampled at xeq, we then

have Kmgm = rm.

Assume that the measured data originate from P sources

and are contaminated by noise. The DOA estimation problem

using all the measurements r(x(j), ωm), |j| ≤ J , m =
1, . . . ,M , can then be formulated as

minimize
g

M∑

m=1

‖rm − Kmgm‖22 (7)

such that ∃ηp, 1≤p≤P : gm(j) =
∑

p

dm,pe
ηpj , ∀|j| ≤ J.

The matrices Km interpolate the function represented by the

vector gm on the equally spaced grid xeq to the equally spaced

grid xm. The objective function thus describes the discrepancy

between the interpolation between functions gm sampled at xeq

and the measured data rm.

We now reformulate (7) such that it can be addressed using

ADMM. Let

RP ({Am})=

{
∞ ∄UP =[u1,. . . ,uP ] :Am=PUP

AmPUP
,∀m,

0 otherwise.

The role of RP is to enforce finite ranks on the matrices

Am, which in combination with the Hankel constraint means

that the generating vectors gm are linear combination of P
exponentials. Instead of using this approach, one could replace

this type of finite rank condition with a nuclear norm based

counterpart. This has the advantage of giving rise to convex

optimization problems, yet also has disadvantages. This field

has received considerable attention over the recent years and

a thorough discussion is beyond the scope of this paper. We

remark that it is straightforward to adapt the methodology

proposed here to nuclear norm type of penalties.

To arrive at an algorithm, we reformulate (7) as

minimize
g

RP ({Am}) +

M∑

m=1

‖rm − Kmgm‖22

subject to Am(k, l) = gm(k + l), −N ≤ k, l ≤ N

(8)

The rank constraint of (7) is now contained in RP ({Am})
in the objective function while the condition Am(k, l) =
rm(k + l) forces the matrices Am to have Hankel structure,

i.e. to equal Hgm. Let us introduce the notation 〈A,B〉 =

Re
(∑N

k,l=−N A(k, l)B(k, l)
)
, as a scalar product on com-

plex valued matrices.For the ADMM formulation we define

(the augmented Lagrangian)

L({Am}, {gm}, {Λm}) = RP ({Am}) +
M∑

m=1

‖rm − Kmgm‖22

+
M∑

m=1

〈Λm,Am −Hgm〉R + ρ‖Am −Hgm‖
2
F ,

where ‖A‖2F = 〈A,A〉R denotes the Frobenius norm.

The ADMM steps for (8) then read, for 1 ≤ m ≤ M

1 function [g,eta]=hadmm doa(r,xm,g,P,J,M,rho,n iter) %%%%%%%%%
2 a=6;phi=@(x)((abs(x)<a).*(sinc(x).*sinc(x/a))); %[interpolation matrix]
3 for m=1:M,K{m}=phi(log(exp(2*J*xm(:,m))*exp(−(−J:J))));
4 K{m}=diag(1./sum(K{m},2))*K{m};L{m}=zeros(J+1);
5 Ki{m}=inv((rho*diag([1:J+1,J:−1:1])+K{m}'*K{m})); end;
6 for iter=1:n iter,C=zeros(J+1);
7 for m=1:M,C=C+(H(g(:,m))−L{m}/rho)'*(H(g(:,m))−L{m}/rho); end
8 [u,¬,¬]=svd(C);P U P=u(:,1:P)*u(:,1:P)';
9 for m=1:M,

10 A{m}=conj(P U P)*(H(g(:,m))−L{m}/rho)*P U P;
11 g(:,m)=Ki{m}*(rho*(Hast(A{m}+L{m}/rho))+K{m}'*r(:,m));
12 L{m}=L{m}+rho*(A{m}−H(g(:,m)));
13 end; end;
14 eta=log(eig(conj(u(1:end−1,1:P)\u(2:end,1:P))))/(pi*1i/J);
15 function A=H(r), A=hankel(r(1:(end+1)/2),r((end+1)/2:end));%%%%%
16 function r=Hast(A), J=size(A,1)−1; r=zeros(2*J+1,1); A=flipud(A);%%
17 for j=−J:J, r(j+J+1,1)=sum(diag(A,j)); end;

TABLE I: Main function (in MATLAB syntax) for approxi-

mation using exponentials and DOA estimation for P sources

1) {Am
k+1} = argmin

{Am}

L({Am}, {gm
k}, {Λm

k}),

2) {gm
k+1} = argmin

{gm}

L({Am
k+1}, {gm}, {Λm

k}),

3) Λm
k+1 = Λm

k + ρ(Am
k+1 −Hgm

k+1).

For the first minimization step, by dropping the terms that

are independent of Am and by completion of squares, we have

Am
k+1=argmin

Am

RP ({Am})+ρ
∑

m

‖Am−Hgm+Λm/ρ‖
2
2. (9)

The solution can be obtained as follows. We define

Cm =
∑

m

(Hgm − Λm/ρ)
∗
(Hgm − Λm/ρ) .

Since Cm is a Hermitian matrix it can be diagonalized as

Cm = UΣU∗, where Σ is a diagonal matrix containing

the eigenvalues of Cm in descending order, and where the

corresponding eigenvectors are the orthonormal columns of

U. Let UP = [u1, . . . , uP]. The matrices Am that solve (9) are

then given by a projection of the complex symmetric matrices

Am
k+1−Hgm

k+1 to Takagi factorizations using the span of the

P eigenvectors of C corresponding to the P largest eigenvalues

of C, i.e., Am = PUP
(Hgm − Λm/ρ)PUP

.
Next, we turn our focus to the second ADMM step. In a

similar way as for the first step, we drop terms independent

on gm and complete squares. In this case, the vectors gm can

be analyzed individually for each fixed m,

gk+1
m =argmin

gm

‖Kmgm−rm‖
2+ρ‖Hgm−Ak+1

m −Λk
m/ρ‖

2. (10)

Then it is easy to see (following the same idea as in [5]) that

(10) is minimized by solving

(ρ diag(w) + Km
∗Km) gm = ρH∗ (Am + Λm/ρ) + Km

∗rm,

where w(n)=N+1−n, −N ≤ n ≤ N is a triangle weight.

Having solved the two minimization steps in the ADMM

procedure allows us to state a short and simple algorithm for

the direction of arrival estimation problem:

IV. RESULTS

We illustrate the performance of the proposed methods by

means of numerical simulations with P = 8 sources, 31
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Fig. 1: DOA estimation for P = 8 sources and M=100

frequencies at SNR level of 10 dB. The gray circles indicate

estimates for each individual frequency using ESPRIT, green

lines the medians over frequencies of ordered estimates, red

lines the true locations and blue lines the estimates obtained

by the proposed method.

❳
❳
❳
❳
❳
❳
❳❳

Method
SNR (dB)

-6 -3 0 3 6 10 30

Proposed method 0.9490 0.2524 0.0340 0.0206 0.0145 0.0089 0.0011
ESPRIT median 5.5291 5.0863 4.5198 4.0377 3.5199 2.3760 0.0077
ESPRIT average 5.8845 5.4908 4.9904 4.3871 3.7559 2.9479 0.7995

ESPRIT individual 7.3210 6.9264 6.4591 5.9231 5.3405 4.6308 2.4268

TABLE II: Standard deviation in estimated directions using

the metric describes in Section IV.

receivers (J = 16) and using M = 100 frequencies. With

respect to the normalized units (∆ = 1), an affine frequency

range with ω1 = 0.5 and ωM = 1 is used. A fixed set of

parameters ηp is generated by a quasi-random generator on

the interval − 2J
3 ≤ ηp ≤ 2J

3 and is indicated by red lines

in Figure 1. The measured data r̂(x, ω) are then generated

using ηp along with a pseudo-random coefficients cp,ω for the

individual frequencies as in (2), with white Gaussian noise

added to each measurement vector rm for varying signal-to-

noise ratio (SNR, with respect to total power of all vectors

rm). Results obtained with the proposed method using all

frequencies ω are compared to those obtained using ESPRIT

for each frequency ωm individually. These latter estimates

are also used to obtain initial values of gm by extrapolation.

Furthermore, we extract overall ESPRIT based estimates by

first ordering the estimates at each frequency individually

and then computing the median and the average over all

frequencies for each of the P estimates.

In Figure 1, results obtained for one single noise realization

with SNR of 10 dB are plotted. The positions of the correct

values of ηp are indicated by red lines, and those of the real

part of the values estimated with the proposed method by blue

lines. ESPRIT estimates for each individual frequency ωm are

displayed by gray dots, green lines indicate the median for

frequencies of each of the 8 ordered estimates. Clearly, the

estimates obtained by the proposed method are substantially

better than the estimates obtained by ESPRIT, the latter

suffering from very poor estimation quality at frequencies ωm

with little signal power, and in particular so at low frequencies.

Next, we study the estimation performance using 100 noise

realizations, respectively, for various SNR levels. We sort the

8 detected sources and compare the estimates with the true

values by measuring standard deviations. For the ESPRIT

version, we in three ways: for each ωm individually; for the

mean over the sorted estimates over all ωm; and for the median

of the sorted estimates over all ωm.

The results are summarized in Table II. We see that the

proposed method consistently outperforms ESPRIT based es-

timation both for low and high SNR, and that it still provides

reasonably good results even for low SNR.

V. CONCLUSIONS

We have proposed a novel high-resolution method for

direction of arrival estimation based on multiple frequency

or wideband measurements. The method makes use of the

Kronecker theorem for implicitly imposing the model equa-

tions for each considered frequency through rank penalization

of the Hankel matrices generated by the corresponding ap-

proximating sequences. The resulting optimization problem is

then resolved using ADMM. Although the problem is non-

convex (and hence inherits the problem of local minima),

numerical simulations demonstrate that the method yields

excellent practical performance. In particular, it significantly

outperforms ESPRIT based estimation, both at low and high

SNR levels, and enables to obtain practically usable estimates

even at very low SNR. Furthermore, the proposed method

yields an algorithm that is simple and easy to implement.
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