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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50532465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00783654


MLC 2003 Preliminary Version

Remarks on Isomorphisms
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David Chemouil, Sergei Soloviev
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31062 Toulouse, Frane

Abstrat

We study isomorphisms of types in the system of simply-typed �-alulus with in-

dutive types and reursion operators. It is shown that in some ases (multiproduts,

opies of types), it is possible to add new redutions in suh a way that strong nor-

malisation and on�uene of the alulus are preserved, and the isomorphisms may

be regarded as intensional w.r.t. a stronger equality relation.

1 Introdution

1.1 Presentation

This work is part of a larger projet where we are exploring the possibilities

of extensions preserving strong normalisation and on�uene of standard re-

dution systems by new redutions of the form f

0

(f t) �! t where f

0

is in

some sense an inverse of f .

The way this notion of invertibility may be understood is one of the ques-

tions we are investigating. A possibility would be to take the invertibility w.r.t

extensional equality of funtions between indutive types.

Here, we shall onsider the simply-typed �-alulus, equipped with indu-

tive types (i.e reursive types satisfying a ondition of strit positivity) and

strutural reursion shemes on these types.

In this short paper, we will fous on two partiular ases where the use-

fulness of this extension seems obvious. Namely, we shall study some isomor-

phisms of produts (de�ned as indutive types) and the notion of opy of a

type
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1.2 Isomorphisms of Types

Let us �rst reall a few fats and de�nitions about isomorphisms of types.

De�nition 1.1 Consider a typed �-alulus, equipped with an equivalene

relation � on terms, a term id

A

: A ! A for any type A and a omposition

operator Æ (with suitable typing) verifying the following onditions, for any

funtion f : A! B:

f Æ id

A

� f id

B

Æf � f

Then, two types A and B are said to be isomorphi (written A

�

=

B) if

there exist two �-terms f : A! B and g : B ! A suh that

f Æ g � id

B

g Æ f � id

A

In this ase, g is often written f

�1

and alled the inverse of f .

Until now, isomorphisms of types have mostly been studied in various �rst-

or seond-order �-aluli, where � is usually generated by ��-onversion

3

,

id

A

b= �x : A � x and Æ b= �g : B ! C � �f : A ! B � �x : A � g (f x) (for any

types A, B, and C). As an example, we have the following result:

Proposition 1.2 ([21℄; [9,11℄) All isomorphisms holding in �

1

��

!;�;1

, the

�rst-order simply-typed �-alulus with binary produts and unit type (or,

equivalently, in artesian losed ategories), are obtainable by �nite ompo-

sitions of the following �base� of seven isomorphisms:

A�B

�

=

B � A A� (B � C)

�

=

(A� B)� C

(A�B)! C

�

=

A! (B ! C) A! (B � C)

�

=

(A! B)� (A! C)

A� 1

�

=

A A! 1

�

=

1 1! A

�

=

A

1.3 Isomorphisms of Indutive Types

Now, it is our view that, as long as indutive types are onerned, intensional

isomorphisms, in ordinary sense, lak expressivity. To view this problem in a

larger ontext, one needs a notion of extensionality.

De�nition 1.3 Two types A and B are extensionally isomorphi (written

A u B) if there exists two �-terms f : A! B and g : B ! A suh that

8 x : A � g (f x) � x and 8 y : B � f (g y) � y :

(Note that

�

=

and u are both equivalene relations.)

3

It was shown in [10℄ that with �-onversion solely, the only invertible term is the identity.
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Obviously, we have A

�

=

B ) A u B, but the onverse is usually not true.

One way to ahieve this kind of isomorphisms would be to add extensional

redution rules to the aluli, suh as � rules, surjetive pairing, et. However,

many aluli don't ome equipped with extensional redution rules, for various

reasons (deidability, on�uene, et); though some positive results do exist,

e.g [17,14,16℄. Hene, in this paper, we will mainly be interested with ��-

redution only (where �-redution is the rule assoiated to strutural reursion

over indutive types).

Of ourse, extensional isomorphisms are provable by indution, but they

are not omputable, i.e, one doesn't have (for example)

�x : A � f

�1

(f x) �!

��

�x : A � x:

Without appealing to full extensionality, we think that, if f and f

�1

are

mutually invertible extensional isomorphisms, it is worth onsidering the ad-

dition of new redution rules (all them �-redutions, following [6℄) as follows:

f (f

�1

x) �!

�

x and f

�1

(f x) �!

�

x:

1.4 Outline of the paper

In Set. 2, we quikly give essential de�nitions of a simply-typed �-alulus

with indutive types.

Then, in Set. 3, we quikly present a small lemma (�Deferment Lemma�)

that is of interest in the next setion.

In Set. 4, we illustrate the addition of rewrite rules on n-ary produts.

We show that, for produts, strong normalisation and on�uene are preserved

for a rewrite rule orresponding to ommutativity, while it is not the ase for

assoiativity, unless we also add surjetive pairing.

Finally, in Set. 5, we study the notion of isomorphi opy of a type, and

how a rewrite rule orresponding to it may or not be added to the alulus.

2 Simply-Typed �-Calulus with Indutive Types

We de�ne the simply-typed �-alulus with indutive types, whih may be

seen as an extension of Gödel's system T . Some referenes on �-alulus and

indutive types may be found in [4,20,5,23,19,8℄. Furthermore, most of our

notations and results onerning rewrite systems are taken from [1℄. For a

given redution �!

R

, we write �!

+

R

for its transitive losure, and �!

�

R

for

its re�exive-transitive losure.

2.1 Types

Throughout this paper, we onsider an in�nite set S = f�; �; : : :g of type

variables. We also onsider an in�nite set of variables V (with V \ S = ?),

3
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and an in�nite set C of indutive-type onstrutors (or introdution operators),

with C \ S = C \ V = ?.

Moreover, as usual in this sort of presentation, we onsider all terms and

types up to �-onversion, i.e the names of bound variables are irrelevant.

Note 1 In the following, the sign � will denote syntati equality, and def-

initions will be introdued in the alulus with the sign b=. Furthermore, we

will use the ommon notation let x = e

1

in e

2

for e

2

[e

1

=x℄.

De�nition 2.1 The set of pre-types is generated by the following grammar

rules:

Ty ::= � j (Ty ! Ty) j Ind(�)[ CS ℄

CS ::= CL j "

CL ::=  : Ty j  : Ty ; CL

with  2 C (as usual, " denotes the empty word). Of ourse, we require that

any onstrutor belong to only one indutive type.

Note 2 We onsider that ! is right assoiative, hene �

1

! (�

2

! �

3

) will

be subsequently written �

1

! �

2

! �

3

.

An indutive type with n onstrutors 

1

, . . . , 

n

in C, eah of arity k

i

(with

1 6 i 6 n), is then of the form

Ind(�)[ 

1

: �

1

1

! : : :! �

k

1

1

! � ; : : : ; 

n

: �

1

n

! : : :! �

k

n

n

! � ℄;

where the part between brakets is bound by Ind(�). Moreover, every �

i

�

�

1

i

! : : :! �

k

i

i

! � must verify ertain onditions, as explained below.

De�nition 2.2 A stritly positive operator � over a type variable � (written

� spos �) is indutively de�ned by the following rules:

� spos �

� 62 FV(�

1

) �

2

spos �

�

1

! �

2

spos �

De�nition 2.3 An (indutive) shema � over a type variable � (written � sh

�) is indutively de�ned by the following rules:

� sh �

� =2 FV(�

1

) �

2

sh �

�

1

! �

2

sh �

�

1

spos � �

2

sh �

�

1

! �

2

sh �

Intuitively, a shema � is of the form �

1

! : : :! �

k

! �, where every �

j

is itself:

�

either a type not ontaining � (we all this �

j

a non-reursive operator);

�

or a type of the form �

j

� �

1

! : : : ! �

m

! � (we all this �

j

a stritly

positive operator), where � does not appear in any �

`

.

4
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Note 3 Given a shema � � �

1

! : : :! �

k

! �, we will denote by SP

�

(�)

the set of indies j (with 1 6 j 6 k) suh that �

j

is a stritly positive op-

erator over �, i.e SP

�

(�) = fj j 1 6 j 6 k ^ �

j

spos �g. This set will be

useful beause it orresponds to arguments (of a given onstrutor) on whih

a reursive all may be arried out.

De�nition 2.4 A type � (written � : ?) is indutively de�ned by the following

rules:

� 2 S

� : ?

�

1

: ? �

2

: ?

�

1

! �

2

: ?



i

2 C �

i

: ? �

i

sh � (1 6 i 6 n)

Ind(�)[ 

1

: �

1

; : : : ; 

n

: �

n

℄ : ?

Example 2.5 With these rules, it is possible to de�ne the types of natural

numbers, of Brouwer's ordinals and of lists of natural numbers (normally,

these indutive types should have di�erent onstrutor names, we used some

ommon names for the sake of readibility):

Nat b= Ind(�)[ 0 : � j S : �! � ℄

Ord b= Ind(�)[ 0 : � j S : �! � jL : (Nat! �)! � ℄

ListNat b= Ind(�)[ nil : � j ons : Nat! �! � ℄:

Note that any indutive type � generates a reursor (or strutural-reursion

operator)R

�;�

to any type �. This will be further explained in the next setion

onerned with terms of the language.

2.2 Terms

We will now de�ne the terms of our alulus.

De�nition 2.6 The set of terms is generated by the following grammar rule:

M ::=  j x j (�x : � �M) j (M M) j R

�;�

;

where x 2 V,  2 C and � and � are types.

Note 4 Appliation is left-assoiative, hene (: : : (M

1

M

2

) : : :) M

n

) an be

written M

1

: : :M

n

. In the same way, abstration is right-assoiative, hene

(�x

1

: �

1

� (�x

2

: �

2

�M)) an be written �x

1

: �

1

� �x

2

: �

2

�M

We now de�ne a syntati operation that will be useful to assert typing

rules for terms.

De�nition 2.7 Let � be an indutive type, � � �

1

! : : : ! �

k

! � a

shema over � in � , and � a type. Let fj

p

g

p=1;`

= SP

�

(�). Then, we de�ne

�

�

(�; �) � �

1

[�=�℄! : : :! �

k

[�=�℄! �

j

1

[�=�℄! : : : �

j

`

[�=�℄! �:

5
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De�nition 2.8 We now present the typing rules for the alulus:

�; x : � ` x : �

(ax)

� � Ind(�)[ : : : ;  : � ; : : : ℄ � : ?

� `  : �[�=�℄

(onstr)

�; x : �

1

`M : �

2

(�x : �

1

�M) : �

1

! �

2

(�)

� `M : �

1

! �

2

� ` N : �

1

� ` (M N) : �

2

(app)

� � Ind(�)[ 

1

: �

1

; : : : ; 

n

: �

n

℄

� `M

i

: �

�

(�

i

; �) (1 6 i 6 n)

� ` (R

�;�

M

1

: : : M

n

) : � ! �

(elim)

2.3 Redution

De�nition 2.9 We de�ne the usual �-redution rule as follows:

(�x : � �M) N �!

�

M [N=x℄ :

Now, we de�ne the �-redution. However, to do so, we �rst need to make

a tehnial de�nition whih will be helpful.

De�nition 2.10 Let � � �

1

! : : :! �

m

! � be a stritly positive operator

over �. Then, we de�ne

�(R;N; �) � �z

1

: �

1

� : : : � �z

m

: �

m

�R (N z

1

: : : z

m

) :

Of ourse, in the speial ase where m = 0, we have �(R;N; �) � R N .

De�nition 2.11 Now, let � � �

1

! : : :! �

k

! � be a shema over �, and

let fj

p

g

p=1;`

= SP

�

(�). Then, we de�ne �-redution by

R

�;�

M

1

: : : M

n

(

i

N

1

: : : N

k

i

) �!

�

M

i

N

1

; : : : N

k

i

N

0

j

1

: : : N

0

j

`

;

where N

0

j

p

� �(R

�;�

M

1

: : : M

n

; N

j

p

; �

j

p

), for all 1 6 p 6 `.

Examples of rules for some basi indutive types are given in Figure 1 on

the following page.

Proposition 2.12 For the simply-typed �-alulus with indutive types, ��-

redution is strongly normalising and on�uent.

See for example [8℄.

3 A Deferment Lemma

There are many lemmas onerning with strong normalisability of a relation

�!

RS

when �!

R

and �!

S

are strongly normalising. Though the lemma we

6
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R

Nat;�

a f 0 �!

�

a

R

Nat;�

a f (S p) �!

�

f p (R

Nat;�

a f p)

R

Ord;�

a f g 0 �!

�

a

R

Ord;�

a f g (S p) �!

�

f p (R

Ord;�

a f g p)

R

Ord;�

a f g (L k) �!

�

g k (�z : Nat � (R

Ord;�

a f g (k z)))

R

ListNat;�

a f nil �!

�

a

R

ListNat;�

a f (ons h t) �!

�

f h t (R

ListNat;�

a f t)

Fig. 1. Reursion rules for some basi indutive types

onsider below is lose to many results in the folklore, we ould not �nd its

exat formulation in the literature.

Note also that this lemma is not equivalent to the so-alled Postponement

Lemma for �-ontrations in pure �-alulus, see e.g [3℄ p. 386.

De�nition 3.1 Let �!

R

and �!

S

be two redutions. Then, �!

S

is defer-

able w.r.t �!

R

if, for all terms t and u suh that t �!

S

�!

R

u, there is a

derivation t �!

R

�!

�

RS

u.

t

S

���

�

�

�

�

�

�

�

R

��

R

��

�

�

�

�

�

�

�

�

RS

��

u

Lemma 3.2 (Deferment Lemma) Let �!

R

and �!

S

be two strongly nor-

malising relations. Then, if �!

S

is deferable w.r.t �!

R

, �!

RS

is strongly

normalising.

Proof. Let �!

R

and �!

S

be two strongly normalising relations, suh that

�!

S

is deferable w.r.t �!

R

. Let us suppose that �!

RS

is not strongly

normalising, and show that it leads to a ontradition.

If �!

RS

is not strongly normalising, then �!

�

RS

onsists of an in�nite al-

ternation of �!

�

R

and �!

�

S

. Then, one an indutively �lift� �!

R

-redutions

by deferring every �!

S

-redution followed by an �!

R

-redution, thus build-

ing an in�nite derivation of �!

R

steps. This ontradits the fat that �!

R

is strongly normalising. 2

In fat, we an prove a slightly more powerful lemma whose premises our

however less in pratie.

7
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De�nition 3.3 Let �!

R

and �!

S

be two redutions. Then, �!

S

is 0-

deferable w.r.t �!

R

if, for all terms t and u suh that t �!

S

u, there is a

derivation t �!

R

�!

�

RS

u.

t

S

��

R

��

�

RS

��

u

Lemma 3.4 (0-Deferment Lemma) Let �!

R

and �!

S

be two strongly

normalising relations. Then, if �!

S

is 0-deferable w.r.t �!

R

, �!

RS

is

strongly normalising.

Proof. Immediate, beause 0-deferment implies deferment. 2

Remark 3.5 Sine the submission of this paper, we found some referenes

about what we all Deferment Lemma (f. [2,15℄ and most notably [13℄).

While we shall keep alling this property �deferment� in the urrent paper,

we intend to use the preferable term �adjournement� afterwards, following

Delia Kesner (private ommuniation).

4 Multiproduts

Let us de�ne a shema of indutive types representing n-ary produts:

�

n

A

1

: : : A

n

b= Ind(�)[ h�i

n

: A

1

! : : :! An! � ℄ ;

with reursion operator L�M

n

de�ned by

L�M

n

: (A

1

! : : :! A

n

! B)! (�

n

A

1

: : : A

n

! B)

Lf M

n

ha

1

: : : a

n

i

n

�!

�

f a

1

: : : a

n

:

The projetions p

n

k

are de�ned as L�x

1

: A

1

� : : : � �x

n

: A

n

� x

k

M

n

.

Remark 4.1 One may note that the produt of morphisms f

i

: C ! A

i

(with

1 6 i 6 n) is de�nable, without the elimination operator, by

prod

n

f

1

: : : f

n

b= �z : C � hf

1

z; : : : ; f

n

zi

n

:

However, many familiar properties of produt and projetions do not hold

intensionally. For example, we have hp

2

1

x; p

2

2

xi

2

6=

��

x for x : �

2

A B. In

fat, this property, usually known as surjetive pairing, stipulates that the

produt is unique.

4.1 Commutativity of Produts

Now, let % be a permutation of f1; : : : ; ng. The permutation of �

n

A

1

: : : A

n

in-

dued by % is denoted %, and de�ned as L�x

1

: A

1

�: : :��x

n

: A

n

�hx

%(1)

; : : : ; x

%(n)

i

n

M

n

.

8
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Proposition 4.2 For any term t : �

n

A

1

: : : A

n

and permutations % and !

de�ned on f1; : : : ; ng, the equality % Æ ! t =

��

% (! t) is provable.

Still, while we an prove this proposition by indution, it is important to

note that the equality is not omputable for an arbitrary t, but just when

t � ht

1

; : : : ; t

n

i

n

for some n (f. Set. 1.3 on page 3). Note also that for

mutually inverse permutations % and %

�1

, % and %

�1

are mutually inverse

extensional isomorphisms.

Now, for given mutually inverse permutations % and %

�1

, let us add the

following rewrite rules to the system of ��-redutions:

% (%

�1

x) �!

�

x %

�1

(% x) �!

�

x :

(Note that % and %

�1

are onrete, i.e onstant, terms of the alulus.)

Remark 4.3 To lighten the notation, let us write � and �

0

for % and %

�1

. We

will also make use of diagrams, as is usually done for this kind of proof.

Lemma 4.4 �-redution is strongly normalising.

Proof. Take the length of terms as an ordering. 2

Theorem 4.5 ���-redution is strongly normalising.

Proof. We show that �-redution is deferable w.r.t �-redution (ase i) and

w.r.t �-redution (ase ii).

(i) For �-redution. The ruial ase is when the �-redex ours inside a

�-redex.

i.1. As a �rst possibility, we may have t � t

0

[(�x : A �p[� (�

0

s)℄) q℄. Note

that � and �

0

do not ontain variables.

t � t

0

[(�x : A � p[� (�

0

s)℄) q℄

�

uu
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

�

))

t

0

[(�x : A � p[s℄) q℄

�

))

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

t

0

[(p[� (�

0

s)℄)[q=x℄℄

�

uu

t

0

[(p[s℄)[q=x℄℄

i.2. We may also have t � t

0

[(�x : A � p) (q[� (�

0

s)℄)℄, in whih ase the

term p may ontain many (or zero) ourrenes of x, whih requires

9
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to arry as many �-redutions.

t � t

0

[(�x : A � p) (q[� (�

0

s)℄)℄

�

uuk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

�

))

t

0

[(�x : A � p) (q[s℄)℄

�

))

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

t

0

[p[q[� (�

0

s)℄ = x℄℄

�

�

uu

t

0

[p[q[s℄=x℄℄

(ii) For �-redution.

ii.1. The ruial ase ours when a �-redex may interat with � and �

0

,

hene we must have t � t

0

[� (�

0

hs

1

; : : : ; s

n

i

n

)℄. But then, it is imme-

diate to see that t �!

�

t

0

[hs

1

; : : : ; s

n

i

n

℄ an also be performed by the

derivation: t

0

[� (�

0

hs

1

; : : : ; s

n

i

n

)℄ �!

�

�!

+

��

t

0

[hs

1

; : : : ; s

n

i

n

℄. This is

a trivial ase of 0-deferment.

ii.2. In other ases, the �-redex doesn't interfere with �-redution, there-

fore deferment is obviously possible.

2

Theorem 4.6 ���-redution is on�uent.

Proof. First, as ���-redution is strongly normalising, it is enough to show

loal on�uene (by Newman's Lemma), i.e for all terms t, w, w

0

suh that

t �!

���

w and t �!

���

w

0

, there exists a term u suh that w �!

�

���

u and

w

0

�!

�

���

u.

By Lemma 2.12, ��-redution is on�uent. For �-redutions alone, by

Newman's Lemma it is enough to show loal on�uene. The ritial pairs

indued by �-redution are joinable; hene by the Critial Pair Theorem, �-

redution is loally on�uent. Therefore, for ���-redutions there are only

two extra ases to be onsidered depending on whether one arries a �- or

�-redution (ombined with �-) as a �rst step.

(i) If it is a �-redution, then t � t

0

[� (�

0

s)℄, and there are 4 possible ases:

the �-redex is in s, the �-redex has no intersetion with � (�

0

s), the �-

redex ontains � (�

0

s), or the �-redex is in � (�

0

s) and intersets with

� or �

0

.

i.1. We have t � t

0

[� (�

0

(s

0

[r℄))℄, r being a �-redex. Then, if t �-redues

to t

0

[� (�

0

s

0

[r

0

℄)℄ and �-redues to t

0

[s

0

[r℄℄, it is possible to �lose� the

fork by t

0

[� (�

0

s

0

[r

0

℄)℄ �!

�

t

0

[s

0

[r

0

℄℄ and t

0

[� (�

0

s

0

[r

0

℄)℄ �!

�

t

0

[s

0

[r

0

℄℄.

i.2. One more, the order is indi�erent.

i.3. One has t

0

� t

00

[r[� (�

0

s)℄℄. The upper-left �-redution annot a�et

� (�

0

s) sine this part doesn't begin with an introdution operator.

(In general, the lower-left redution would possibly be �!

�

�

sine the

number of �-redexes may hange when �-redution is applied, but it

10
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is not the ase for produts.)

t

0

� t

00

[r[� (�

0

s)℄℄

�

uuk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

�

))

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

t

00

[r

0

[� (�

0

s)℄℄

�

))

t

00

[r[s℄℄

�

uu

t

00

[r

0

[s℄℄

i.4. In fat, the �-redex should oinide with (�

0

s), sine (�

0

s) doesn't

begin with an introdution operator, so it annot be � (�

0

s) (here,

we use the onrete de�nition of � and �

0

). Thus, s must be of

the form hs

1

; : : : ; s

n

i

n

. But, for all elements of this form, we have

� (�

0

hs

1

; : : : ; s

n

i

n

) �!

�

�!

+

��

hs

1

; : : : ; s

n

i

n

, hene loal on�uene

holds trivially in this ase.

(ii) For �-redution, ases ii.1 and ii.2 are similar to ases i.1 and i.2, thus

treated as above.

ii.3 If t � t

0

[(�x : A � p[� (�

0

s)℄) q℄, and t �!

�

t

0

[(p[� (�

0

s)℄)[q=x℄℄ and

t �!

�

t

0

[(�x : A � p[s℄) q℄, losing the �fork� is straightforward by

observing that both terms �- and �-redue respetively in one step

to t

0

[(p[s℄)[q=x℄℄. (Note that this situation appears beause � and �

0

are losed terms.)

ii.4 In the last ase, where t � t

0

[(�x : A � p) (q[� (�

0

s)℄)℄, the number

of ourrenes of x in p may in�uene the number of �-redutions to

perform to lose the diagram. Thus, if t �!

�

t

0

[p[q[� (�

0

s)℄ =x℄℄ and

t �!

�

t

0

[(�x : A � p) (q[s℄)℄, we may need a sequene of redutions

t

0

[p[q[� (�

0

s)℄ =x℄℄ �!

�

�

t

0

[p[q[s℄=x℄℄ while a one-step �-redution only

would be neessary on the other term: t

0

[(�x : A � p) (q[s℄)℄ �!

�

t

0

[p[q[s℄=x℄℄.

2

4.2 Assoiativity of Produts

As just seen, produts enjoy the ommutativity property. However, the as-

soiativity does not hold in general, i.e, it is not the ase that, for example,

�

2

(�

2

A B) C u �

2

A (�

2

B C). This is so beause there is an ourene

of �

2

A B (or �

2

B C) inside another �

2

. Thus, the �isomorphisms� g and

g

0

would be de�ned in the following way:

g : �

2

(�

2

A B) C ! �

2

A (�

2

B C)

b= L�p : �

2

A B � � : C � hp

2

1

p; hp

2

2

p; i

2

i

2

M

11
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and

g

0

: �

2

A (�

2

B C)! �

2

(�

2

A B) C

b= L�a : A � �q : �

2

B C � hha; p

2

1

qi

2

; p

2

2

qi

2

M :

Then, for a term hp; i

2

, with p : �

2

A B and  : C, one has:

g

0

(g hp; i

2

) �!

�

�!

�

g

0

hp

2

1

p; hp

2

2

p; i

2

i

2

�!

�

�!

�

hhp

2

1

p; p

2

2

pi

2

; i

2

6=

��

hp; i

2

beause of the lak of surjetive pairing. It is interesting to note that, even

with extensionality on anonial elements, the isomorphism establishing asso-

iativity of binary produt does not hold.

4.3 Retrations

Now, let us onsider some orrespondanes between n-produts for di�erent

n, for example �

3

A B C and �

2

(�

2

A B) C. De�ne

f : �

2

(�

2

A B) C ! �

3

A B C

b= L�y : �

2

A B � �z : C � hp

2

1

y; p

2

2

y; zi

3

M

2

and

f

0

: �

3

A B C ! �

2

(�

2

A B) C

b= L�x : A � �y : B � �z : C � hhx; yi

2

; zi

2

M

3

:

For ht; u; vi

3

: �

3

A B C, we have:

f (f

0

ht; u; vi

3

) �!

�

�!

�

f hht; ui

2

; vi

2

�!

�

�!

�

ht; u; vi

3

:

However, for hy; zi

2

: �

2

(�

2

A B) C, we have:

f

0

(f hy; zi

2

) �!

�

�!

�

f

0

hp

2

1

y; p

2

2

y; zi

3

�!

�

�!

�

hhp

2

1

y; p

2

2

yi

2

; zi

2

6=

��

hy; zi

2

;

one again beause the type �

2

A B doesn't enjoy surjetive pairing. This

means that even in an extensional sense (on anonial elements), f is only

a retration, and not an isomorphism. Of ourse, the same situation will

appear if we onsider the produt of n elements expressed with �

n

, and using

a superposition of �

k

for k < n. While we will not onsider deeply the

ase of retrations in this paper, we think they deserve attention for further

studies: this example suggests that �

3

might be onsidered as the �anonial�

representation of triples, for being the retrat of all representations of triples.

One may note that this observation demonstrates the usefulness of adding

new redutions gradually. The orrespondene between produts of di�erent

12
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arity desribed above would remain hidden if surjetive pairing was already

present.

4.4 Surjetive Pairing

Let us add the rule hp

2

1

x; p

2

2

xi

2

�!

SP

x (if x is of produt type) to the system

with ��-redutions. We will now show that the Deferment Lemma may also

be applied to prove strong normalisation of a system of ��SP-redutions.

Consider a SP -redution followed by some �- or �-redution.

t[hp

2

1

s; p

2

2

si

2

℄ �!

SP

t[s℄ �!

�

t

�

[s

�

℄ :

If s does not have the form hs

1

; s

2

i

2

or it does but the redution does not use

this ourrene of h�; �i

2

then deferment is obviously possible.

Suppose the redution that follows SP is �, then t should be a term of the

form t[hp

2

1

s; p

2

2

si

2

℄ � t

0

[Lf M

2

hp

2

1

s; p

2

2

si

2

℄ where s : �

2

A B, s

1

: A, s

2

: B,

f : A! B ! C and we have

t

0

[Lf M

2

hp

2

1

s; p

2

2

si

2

℄ �!

SP

t

0

[Lf M

2

hs

1

; s

2

i

2

℄ �!

�

t

0

[f s

1

s

2

℄ :

This an be replaed by

t

0

[Lf M

2

hp

2

1

s; p

2

2

si

2

℄ �!

�

t

0

[f (p

2

1

s) (p

2

2

s)℄

�!

�

�!

�

t

0

[f s

1

(p

2

2

s)℄ �!

�

�!

�

t

0

[f s

1

s

2

℄

(a trivial ase of deferment). It is easy to see that loal on�uene will hold

as well.

5 Isomorphi Copies of (Non-)Algebrai Types

The notion of the opy of a type is a very important one, and ours quite

often in many developments. For example, suh operations are frequently used

in tree-proessing programs suh as ompilers. In this setion, we study how

isomorphisms may be used to devise an extended notion of opy, namely the

isomorphi opy (for want of a better name).

Let us onsider two extensionally isomorphi types A and B with isomor-

phisms f : A! B and f

�1

: B ! A, and a type

C � Ind(�)[ 

1

: �

1

1

! : : :! �

k

1

1

! � ; : : : ; 

n

: �

1

n

! : : :! �

k

n

n

! � ℄ ;

possibly ontaining ourrenes of A. An isomorphi opy C

0

of C di�ers

by names of introdution operators, e.g 

0

1

; :::; 

0

n

, and by the fat that eah

�atomi� ourrene of A in C is replaed by an ourrene of B in C

0

(that

is to say: A will be replaed by B only if it ours either as a non-reursive

operator, or as the premise �i.e, the type of an argument� of a stritly

positive operator).

13
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The reader who prefers a less abstrat setting may suppose the isomor-

phisms between A and B belong to the lass studied in setion 4. It an be

also intensional isomorphism, e.g., permutation of premisses of a funtional

type.

The de�nitions below also may be modi�ed in suh a way that only some

seleted ourrenes of A are onsidered.

Now, let us de�ne a funtion iopy : C ! C

0

whih onverts anon-

ial objets from one type to the other. Formally, iopy is of the form

R

C;C

0

M

1

: : :M

n

. For every onstrutor 

i

: �

1

i

! : : : ! �

k

i

i

! C, let

fj

p

g

p=1;`

= SP

�

(�) and let us denote every stritly positive operator �

j

p

i

by

�

i;j;1

! : : : �

i;j;p

i;j

! �. Then, we have

M

i

� �x

1

: �

1

i

[C=�℄ � : : : � �x

k

i

: �

k

i

i

[C=�℄�

�w

j

1

: �

j

1

i

[C

0

=�℄ � : : : � �w

j

`

: �

j

`

i

[C

0

=�℄ � 

0

i

Æ

1

: : : Æ

k

i

where

Æ

m

�

8

>

<

>

:

(a) �z

1

: �

0

i;m;1

� : : : � �z

p

: �

0

i;m;p

i;m

� w

m

z

0

1

: : : z

0

p

if m 2 j

1

; : : : ; j

`

;

(b) f x

m

if �

m

i

� A;

() x

m

otherwise;

and, for 1 6 r 6 p

i;m

:

�

�

0

i;m;r

� B and z

0

r

� f

�1

z

r

if �

r

� A;

�

�

0

i;m;r

� �

i;m;r

and z

0

r

� z

r

otherwise.

The funtion iopy

�1

: C

0

! C is de�ned similarly.

We may now onsider the behaviour of iopy and iopy

�1

w.r.t introdution

operators, assuming that the new �-redutions iopy

�1

(iopy x) �!

�

x and

f

�1

(f x) �!

�

x are added. The main observation is that

iopy

�1

(iopy (

i

t

1

: : : t

k

i

)) �!

+

��



i

t

0

1

: : : t

0

k

i

where t

0

j

:

�

is t

j

in ase ();

�

is f

�1

(f t

j

) in ase (b);

�

and is of the form �z

1

: �

i;j;1

� : : : � �z

p

: �

i;i;p

i;j

� iopy

�1

(iopy (t

j

z

0

1

: : : z

0

p

))

where z

0

r

� f

�1

(f z

r

) if �

r

� A, z

0

r

� z

r

otherwise, in ase (a).

Now, suppose we have a term of the form q[iopy

�1

(iopy (

i

t

1

: : : t

k

i

))℄.

14
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Then, by one single �-redution, we have

q[iopy

�1

(iopy (

i

t

1

: : : t

k

i

))℄ �!

�

q[

i

t

1

: : : t

k

i

℄ :

But we may try to defer this �-redution. First, we have

q[iopy

�1

(iopy (

i

t

1

: : : t

k

i

))℄ �!

+

��

q[

i

t

0

1

: : : t

0

k

i

℄ :

Now, the deferment will depend on whih ases the t

0

j

are in. In ase (), we

have t

0

j

� t

j

, so no more redution is to be done to lose the diagram. If

ase (b) happens, some �-redutions will be needed:

q[

i

t

0

1

: : : t

0

k

i

℄ �!

+

�

q[

i

t

1

: : : t

k

i

℄ :

Finally, if ase (a) happens, arrying some �-redutions may lead to an un-

losed diagram:

q[

i

t

0

1

: : : t

0

k

i

℄ �!

+

�

q[

i

t

00

1

: : : t

00

k

i

℄ ;

where t

00

j

may begin by some abstrations. This situation will not happen only

in the spei� ase, similar in result to ase (b), where �

j

i

is a stritly positive

operator over � of null arity, i.e �

j

i

� �. For example, this is the ase for the

`S' onstrutor of ordinals. In the general ase however (i.e with �

j

i

being a

stritly positive operator over � of non-null arity), the only way to lose the

diagram seems to add further �-expansions in the following way:

q[

i

t

1

: : : t

k

i

℄ �!

+

�

q[

i

t

00

1

: : : t

00

k

i

℄ :

As an example, we have, for the `L' onstrutor of ordinals the following

redution graph:

q[iopy

�1

(iopy (L k))℄

�

wwo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

�

��

''

O

O

O

O

O

O

O

O

O

O

O

O

O

O

q[L k℄

�

''

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

q[L (�z

1

: N � iopy

�1

(iopy (k (f

�1

(f z

1

)))))℄

2

�

wwo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

q[L (�z

1

: N � k z

1

)℄

As a onlusion, if we only meet ases () and (b), and ase (a) with

only null-arity stritly positive operators, it is always possible to (0-)defer

�-redutions in the alulus. Thus ���-redution is strongly normalising for

�algebrai� types. Con�uene follows easily, with a similar proof as for Theo-

rem 4.6 on page 10.

As we brie�y disussed above, our �strategy� is to add new redutions one

by one. Thus, even the result for algebrai types only opens a large �eld of
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appliations for iopy, generated by isomorphisms of parameters introdued

previously.

The di�ult ase is when �non-algebrai� types our. Reently we ob-

tained a proof for this ase and the system with �-expansion.

De�nition 5.1 We de�ne �-expansion as follows:

M �!

�

�x : A �M x if

(

M is of funtion type A! B

M is neither an abstration nor applied.

In detailed form the proof is too long to be presented here and we shall

only give an outline.

The main observation used in this proof is that if the terms t

1

; :::; t

k

i

above

are in �-expanded form then

q[

i

t

1

: : : t

k

i

℄

+

�

 � q[

i

t

00

1

: : : t

00

k

i

℄ :

E.g., the diagram for 'L' onstrutor may be losed di�erently:

q[iopy

�1

(iopy (L k))℄

�

wwo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

�

��

''

O

O

O

O

O

O

O

O

O

O

O

O

O

O

q[L k℄

q[L (�z

1

: N � iopy

�1

(iopy (k (f

�1

(f z

1

)))))℄

2

�

wwo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

q[L (�z

1

: N � k z

1

)℄

�

ggO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

Sine we onsider the system with �-expansions, we need a proof that the

system with �� and �-expansions is strongly normalising and on�uent (we

urrently have a sketh of this proof).

To prove strong normalisation of the system extended not only by � but

by �-redutions related to iopy we assume that there is an in�nite redution

sequene inluding � redutions.

To use the observation above we need a lemma that shows that this re-

dution sequene will remain in�nite if we insert appropriate �-expansions (to

make the terms t in ase (a) �-expanded).

After that, using a modi�ation of deferment (to take into aount the

ondition that the terms t are �-expanded) we show that it would be possible

to obtain an in�nite sequene onsisting of ��� only and this ontradition

shows that the system with � is SN.

The proof is ompleted by veri�ation of on�uene.
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6 Conlusion

The systems based on intensional equality (e.g., many proof assistants) often

puzzle mathematially-oriented users beause some familiar funtional equali-

ties (suh as equalities related to ommutativity and assoiativity of produt)

are no more viewed as omputational and their use may require additional

and heavy proof development. The arguments in favor of the equality based

only on ��-redution (or even ���) may look nie from the foundational point

of view but, pragmatially speaking, there is no harm if an extension of a

redution system doesn't destroy properties suh as strong normalisation and

on�uene.

In this short paper, we studied two ases that seem of interest: extensions

of redution systems related to produts and also to �isomorphi� opies of a

type.

As for produts, using the Deferment Lemma, we were able to prove that

adding a rewriting rule orresponding to ommutativity of produts keeps the

alulus strongly normalising and on�uent. The same lemma also enabled us

to show that adding surjetive pairing to the system of ��-redutions does not

break normalisation and on�uene properties.

Seondly the notion of isomorphi opy, is useful for a lean distintion

between the multiple uses of the type itself and of its opies. E.g., in proof

assistants, the type of Even numbers is often de�ned as a opy of type Nat

together with an appropriate oerion Even ! Nat. Combining this oer-

ion with the isomorphism opy de�ned above, we may obtain representations

of lasses of numbers modulo 2

n

. Furthermore, isomorphi opies of non-

algebrai types may require a notion of �-expansion, and hene to show that

����-redution is strongly normalising and on�uent.

There are several reent works where normalisation in extended redution

systems is onsidered (e.g., [22℄ or [7,8℄). This makes the perspetive seem

quite optimisti.

The alulus we onsidered here (the simply-typed �-alulus with indu-

tive types) is a ompromise between the rihness provided by indutive on-

strutions and the relative simpliity of simply-typed systems. In the ase of

dependent types, one will meet more di�ulties beause new redutions will

in�uene type-equality as well.

The subjet needs more investigation but appropriate methods (e.g., a

modi�ation of H. Goguen's Typed Operational Semantis, see [18℄) will prob-
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ably lead to useful results of the same type as presented here.
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