
Preserving the Global Consistency of Dynamic

Reconfiguration

Mohammad Charaf Eddin, Zoubir Mammeri

To cite this version:

Mohammad Charaf Eddin, Zoubir Mammeri. Preserving the Global Consistency of Dynamic
Reconfiguration. IEEE/ACIS International Conference on Software Engineering, Artificial In-
telligence, Networking and Parallel/Distributed Computing - SNPD 2013, Jul 2013, Honolulu,
United States. pp. 71-76, 2013. <hal-01151014>

HAL Id: hal-01151014

https://hal.archives-ouvertes.fr/hal-01151014

Submitted on 12 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50532489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01151014

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12442

To link to this article : DOI :10.1109/SNPD.2013.82
URL : http://dx.doi.org/10.1109/SNPD.2013.82

To cite this version : Charaf Eddin, Mohammad and Mammeri, Zoubir
Preserving the Global Consistency of Dynamic Reconfiguration.
(2013) In: IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing - SNPD 2013, 1 July 2013 - 3 July
2013 (Honolulu, United States).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12442/
http://dx.doi.org/10.1109/SNPD.2013.82
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Preserving The Global Consistency of Dynamic

Reconfiguration

Mohammad Charaf Eddin

IRIT – Paul Sabatier University

Toulouse, France

charaf@irit.fr

Zoubir Mammeri

IRIT – Paul Sabatier University

Toulouse, France

mammeri@irit.fr

Abstract—Many component-based systems need to modify
their behavior or structure at run time in order to adapt the
continuous change of user requirements or working environ-
ments. Change management is an essential part of reconfigurable
systems. Dynamic reconfiguration helps these systems to evolve
incrementally for one configuration to another at execution
time. Many approaches have been proposed to support dynamic
reconfiguration in various kinds of systems.

This paper introduces a new approach for preserving the
global consistency of dynamic reconfiguration using Alloy spec-
ification language. Alloy is a powerful language for modeling
and describing the structure and the behavior of a system by
expressing its constraints. The approach starts by modeling the
structure of a reconfigurable system, and then a set of predicates
are proposed to describe the dynamic behavior of a reconfigurable
system. Finally, an analysis is done to analyze the previous
specifications using Alloy Analyzer.

Keywords—component-based systems, dynamic reconfiguration,
software evolution.

I. INTRODUCTION

Many contemporary systems aim to change their con-
figuration at execution time without stopping or restarting
them. Dynamic reconfiguration[7], [1], [2] is a mechanism that
allows a system to evolve incrementally from one configuration
to another at execution time. Dynamic reconfiguration can
help the system to improve the adaptability, the availability,
maintainability, and the performance.

Usually, dynamic reconfiguration changes the system at
runtime by performing structural modifications like adding
new components to the system, removing old components,
binding or unbinding the components. The reconfiguration
primitives should be done in safe way which ensures the
correctness, integrity and the consistency of the new modified
system. Many operating systems and middlewares provide
some facilities for loading and unloading the components (e.g.,
dynamic link libraries in UNIX) at run time without taking into
consideration the consistency preservation problem. Therefore,
preserving the consistency is the most important axis, which
distinguishes the dynamic reconfiguration from these runtime
facilities.

The consistency can be divided into two categories: The
global consistency and the local consistency. Global consis-
tency means to satisfy the system invariants. This is done
by preventing the reconfiguration operations from violating
the system invariants. Local consistency means to prevent the

information loss. Preserving the consistency in reconfigurable
systems, during and after the reconfiguration process, is a
tedious task[7], [2]. Several works have been done in the litera-
ture to preserve the local consistency. One of the most popular
works is done by Kramer and Magee[7]. They proved that the
quiescence criterion or the safe state criterion was sufficient
to ensure the local consistency during the reconfiguration of a
distributed system.

Different approaches[13], [6] have been proposed to pre-
serve the global consistency. The common thing between these
approaches is to model, specify, and constrain the dynami-
cally reconfigurable systems. In this paper, our approach for
preserving the global consistency has three steps: Firstly, we
propose a general model to specify the system structure using
a formal specification language and then proposing a set of
constraints to represent the system invariants. Respecting the
satisfaction of the set of constraints is very important to ensure
the consistency during and after the reconfiguration process.
Finally, we use an analyzer in order to analyze the proposed
model.

Reconfigurable systems should be modular. Usually, A
portion of the modular system is suspended during the re-
configuration operation while the rest parts are still active.
Therefore, in this paper we focus on the big picture by looking
at the system as a set of components rather than diving to the
statements and variables depths. Component-Based Software
Engineering (CBSE)[11], [4] is a powerful technology to
create complex systems because it provides strong features like
assembling the building blocks (components) to build complex
modular system, software reuse, and complex management.
Therefore, we will investigate the consistency preservation
problem in the component based systems domain.

Our approach of specifying the reconfigurable component-
based systems starts by showing how to specify the structure of
the configuration of a system. Then we show how to model the
dynamic reconfiguration operations with the constraints, how
to preserve the global consistency, and how to check whether
a reconfiguration change is consistent or not.

The rest of this paper is structured as follows. First, section
2 proposes a structural model of reconfigurable component-
based systems. Section 3 presents the global consistency and
shows how to preserve it. Section 4 shows how to reconfigure a
running system and how to analyze the proposed model using
Alloy analyzer. Finally, we discuss the related work in section
5, and section 6 is the concluding section that summarizes the

paper and presents the future work.

II. A STRUCTURAL MODEL FOR RECONFIGURABLE

SYSTEMS

A component based system can be described as a set of
components connected to each other using interfaces. Each
component has a set of provided interfaces, and a set of
required interfaces. For example, a component C has a set
of provided interfaces we denoted by provide(C) and a set of
required interfaces required(C).

A reconfigurable component based system (RS) has the
ability to change its structure and behavior during the execu-
tion time. Usually, the change is done by making structural
modifications. After the reconfiguration operations (Ropt) are
completed a new configuration of the system is born. There-
fore, reconfigurable system model should support the dynamic
aspects of such systems. We can describe the dynamicity of a
system as a transition from one configuration to another. So,
the reconfiguration operations like add, remove, replace etc.
can be seen as transition operations which move the system
from configuration to another . For example, figure 1 shows
a simple component based system which evolves during the
execution time from the old configuration (a) to new the
configuration (b). we can notice that many structural modi-
fications have been made during the reconfiguration process.
For instance, the component C5 was added and linked to C2
while the binding between C3 and C2 was removed.

Fig. 1. Evolution of a system at runtime

To this end, we can look at a dynamically reconfigurable
system during its life as a sequence of configurations. Each
configuration is defined by a set of connected components.
Each component provides a set of interfaces and requires a set
of interfaces. The transition from one configuration to another
configuration is normally can be done by the reconfiguration
operations (Ropt). Therefore a system evolution is the process
of transition from an old configuration to a new one. The
following equation shows multiple configurations of a recon-
figurable system RS during its life.

RS = Conf0
Ropt
−−−→ Conf1

Ropt
−−−→ ... (1)

A. Modeling The Structure of a Configuration

A configuration is defined as a set of components which
are connected to each other by interfaces. To specify our model
by a formal modeling language we use Alloy[5] specification
language. There are many motivations behind choosing Alloy
language. Alloy is a lightweight, scalable, high performance
language. Alloy also is based on formal specification and is
amenable to a fully automated analysis.

In Alloy, the structures are modeled using atoms and
relations. Atoms are the primitive entities which have the
following properties: indivisible, uninterpreted and immutable.
A relation is a set of tuples that relates the atoms. For example,
configurations, components and interfaces are atoms. To say
that configurations can contain components and components
can contain interfaces. We can define a set of relations that
associates configurations, components and interfaces.

1 −−−−−−−−−−−−−−− S i g n a t u r e s −−−−−−−−−−−−−−−−
2 a b s t r a c t s i g I n t e r f a c e {
3 b e l o n g : one Component
4 }
5 s i g P r o v i d e d I n t e r f a c e , R e q u i r e d I n t e r f a c e e x t e n d s

I n t e r f a c e {}
6 s i g Component {
7 have : some I n t e r f a c e
8 }
9 s i g C o n f i g u r a t i o n {

10 c o n t a i n : s e t Component ,
11 b i n d i n g s : P r o v i d e d I n t e r f a c e one −> one

R e q u i r e d I n t e r f a c e
12 }
13 −−−−−−−−−−−−−−−− F a c t −−−−−−−−−−−−−−−−−−−
14 f a c t {
15 −−The r e l a t i o n b e l ong i s t h e m i r r o r image o f have
16 b e l o n g = ˜ have
17 −−A l l components b e l o n g t o a c o n f i g u r a t i o n
18 a l l c : Component | c i n C o n f i g u r a t i o n . c o n t a i n
19 −−A l l components have a t l e a s t one p r o v i d e d

i n t e r f a c e
20 a l l c : Component | some (c . have & P r o v i d e d I n t e r f a c e)
21 −−Each i n t e r f a c e b e l o n g s t o e x a c t l y one component
22 a l l i : I n t e r f a c e | one have . i
23 −−For each component t h e r e
24 −− a r e no b i n d i n g s between i t s i n t e r f a c e s
25 a l l c : Component , i1 , i 2 : I n t e r f a c e |
26 i 1 i n c . have and i 2 i n c . have
27 i m p l i e s i1−>i 2 ! i n C o n f i g u r a t i o n . b i n d i n g s
28 }
29 −−−−−−−−−−−−−−−− Ana lyz ing −−−−−−−−−−−−−−−−
30 pred t e s t {}
31 run t e s t f o r 4 b u t 1 C o n f i g u r a t i o n

Fig. 2. A structural model for a configuration

Figure 2 proposes a structural model of a reconfigurable
component based system. The model introduces three sig-
natures: Interface, Component, Configuration.
Each of them represents a set of objects.The Interface signa-
ture represents a set of interfaces. The keyword abstract in the
declaration means that this signature has no elements except
those belonging to its extensions. The Interface defines the
binary relation belong which relates each interface with its
components. ProvidedInterface and RequiredInterface
are disjoint extensions of Interface. So, each interface should
be either a provided interface or a required one. The signature
Component represents a set of components and defines the
binary relation have which relates each component with its
interfaces. At line 16, we have added a fact which states that
the relation belong is the transpose of the relation have. The
keyword some indicates the multiplicity and says that each
component has at least one interface. The final signature is
Configuration. It represents a set of interconnected compo-
nents. The relation contain relates each configuration with a
set of components. The ternary relation bindings contains the
existing connections in the configuration.

Declaring a model without constraining it may produce
some anomalies or unwanted cases. For example, we may
have an independent component which does not belong to any
configuration. To prevent such anomalies we add a set of facts
in order to constrain the model. The first fact, at line 18 in
figure 2, states that there is no independent components i.e.
each component belongs to a configuration. The second fact
says that each component should have at least one provided
interface. The third fact says that each interface belong to
one component i.e. there isn’t any component shares the same
interface with another component. Finally, the fourth fact at
line 25 prevents the bindings between the interfaces that belong
to the same component.

To analyze the previous model by using Alloy analyzer,
we add an empty predicate test and then we run it. The
command run specifies a scope for each signature. Usually,
scopes are used only for analysis purposes and limiting them
does not mean to limit the whole model. In our example we
limit the scope to at most four objects in each signature,
except for the configuration signature which is limited to
one configuration because we don’t yet add the dynamic
reconfiguration operations to the model. Executing the run
commands produce a set of instances of this model.

B. Modeling Dynamic Reconfiguration Operations

Dynamic reconfiguration modifies the component based
system at runtime by making structural modifications. In this
paper, we will take into consideration five kinds of dynamic
reconfiguration primitives. the following list shows the five
operations:

- Add aims to add a new component C to the current
reconfiguration Conf . So the new configuration state will
be Conf ′.contain = Conf.contain+ C

- Remove aims to remove an old component C to the
current reconfiguration Conf . So the new configuration
state will be Conf ′.contain = Conf.contain− C

- Replace aims to replace an old component C by a new
component C ′. So the new configuration state will be
Conf ′.contain = Conf.contain− C + C ′

- Link aims to create a new link between a provided
interface and a required interface in the current con-
figuration. The state of the new configuration will be
Conf ′.bindings = Conf.bindings + proInter− >
reqInter

- Unlink aims to remove an existing link between a pro-
vided interface and a required interface in the current
configuration. The state of the new configuration will
be Conf ′.bindings = Conf.bindings − proInter− >
reqInter

As we notice, in modeling we focus on the state of the system
before and after dynamic reconfiguration modification. we
don’t search how to do the modifications like imperative pro-
gramming. By comparing the prestate and the poststate of the
system we can determine whether a dynamic reconfiguration
operation is valid or not.

To represent the dynamic reconfiguration operations in
Alloy, we can add a set of predicates in order to describe
the dynamic behavior of a system. The predicate in Alloy

defines a reusable constrain. The general form of a dynamic
reconfiguration operation will be as the following:

1 pred r e c o n f i g u r a t i o n O p e r a t i o n (conf , c on f ’ :
C o n f i g u r a t i o n ,)

2 {
3 −−P r e c o n d i t i o n s
4 −−Dynamic r e c o n f i g u r a t i o n o p e r a t i o n
5 −−P o s t c o n d i t i o n s
6 }

The reconfigurationOperation predicate has a list of argu-
ments. The arguments always contain the state of the config-
uration before and after the reconfiguration operation conf ,
conf ′. The other arguments can vary according to the kind of
the the reconfiguration operation.

The goal of preconditions and postconditions is to ensure
that the global consistency of the system is always preserved.
This is done by checking whether a reconfiguration change is
valid or not. A valid reconfiguration change should not violate
the system invariants. For example, suppose that our system
has a binary tree structure. We want to add a new child C ′ to
a specific node N . The preconditions should assert that N has
at most one child. The postconditions should assert that the
whole structure of the system remains a binary tree structure
after the addition operation.

The preconditions and the postconditions usually take the
form of assertions. These assertions are used to ensure whether
a reconfiguration change satisfies the system invariants or
not. The invariants are almost related to the structure of the
component-based system. Each structure has a specific set of
invariants. For example, the set of invariants for a file system
are different from those used in a secure email system.

Nevertheless, we can find some common invariants for all
kinds of component-based systems. For example, each required
interface in the new configuration should be connected to a
provided interface after the termination of the reconfiguration.
So, we can add a postcondition to the model to assert whether
all required interfaces are connected or not.

1 pred l i n k (conf , con f ’ : C o n f i g u r a t i o n , i 1 :
P r o v i d e d I n t e r f a c e , i 2 : R e q u i r e d I n t e r f a c e)

2 {
3 −−some p r e c o n d i t i o n s
4 i 1 . b e l o n g != i 2 . b e l o n g
5 i1−>i 2 n o t i n con f . b i n d i n g s
6 −−o p e r a t i o n
7 con f ’ . b i n d i n g s = con f . b i n d i n g s + i1−>i 2
8 −−some P o s t c o n d i t i o n s
9 one con f ’ . b i n d i n g s . i 2

10 }

Fig. 3. The predicate of the link primitive

In figure 3 we give an example to show how we can specify
a dynamic operation like link using the Alloy predicates. The
link predicate has four arguments. The prestate and the post-
state of the configuration, a provided interface and a required
interface. Some preconditions are checked before changing the
state of the configuration. The first precondition is to ensure
that the two interfaces do not belong to the same component.
This precondition aims to check the satisfaction of the fourth
invariant in figure 2 at line 25. The second precondition ensures

that there is no link between the two interfaces. Then at line
6, the state of the configuration is changed by adding new
binding to the set of bindings which contains all the existing
links. Finally, a postcondition is used ensure that there is only
one link between the target interfaces.

III. PRESERVING THE GLOBAL CONSISTENCY OF

RECONFIGURABLE SYSTEMS

A reconfigurable system has global consistency if and only
if its invariants are always preserved during the running time.
Reconfiguration operations should not violate the system in-
variants. Therefore, in order to maintain the global consistency
for a system, any reconfiguration operation violates the system
invariants will be rejected.

The structure of a reconfigurable system can be modeled
in Alloy by using the signatures. Each signature has a set of
objects. Alloy relations specify the way of interaction between
these objects. For each signature, We can distinguish between
three categories of invariants.The following list shows these
categories:

- Universal invariants All objects belong to the signature
should preserve their universal set of invariants. For
instance, let us consider the Component signature from
our model. A universal invariant related to this signature
is: Each component in the Component signature should
has at least one provided interface.

- Group invariants This set of invariants are concerned
with a subset of the signature objects. In Alloy, we can
declare a subset using the keyword in. For example, we
can declare a subset which represent the file system com-
ponents as the following:sig FileSystem in Component.
The Filesystem subset will have additional group of
invariants which should specify the prohibited behaviors
for this subset.

- Local invariants This set of constrains should be pre-
served only by a specific object from the signature. For
example, each file system has a specific object which is
the root directory. A typical constrain which is related
only to this object is: The root has no parent. As a result,
the root object should satisfy the universal invariants, the
group invariants and its local invariants.

Usually, The system invariants are related to its structure
and its behavior. Each system has its own set of invariants.
Invariants preserve the system consistency by constraining the
system and by preventing the unwanted behaviors. In Alloy, we
use the facts to declare the system invariants. The facts may be
universal which should be true for all objects in the signature.
In figure 2, we have declare four universal facts which use
the universal quantifier all. Some facts may be partial which
should be true for all objects in a specific group or for one
specific object.

Typically, Alloy facts are used to express the invariants and
to force them to be true in the model. Alloy always remove
any solution which violate any fact in the model. But, we still
need a mechanism to check whether some claims conform our
model or not. In Alloy, we can express these claims by using
assertions and then we can ask the analyzer to check whether
the assertion follows from the facts or not. Checking invalid
assertion will produce a counterexample. For example, in

our model of a reconfigurable component-base systems if the
analyzer generates counter examples. This means that either
there are some flaws in the model design or the provided
reconfiguration commands are invalid.

Assertions can express the different properties of the re-
configurable system. They can help to detect the unseen flaws
in the model or in the reconfiguration commands. Therefore,
Alloy assertions can be used to check whether a reconfigu-
ration change (commands) can produce a valid configuration
or not. That’s to say, Alloy analyzer will check if the new
configuration conf ′ conforms the system model invariants
or not. For example, In our reconfigurable component-based
model. In order to produce a new consistent configuration,
it is very important to ensure that all required interfaces
in the configuration are connected. That’s to say, after the
reconfiguration is done there is no component still need some
services to work.

1
2 a s s e r t NoFreeReqIn t{
3 a l l i : R e q u i r e d I n t e r f a c e , con f : C o n f i g u r a t i o n | some

con f . b i n d i n g s . i
4 }
5
6 check NoFreeReqIn t

Fig. 4. An assertion to check whether all required interfaces are connected
or not

Figure 4 shows an Alloy assertion NoFreeReqInt. The
goal of this assertion is to verify that there is no unconnected
required interface in the current configuration. This assertion
can be used after the reconfiguration predicates to test the
satisfactions of all required interfaces. If there are at least one
free required interfaces then the reconfiguration commands are
invalid and they will an inconsistent system. Therefore, invalid
reconfiguration commands will be rejected.

In Alloy, we declare an assertion by using the keyword
assert. Then we can check the assertion by using the com-
mand check. The check command instructs the Alloy analyzer
to search for a counter example of an assertion. Alloy permits
us to specify the scope in the check command. The analyzer
will use the scope to determine the size of objects (instances)
of each top-level signature. In figure 4 at line 6 we do not
specify the scope, so the default scope will be 3 for top-level
signature.

By running the command check in figure 4, if the
analyzer tell us that there are no counter examples then the
assertion is valid in the proposed scope. we can extend the
scope more to increase the research field and to see the new
feedback. The analyzer may produce some counter examples.
Counter examples has two indications. First, they show that
the reconfiguration commands are not valid and may generate
inconsistent system. Therefore, the reconfiguration commands
should be rejected. Second, They show that there are some
hidden flaws in the model design. So, the model need some
more modifications.

To this end, we have used Alloy signatures and relations to
model a component-based reconfigurable system. Alloy pred-
icates have been used to specify the dynamic reconfiguration
primitives. Then, The Alloy facts have been used to represent

the system invariants. Alloy assertions have been used to verify
if the reconfiguration commands are valid or not.

IV. RECONFIGURING AND ANALYZING A RUNNING

SYSTEM

In previous sections, we have been proposed a general
dynamic model for reconfigurable component-based systems.
In this section firstly, we explain how to reconfigure a system
at runtime. Then, we focus on showing how Alloy analyzer
can test whether the new configuration is compliant with the
proposed model or not.

Fig. 5. shows the different stages of reconfiguring a running system

From our perspective, the standard approach for modifying
a running system has four stages. The first stage is planning,
planning focus on searching for the new structural modifica-
tions in order to satisfy user requirements and to adapt the
working environment. Planning stage specify what are the
desired reconfiguration commands as we see in figure 5. The
second stage is analyzing, in this stage Alloy analyzer is used
to check whether the reconfiguration commands can produce a
new consistent configuration or not. A consistent configuration
is compliant with the system model. Depending on the results
of analyzing, the deciding stage makes the suitable decision.
The deciding stage has tree kinds of decisions. The first
decision is to accept to execute the desired reconfigurations
on the concrete system if the desired reconfigurations are valid
and they can produce a consistent configuration of the system.
The second decision is to refuse the suggested reconfiguration
because they violate the system consistency. We go back to
the planning stage if the desired reconfigurations are rejected.
The final decision of the deciding stage is to modify the
model itself. In some cases we can discover that there is a
need to modify the model design or the system invariants in
order to accommodate the new requirements or to repair the
hidden flaws. For example, suppose that there is an invariant
says that ”the total number of components should not exceed
ten components”. Then, any reconfiguration commands to add
more than ten components will be rejected. So, a decision may
be taken to modify the system model.

Now, let us focus on the analyzing stage by showing
how can the Alloy Analyzer check the consistency of a
reconfiguration change. Suppose that we want to reconfigure
the system shown in figure 1 at running time. let us suppose
that the current configuration of the system is (a). In order to
satisfy the new requirements of the users or the working envi-
ronment, some structural modifications have been proposed.
These modifications will change the system state and will
generate the new configuration (b). Now let us analyze these

changes to know whether the reconfiguration preserves the
global consistency or not. According to the proposed model
in figure 2, there are five signatures. Each signature in the
prestate (a) contains a set of objects as following:
Interface = {i1, i2, i3, i4, i6, i5, i7, i8}
ProvidedInterface = {i2, i3, i7, i8}
RequiredInterface = {i1, i4, i5, i6}
Component = {c1, c2, c3, c4}
Configuration = {a}
In the prestate a the model relations contain the following
tuples:
belong = {(i1, c1), (i2, c1), (i3, c2), (i4, c2), (i5, c2), (i6, c3)
, (i7, c3), (i8, c4)}
have = {(c1, i1), (c1, i2), (c2, i3), (c2, i4), (c2, i5), (c3, i6)
, (c3, i7), (c4, i8)}
contain = {(a, c1), (a, c2), (a, c3), (a, c4)}
bindings = {(a, i2, i6), (a, i3, i1), (a, i7, i4), (a, i8, i5)}
To make the desired structural modifications in order to gener-
ate the new configuration (b), we need to add the component
c5 which has the provided interface i9. Therefore, the set of
reconfiguration commands are:
add c5, unlink (i7, i4), link (i9, i4).

The previous reconfiguration commands will generate a
new configuration (b). by modifying the system signatures and
relations. The model signatures and relations in the new state
b will be modified as the following:
Interface′ = Interface+ i9
ProvidedInterface′ = ProvidedInterface+ i9
RequiredInterface′ = RequiredInterface
Component′ = Component+ c5
Configuration′ = Configuration+ b
Interface′.belong = Interface.belong + (i9, c5)
Component′.have = Component.have+ (c5, i9)
b.contain = a.contain+ c5
b.bindings = a.bindings− (i7, i4) + (i9, i4)

In order to check the conformance of the new configuration
(b) with the proposed model. Then, we should feed the Alloy
analyzer with the old configuration (a) and the reconfiguration
commands. There are various ways to feed them. The way
that we have chosen is defining a singleton signatures which
represent all the existing objects of the configuration (a).
Then we have defined a predicate which contains all the
reconfiguration commands predicates. Then we have used the
run to check whether the configuration (b) is compliant with
the model or not.

After the run command has been executed. Alloy analyzer
showed that the configuration b is consistent and there is
no violation reported. All the model facts (invariants) were
satisfied. After that we have run the assertion NoFreeReqInt
shown in figure 4 to check whether all required interfaces are
linked. The tool has showed that there is no free required
interface. These analyses indicate that the transition from the
configuration a to the configuration b is safe and the global
consistency is preserved.

After we have verified that the reconfiguration commands
are safe and they can produce a consistent configuration. The
suitable decision of the deciding stage (cf. figure 5) is the first
one. The first decision says that the reconfiguration commands
are safe and they can be executed on the concrete component-
based system.

V. RELATED WORK

Several work have been carried out in order to specify
and to preserve the global consistency of the reconfigurable
systems using different approaches.

The authors of [13] proposed two methods to preserve the
global consistency of reconfigurable systems. The first one is
for specifying the programmed change where the changes are
identified and declared at the design time. The second one
is for constraining the unpredictable change where changes
are specified at the running time. In order to preserve the
global consistency, the system has a set of invariants and the
reconfiguration operations must not violates these invariants.

The authors of [9] proposed a transactional approach to
ensure the preservation of the system consistency. They have
provided a model of configurations and reconfiguration. In
order to maintaun the consistency, they have used the invariants
and the pre/post conditions. Alloy language have been used in
order to specify the system invariants and conditions. They also
used Alloy to check consistency. However, Their work focused
only on modeling and specifying Fractal[3] component model.
While, the approach that we have proposed in this paper is
general and not related to a specific component model.

Some approaches have been used the UML modeling
language. UML is the de facto standard for software modeling,
from both the industrial and academic perspective. However,
UML is poor in specifying the reconfigurable systems. There-
fore, many profiles have been proposed to bridge this gap by
extending UML language. For example, The authors of [6] Pro-
posed an approach to specify the static and the dynamic aspect
of software architecture by using graph rewriting rules. The
approach also integrates the UML2.0[10] and the OCL[12], [8]
languages in order to describe the behavior and the relations
between the configuration actions.

VI. CONCLUSION

In this paper, we propose an approach to preserve the
global consistency of a reconfigurable component-based sys-
tem. The approach starts by specifying a general model using
a declarative formal language (Alloy). We have shown that the
system structure can be modeled by using Alloy signatures and
relations. Additional relations and facts can be added to this
model to represent any structure. To model the reconfigurabil-
ity, we have used Alloy predicates. Each predicate represents a
reconfiguration operation. Multiple predicates can be gathered
in another predicate to represent the desired reconfiguration
commands. Preserving the global consistency means to respect
the system invariants. In Alloy, system invariants can be
modeled by using facts. Finally, we have showed the benefit
of using automated formal language by running many tests
to check the safety of the reconfiguration commands. We can
decide by using Alloy analyzer whether the reconfiguration
operations preserve the global consistency or not.

REFERENCES

[1] Thais Batista, Ackbar Joolia, and Geoff Coulson. Managing dynamic
reconfiguration in component-based systems. In EWSA 2005 2 nd

European Workshop on Software Architectures, pages 1–17. Springer,
2005.

[2] Christophe Bidan, Valérie Issarny, Titos Saridakis, and Apostolos
Zarras. A dynamic reconfiguration service for corba. In In 4th Intl.

Conf. on Configurable Dist. Systems, pages 35–42. IEEE Computer
Society Press, 1998.

[3] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The fractal component model and its support in
java. Software: Practice and Experience, 36(11-12):1257–1284, 2006.

[4] G.T. Heineman and W.T. Councill. Component-based software engi-

neering: putting the pieces together, volume 17. Addison-Wesley USA,
2001.

[5] D. Jackson. Software Abstractions: logic, language, and analysis. MIT
press, 2006.

[6] M.H. Kacem, M.N. Miladi, M. Jmaiel, A.H. Kacem, and K. Drira.
Towards a uml profile for the description of dynamic software archi-
tectures. COEA 2005, pages 25–39, 2005.

[7] Jeff Kramer and Jeff Magee. The evolving philosophers problem:
Dynamic change management. IEEE Transactions on software engi-

neering, 16:1293–1306, 1990.

[8] Object Constraint Language. Version 2.3.1 document formal/2012-01-

01, 2.3.1 edition, 2012.

[9] Marc Léger, Thomas Ledoux, and Thierry Coupaye. Reliable dynamic
reconfigurations in a reflective component model. Component-Based

Software Engineering, pages 74–92, 2010.

[10] U.M.L.S. Specification. v2. 0 document 05-07-04. Object Management

Group, pages 20–04, 2004.

[11] C. Szyperski, D. Gruntz, and S. Murer. Component software: beyond

object-oriented programming. Addison-Wesley, 2002.

[12] J.B. Warmer and A.G. Kleppe. The object constraint language: getting

your models ready for MDA. Addison-Wesley Professional, 2003.

[13] A.J. Young and JN Magee. A flexible approach to evolution of
reconfigurable systems. In Configurable Distributed Systems, 1992.,

International Workshop on, pages 152–163. IET, 1992.

