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émanant des établissements d’enseignement et de
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ABSTRACT

This paper introduces a robust linear model to describe hyperspec-

tral data arising from the mixture of several pure spectral signa-

tures. This new model not only generalizes the commonly used

linear mixing model but also allows for possible nonlinear effects

to be handled, relying on mild assumptions regarding these nonlin-

earities. Based on this model, a nonlinear unmixing procedure is

proposed. The standard nonnegativity and sum-to-one constraints

inherent to spectral unmixing are coupled with a group-sparse con-

straint imposed on the nonlinearity component. The resulting objec-

tive function is minimized using a multiplicative algorithm. Simu-

lation results obtained on synthetic and real data show that the pro-

posed strategy competes with state-of-the-art linear and nonlinear

unmixing methods.

Index Terms— Hyperspectral imagery, nonlinear unmixing, ro-

bust nonnegative matrix factorization, group-sparsity.

1. INTRODUCTION

Spectral unmixing (SU) is an issue of prime interest when analyzing

hyperspectral data. SU consists of decomposing P multi-band

observations Y = [y1, . . . ,yP ]T into a collection of K individual

spectra M = [m1, . . . ,mK ]T , called endmembers, and estimating

their relative proportions (or abundances) A = [a1, . . . , aP ]T in

each observation [1]. Most of the hyperspectral unmixing algo-

rithms proposed in the signal & image processing and geoscience

literatures rely on the commonly admitted linear mixing model

(LMM), Y ≈ MA. Indeed, LMM provides a good approximation

of the physical process underlying the observations and has resulted

in interesting and comprehensive results for numerous applications

[2]. However, for several specific applications, LMM may be

inaccurate and other nonlinear models need to be advocated. For

instance, in remotely sensed images composed of vegetation (e.g.,

trees), interactions of photons with multiple components of the

scene lead to nonlinear effects that can be taken into account using

bilinear models. As explained in [3], several bilinear models have

been proposed [4–6], and they mainly differ by the constraints

imposed on the nonlinearity term. Additionally, to approximate

a large range of second-order nonlinearities, Altmann et al. [7]

introduce a polynomial post-nonlinear model that is able to describe

most of the nonlinear effects occurring in the observed scene. A

common feature of these models is that they all consist in including

a supplementary additive term to the standard LMM, accounting for
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the nonlinearities. One major drawback of these models, however,

is that they require to choose a specific form of nonlinearity, and

this can be limiting in practice.

In this paper, a new so-called robust LMM (rLMM) is proposed.

Similarly to the nonlinear models detailed above, it is built on the

standard LMM and includes a supplementary additive term that

accounts for nonlinear effects. However, it does not require to

specify an analytical form of the nonlinearity. Instead, nonlinearities

are merely treated as outliers. Our motivation is that the LMM

is a valid model in the majority of pixels and that only a sparse

number of pixels are affected by nonlinearities. As such, our

contribution consists in decomposing the multi-band observations

as Y ≈ MA + R, where R is a sparse (and nonnegative) residual

term accounting for outliers (i.e., nonlinear effects), with sparsity

imposed at the group-level (a column of R is either entirely zero

or not). The proposed decomposition relates to robust nonnegative

matrix factorization (rNMF) as will be explained in more details in

the following.

The article is organized as follows. The rLMM is introduced

in more details in Section 2. Section 3 describes a multiplicative

algorithm for rLMM estimation. Results obtained on synthetic and

real data are reported in Section 4. Section 5 concludes.

2. ROBUST LINEAR MIXING MODEL

The proposed rLMM is given by

yp =
K

∑

k=1

akpmk + rp + np, (1)

where yp = [y1p, . . . , yLp]T denotes the pth pixel spectrum ob-

served in L spectral bands, mk = [m1k, . . . , mLk]T denotes the

kth endmember spectrum, ap = [a1p, . . . , aKp]T denotes the abun-

dances representing the pth pixel, rp = [r1p, . . . , rLp]T denotes the

outlier term (accounting for nonlinearities) and np denotes residual

noise. The matrix formulation of Eq. (1) is given by

Y = MA + R + N. (2)

The following extra assumptions are made. The data yp is nonnega-

tive by nature, and we take mk and ap to be nonnegative as well. We

also take the abundance coefficients to sum to one, i.e.,
∑

k
akp = 1,

as commonly assumed in most hyperspectral data models. The resid-

ual noise np is assumed zero-mean white Gaussian.



In this work, we assume the nonlinear component rp to be non-

negative, like in the bilinear models of [4–6] and the polynomial

model with constructive interferences of [7]. As discussed in the

introduction, we expect rp to be often zero, i.e., pixels to follow

the standard LMM in general. For pixels where the LMM assump-

tion fails, nonlinearities will become “active” and rp will become

nonzero. This amounts to say that the energy vector

e =
[

‖r1‖2 , . . . , ‖rP ‖2
]T

(3)

where ‖x‖2 =
√

∑

k
x2

k, is sparse. Sparsity can routinely be en-

forced by ℓ1 regularisation. As such, our objective is to solve the

minimisation problem defined by

min
M,A,R

J (M,A,R) = ‖Y −MA−R‖2
2

+ λ ‖R‖
2,1

s.t. M ≥ 0, A ≥ 0, R ≥ 0 and ‖ap‖1 = 1, (4)

where λ is a nonnegative penalty weight, A ≥ 0 denotes nonneg-

ativity of the coefficients of A, ‖x‖1 =
∑

k
xk and ‖ · ‖2,1 is the

so-called ℓ2,1 norm defined by

‖R‖
2,1

= ‖e‖1 =

P
∑

p=1

‖rp‖2 . (5)

Eq. (4) defines a robust NMF problem. Robust NMF is a nonnegative

variant of robust PCA [8] which has appeared in different forms in

the literature. In [9], the outlier term R is nonnegative and penalized

by the ℓ1 norm. In [10] and [11], R is real-valued and penalized by

ℓ1 and ℓ1,2 norms, respectively. In [12], there is no residual term

N and the ℓ2,1 norm ‖Y −MA‖2,1 is minimized. To the best of

our knowledge, the formulation of robust NMF described by Eq. (4),

where R is nonnegative and penalized by the ℓ2,1 norm (and where

the abundances sum to 1), is entirely novel.

3. ALGORITHM

We present a multiplicative algorithm that returns stationary points

of Eq. (4). Our algorithm is based on a heuristic commonly used in

NMF, see, e.g., [13], and as follows. Let θ be a scalar coefficient

of M, A or R. As it appears, the derivative ∇θJ of the objective

function with respect to θ can always be expressed as the difference

of two nonnegative functions such that∇θJ = ∇+

θ J −∇
−
θ J . The

multiplicative algorithm simply writes

θ ← θ.
∇−

θ J

∇+

θ J
. (6)

It ensures nonnegativity of the parameter updates, provided initial-

ization with a nonnegative value. It produces a descent algorithm in

the sense that θ is updated towards left (resp., right) when the gradi-

ent is positive (resp., negative). Though based on a simple heuristic,

the update Eq. (6) is often an exact majorization-minimization al-

gorithm in disguise, which guarantees the decrease of the objective

function at each iteration [14]. We will not give such proofs here

and simply apply the heuristic (6). In practice, the resulting algo-

rithm was indeed observed to decrease the objective function at each

iteration. The abundance sum-to-one constraint is implemented with

a change a variable, following [15].

Using the notation Ŷ = MA + R, with coefficients ŷlp, the

resulting iterative updates are

akp ← akp

∑

l
(ŷlp − rlp)ŷlp + mlkylp

∑

l
(ŷlp − rlp)ylp + mlkŷlp

(7)

akp ←
akp

‖ap‖1
(8)

rlp ← rlp

ylp

ŷlp + λ
2

rlp

‖rp‖2

(9)

mlk ← mlk

∑

p
akp ylp

∑

p
akp ŷlp

(10)

4. SIMULATION RESULTS

4.1. Synthetic data

First, to evaluate the relevance of the proposed rLMM and the accu-

racy of the corresponding robust NMF algorithm, some simulations

have been conducted on synthetic data. Four 64 × 64-pixel images

composed of K = 3 pure spectral components have been generated

according to four different linear and nonlinear models. The end-

member spectra have been extracted from the spectral library pro-

vided with the ENVI software [16] and correspond to micaceous

loam, green grass and bare red brick. The first image, denoted as

ILMM, is composed of pixels following the standard linear mixing

model

yp =

K
∑

k=1

akpmk.

The three other images are supposed to be mainly composed of pix-

els following LMM. However, one fourth of each image (i.e., 1024
pixels) consists of pixels coming from nonlinear mixtures of the end-

members. More precisely, in images denoted IFM and IGBM, some

pixels are subjected to bilinear interactions between components, ac-

cording to the Fan bilinear model (FM) [5]

yp =

K
∑

k=1

akpmk +

K−1
∑

i=1

K
∑

j=i+1

aipajpmi ⊙mj

or the generalized bilinear model (GBM) [7]

yp =

K
∑

k=1

akpmk +

K−1
∑

i=1

K
∑

j=i+1

γijpaipajpmi ⊙mj

where mi ⊙ mj stands for the termwise (Hadamard) product and

γijp adjusts the bilinear interaction between the ith and jth end-

members in the pth pixel. One fourth of the last image IPNLMM

pixels are generated using the polynomial nonlinear mixing model

(PNLMM) introduced in [7]

yp = Map + b (Map)⊙ (Map) .

The abundance coefficients akp for each model are randomly gen-

erated on their admissible set defined by the the nonnegativity and

additivity constraints appearing in (4), with the specific scenario that

a cutoff has been imposed to remove pure pixels from the observa-

tions. The interaction coefficients γijp in the GBM have been uni-

formly drawn over the set (0, 1) and the nonlinear coefficient b in

the PNLMM has been arbitrary fixed to 0.3. The four images have



been unmixed using standard algorithms specially designed for the

considered models. First, vertex component analysis (VCA) [17]

has been used as an endmember extraction algorithm to recover the

spectral signatures of the pure components. For comparison, end-

members were also extracted from images using the nonlinear end-

member extraction algorithm proposed in [18], denoted as Heylen’s

algorithm in what follows. Then, in an inversion step, the mixing co-

efficients have been estimated by algorithms dedicated to the LMM,

FM, GBM and PNLMM, respectively. More precisely, we consider

FCLS as a linear inversion algorithm [19], the FM-based unmixing

technique proposed in [5], the gradient descent algorithm to esti-

mate the GBM parameters [20] and the subgradient-based optimiza-

tion scheme detailed in [7] dedicated to PNLMM. The performance

of the unmixing algorithms are evaluated in terms of global mean

square error related to the the endmember spectra

GMSE
2 (M) =

1

LK

K
∑

k=1

‖mk − m̂k‖
2

and abundance matrix

GMSE
2 (A) =

1

KP

P
∑

p=1

‖ap − âp‖
2

The results in Table 1 show that the proposed method clearly

outperforms both VCA and Heylen’s algorithm to recover the end-

member. In particular, these results demonstrate the ability of the

rLMM-based unmixing technique to mitigate several kinds of non-

linear effects while preserving good estimation performance when

analyzing only linear mixtures.

VCA Heylen’s algo. rLMM

ILMM 2.13 25.4 1.92

IFM 1.94 14.2 1.83

IGBM 2.10 26.0 1.78

IPNLMM 1.88 28.6 1.69

Table 1. Endmember estimation performance in term of

GMSE2 (M) (×10−3).

The performance in term of GMSE2 (A) is reported1 in Table 2.

Similarly, these results demonstrate the flexibility of the rLMM to

model observations coming from various scenarios.

LMM FM GBM PNLMM rLMM

ILMM 1.85 9.03 1.84 1.85 1.69

IFM 5.07 13.9 4.60 4.89 4.56

IGBM 4.93 12.5 4.66 4.65 4.43

IPNLMM 1.85 11.6 1.82 1.89 1.66

Table 2. Abundance estimation performance in term of GMSE2 (A)
(×10−6).

1Note that, for brevity, the inversion methods used for LMM, FM, GBM
and PNLMM unmixing are only coupled with the results provided by VCA
since the endmember spectra estimated by the Heylen’s algorithm were not
relevant.

4.2. Real data

As an illustration, the proposed rLMM-unmixing technique has been

applied on the real Moffett Field dataset previously used for instance

in [6, 21, 22]. The area of interest is a lake shore thus mainly com-

posed of water, vegetation and soil. The endmember spectra and the

corresponding abundance maps recovered while using the rLMM are

depicted in Fig. 1 (top) and Fig. 1 (bottom) where black (resp. white)

pixels correspond to absence (resp. presence) of the associated end-

members. All these results are in good agreement with previous re-

sults shown in [6, 21, 22].

Fig. 1. Top: endmembers estimated by the proposed rNMF-based

unmixing algorithm. Bottom: corresponding estimated abundance

maps.

However, in addition to this standard description of the data by

linearly mixed endmembers, the proposed model also provides infor-

mation regarding the pixels that can not be explained with the stan-

dard LMM. Figure 2 shows the energy e =
[

‖r1‖2 , . . . , ‖rP ‖
]T

of

the residual component (previously introduced in (3)) estimated by

the algorithm detailed in Section 3 (a white pixel corresponds to a

residual of high energy). This map demonstrates that most of the pix-

els of this scene can be accurately described using the LMM. How-

ever, some few pixels, mainly located in the lake shore, appear at out-

liers. These pixels probably correspond to areas where some inter-

actions between several endmembers occur (e.g., water/vegetation,

water/soil).

5. CONCLUSION

This paper presented a new mixing model to describe hyperspectral

data. This model, denoted as rLMM, extends the standard LMM

by including a residual term that can capture so-called nonlinear ef-

fects. These nonlinear effects are treated as additive and sparsely

active outliers. The resulting unmixing problem was formulated as

a new form of robust NMF problem, for which we developed a sim-

ple and effective multiplicative algorithm. Simulations conducted on

synthetic and real data illustrated the effectiveness of rLMM, which

outperformed many unmixing methods designed for various linear

and nonlinear models.



Fig. 2. Energy of the nonlinear components estimated by the pro-

posed algorithm.
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