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a  b  s  t  r a  c  t

We  propose  in this  paper  to study  the energy­,  thermal­ and performance­aware  resource  management  in

heterogeneous  datacenters.  Witnessing  the continuous  development  of heterogeneity  in datacenters, we

are  confronted  with  their different  behaviors  in terms of performance,  power consumption  and thermal

dissipation:  indeed,  heterogeneity  at  server level lies both in the computing  infrastructure  (computing

power,  electrical  power consumption)  and in  the  heat  removal systems  (different  enclosure,  fans, ther­

mal  sinks).  Also  the  physical  locations  of the servers  become  important with heterogeneity  since  some

servers  can  (over)heat others.  While many  studies  address  independently these  parameters (most  of the

time  performance  and  power  or energy), we  show  in this paper  the necessity to tackle  all these aspects

for  an optimal  resource  management  of the computing  resources.  This  leads  to improved  energy usage

in  a heterogeneous datacenter including  the  cooling  of the computer rooms. We  build  our approach  on

the  concept  of heat  distribution  matrix  to  handle  the  mutual influence  of the  servers, in heterogeneous

environments,  which  is novel in this context.  We  propose a  heuristic to solve  the  server  placement  prob­

lem  and we design a generic  greedy  framework  for the online  scheduling  problem.  We  derive several

single­objective  heuristics  (for performance,  energy,  cooling) and  a novel fuzzy­based  priority mech­

anism  to handle  their  tradeoffs. Finally, we show results using  extensive simulations fed with actual

measurements  on heterogeneous servers.

1. Introduction

The last years have witnessed the development of heterogene­

ity in clusters and datacenters. Two main reasons have led to this

situation today. The first one is due to the maintenance and evo­

lution of the components in the datacenters: different generations

of computers are commonly seen in  production datacenters since

the owners are not changing everything at each update. The sec­

ond reason is driven by the idea that heterogeneity might be the

key to achieving energy­proportional computing [5,9], especially

for high­performance computing applications.

Many recent studies alert dramatically on the energy consump­

tion of the datacenters. For  instance, Koomey’s report [21] claims

that today’s datacenters are consuming nearly 2%  of  the global

energy, and up to half of that is spent on  cooling­related activities

[33]. This results generally in very poor Power Usage Effectiveness

(PUE).
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In this paper, we study the multi­objective resource man­

agement problem for heterogeneous datacenters. Besides the

performance criterion, we also consider the energy consumption

of the servers and their thermal impact on the datacenter cooling.

The aim of  our work is to optimize these objectives and to explore

their tradeoffs. In particular, the energy consumption is partly due

to the cooling efficiency in the datacenter [25,38], which is related

to both the physical placement of  the servers and the scheduling

strategies when jobs dynamically enter and leave the system. The

latter also affects the performance and the energy consumed by the

servers.

Server placement in a computer room has been relatively less

studied, especially its impact on the cooling efficiency. The rea­

son for this lack of  attention is mainly due to the fact that, when

servers are homogeneous, their relative positions have no impact

on the performance and computing energy. However, server place­

ment can have an impact on the cooling infrastructure. The main

observation is that one server might contribute to the tempera­

ture raise at the inlets of the other servers, due to the recirculation

of heat in a  datacenter. Such mutual influence can be modeled

by a heat distribution matrix among the servers. If one wants to

keep the inlet temperature under a given threshold, the supplied



air temperature has to be decreased accordingly by the cooling

system, which in turn increases its energy consumption. In the

presence of heterogeneous servers with different power consump­

tions and hence heat dissipation, the problem of find the optimal

placement becomes complicated and, to the best of our knowledge,

has not been studied. Since it is not feasible to change dynami­

cally the positions of the servers in  a datacenter, we focus on static

placement to minimize the cooling cost induced by different con­

figurations.

With a given server placement, the traditional problem of job

scheduling in the heterogeneous environment remains. Many pre­

vious work (e.g., [4,40]) considered only the performance criterion

and hence focused on the jobs’ execution times. In order to address

the power consumption issue in  datacenters, however, application

scheduling must employ a multi­objective approach by consid­

ering performance, energy and cooling together. To account for

the fact that a scheduler has no future knowledge (jobs arrive

over time), we need an online scheduling strategy. Instead of

designing different independent algorithms, we  design a greedy

online scheduling framework that can be adapted easily by redefin­

ing the cost function, from a single objective to two or more

objectives. To tackle the energy­performance tradeoff, we fur­

ther introduce a fuzzy­based priority approach, which allows to

explore the potential improvement in one objective while relax­

ing the other objective up to an acceptable range. This approach

can be extended to incorporate more than two objectives in the

framework. Its principle is not limited to the case at hand and

can potentially be applied to other multi­objective optimization

problems.

The main contributions of this paper are  the following:

• A  static server placement heuristic to reduce the cooling cost for

the servers in a  datacenter.
• A  greedy scheduling framework and several cost functions to

tackle  single­objective scheduling (for performance, energy, and

cooling).
• A fuzzy­based priority approach to handle the tradeoff between

two  conflicting objectives, and its extension to multi­objective

optimization.

These  proposals are supported by extensive simulations

conducted using real hardware specifications and software bench­

marks, as well as experimentally verified cooling model and

heat distribution matrix [39,38]. Specifically for the hardware,

a server system with high packing density and integrated cool­

ing support is chosen for the experiments, which we believe

represents well an emerging class of  highly integrated energy­

efficient servers. The results demonstrate the flexibility of  our

scheduling framework and confirm the effectiveness of the fuzzy­

based approach for exploring the energy­performance tradeoff

in heterogeneous datacenter environments. Our static server

placement heuristic is also shown to provide much improved

thermal distribution leading to significant reduction in cooling

cost.

The rest of this paper is organized as follows. Section 2 for­

mally states the system model and the scheduling problem.

Section 3  describes our greedy server placement heuristic. Section 4

presents the job scheduling framework, various cost functions

and the fuzzy­based priority approach. The simulation results

are shown in Section 5. Section 6 reviews some related work,

and Section 7  summarizes the paper and addresses future direc­

tions.

2. Problem statement

2.1.  System model

Motivated  by the placement of  physical servers and the

scheduling of  high­performance computing (HPC) applications

in heterogeneous datacenters, we consider the following system

model: A set M = {M1, M2, . . ., Mm} of  m servers (or  machines)

needs to be placed inside a computer room (or datacenter) with

a set of m rack slots, denoted by S = {S1, S2, . .  .,  Sm}.1 Each server

Mj ∈ M consists of Lj processors of  the same type (possibly on dif­

ferent boards), but the type and the number of processors may

vary for different servers, rendering the system heterogeneous.

Each server consumes a base power Ubase
j

to support the basic

operations of the infrastructure backbone, such as monitoring, net­

working and cooling (for instance fans). A set  J = {J1, J2, .  .  .,  Jn} of

n jobs arrive at the system over time, and they need to be assigned

in an online manner to the servers. Each job Ji ∈ J has a release

time ri and a processor requirement li that  must be granted in

order to run on any server. To execute job Ji on server Mj incurs

a processing time Pi,j and a power consumption Ui,j,  both of which

are server­dependent and become known upon the job’s arrival

by prior profiling of the applications. In particular, the profiled

application power consumption is assumed to include the leakage

power.

2.2. Scheduling model

We  study two  orthogonal problems that deal with the

placements of hardware and software, respectively. We call

the two problems static server placement and online job

scheduling. The former concerns the positioning of physical

servers in the datacenter, which as explained in Section 3

will have an  impact on the cooling energy in heteroge­

neous environment. The latter concerns the dynamic assign­

ment of workloads to the servers, which will impact energy

(due to both computing and cooling) as well as perfor­

mance.

For the first problem of static server placement, each server

needs to be physically and statically placed in advance to one of

the available rack slots in the datacenter. In particular, we  are look­

ing for a mapping �  : {1, 2, .  . .,  m}  → {1,  2, . . .,  m}  from rack slots to

servers so that each slot Sk is filled with a server M�(k).  The objective

is to minimize the cooling cost. More details about this problem will

be described in Section 3.

Given a particular server placement, an online scheduling strat­

egy is then required to assign the jobs to the servers for execution.

Specifically, each arrived job Ji ∈ J must be assigned irrevocably to

a server with at least li idle processors, and without any knowl­

edge of the future arriving jobs. Once the job has been assigned, no

preemption or migration is allowed, which is typically assumed for

HPC applications since they tend to incur a significant cost in terms

of data reallocation.

At  any time t,  the total computing power of  server Mj is the sum

of its base power and the power consumed for executing all jobs

assigned to it, i.e.,

U
comp
j

(t) = Ubase
j

+

n
∑

i=1

ıi,j(t) ·  Ui,j (1)

1 In this paper, we  assume that the number of  rack slots is equal to the number of

servers to be placed, which represents a common scenario in  small­ and medium­

size datacenters.



             

where ıi,j(t) is a binary variable that takes value 1 if job Ji is run­

ning on server Mj at  time t  and 0 otherwise. In order to optimize

performance, we do not allow processor sharing among the jobs.

Thus, each server at any time can only host a subset of the jobs

whose total processor requirements are no more than the server’s

total number of available processors, i.e.,
∑n

i=1
ıi,j(t)  ·  li ≤  Lj for all

1 ≤ j  ≤ m at all time t.

2.3. Cooling model

To  characterize the cost of cooling, we consider a  standard dat­

acenter layout, where server racks are organized in rows with

alternating cold and hot aisles. The computer room air condition­

ing (CRAC) unit supplies cool air to the cold aisles through raised

floor vents. Each server Mj ∈ M in the racks is oriented such that

it draws cool air with temperature T in
j

from the inlet and dissi­

pates hot air with temperature Tout
j

to the outlet. Assuming that

the computing power consumed by a server is completely trans­

formed into heat, the relationship between the power consumption

and the inlet/outlet temperature of server Mj at any time t can be

characterized by Tang et al. [39]:

Tout
j

(t) = T in
j

(t) + Kj · U
comp
j

(t), (2)

where  Kj = pfjc, with p denoting the air density (in kg/m3), fj the

airflow rate of server Mj (in m3/s),  and c the air heat capacity2 (in

J/(◦ C kg)).

Due  to complex airflow patterns, typical datacenters experi­

ence the so­called heat recirculation phenomenon, where the hot

air from the server outlets recirculates in the room and is mixed

with the supplied cool air from the CRAC, causing the tempera­

ture at the server inlets to be higher than that of the supplied air.

Prior studies [39,38] have characterized this phenomenon with a

heat distribution matrix D by assuming a fixed airflow pattern in the

room and conservation of energy as described by Eq. (2). We adopt

this approach here. Let each element dj,k ∈ D represent the temper­

ature increase at the inlet of  server Mj per unit of power consumed

by server Mk.3 Combining the heat contributions from all servers,

the inlet temperature of  server Mj at time t  is given by the following

equation:

T in
j

(t) = Tsup(t) +

m
∑

k=1

dj,k ·  U
comp
k

(t), (3)

where  Tsup(t) denotes the supplied air temperature at time t,  which

should be adjusted to prevent the inlet temperature of  any server

from going beyond a redline temperature Tred;  otherwise, the elec­

tronic components may not work reliably or are at risk of  being

damaged. Hence, the supplied air temperature should be set at most

to

Tsup(t) = T red − max
j=1...m

m
∑

k=1

dj,k · U
comp
k

(t). (4)

The  cooling cost is specified as

Ucool(t) =

∑m

j=1
U

comp
j

(t)

CoP(Tsup(t))
,  (5)

2 The air heat capacity specifies the energy required to change the temperature of

one unit mass of air by  one unit degree.
3 Technically speaking, dj,k represents the temperature increase for the server at

slot Sj due to the power consumption by the  server at slot Sk . For convenience, we

simply assume that the servers are renamed such that server Mj is  placed in  slot  Sj

for all 1  ≤ j ≤ m.

where CoP is the coefficient of performance, defined as the ratio of

the amount of  heat to be removed to the energy that needs to be

consumed in order to perform the cooling [25]. This coefficient

characterizes the efficiency of the CRAC unit, and is an increas­

ing (usually non­linear) function of the supplied air temperature.

Intuitively, it  means that the CRAC unit needs to work harder and

thus consumes more energy in order to provide cooler air to the

computer room.

2.4.  Optimization objectives

We  consider the following bi­objective optimization problem:

optimizing the performance of the jobs and minimizing the

energy consumption of  the datacenter, due to both computing and

cooling.4

For performance, we use the average response time of the jobs

as the metric, and it  is defined as

Rave =
1

n

n
∑

i=1

(ci − ri), (6)

where  ci and ri denote the completion time and release time of job

Ji, respectively.

The energy consumption comes from two sources: computing

and cooling. The one due to computing is given by the total com­

puting power of  all servers integrated over time, i.e.,

Ecomp =

∫ t2

t1

m
∑

j=1

U
comp
j

(t)dt ,  (7)

where  [t1,  t2] denotes the interval of  interest, during which all jobs

arrive and complete their executions. This computing energy can

be further divided into two  parts, namely, the static part due to the

base power consumption, i.e.,

Estat
comp = (t2 − t1)  ·

m
∑

j=1

Ubase
j

, (8)

and  the dynamic part due to the power consumed for executing the

jobs, i.e.,

E
dync
comp =

n
∑

i=1

m
∑

j=1

ıi,j · Pi,j · Ui,j,  (9)

where  ıi,j = 1 if job Ji is assigned to server Mj and 0 otherwise.

The energy spent on cooling is the total cooling power integrated

over time, i.e.,

Ecool =

∫ t2

t1

Ucool(t)dt, (10)

and as with computing energy, cooling energy can also be broken

into a static part and a dynamic part. Specifically, the static part is

the cooling energy that will be spent during interval [t1,  t2] even if

no job arrives, i.e.,

Estat
cool

=

∫ t2

t1

∑m

j=1
Ubase

j
(t)

CoP(T red − maxj

∑

k
dj,k · Ubase

k
(t))

dt,  (11)

and the dynamic part is the difference between the total cooling

energy and the static one, i.e.,

E
dync
cool

= Ecool − Estat
cool

.  (12)

4 The energy consumed by other parts of  the datacenter, such as  lighting, are

ignored,  since they are insignificant compared to the computing and cooling energy.



In this paper, we assume that all servers are turned on all the

time to sustain the servers’ infrastructure backbone, so the static

energy due to both computing and cooling is independent of the

workload and the job scheduling strategy. On the other hand, the

total dynamic energy given by

E
dync
total

= E
dync
comp + E

dync
cool

(13)

is closely related to job scheduling, and it will be the focus of  this

study.

Due to the heterogeneity of  the servers in  the datacenter,

different job scheduling strategies may result in very differ­

ent job response time, computing energy and cooling cost.

While a specific scheduling strategy may optimize one objec­

tive, these different objectives can be conflicting with each

other, making the optimization difficult. In Section 4, we will

propose and evaluate online scheduling algorithms to address

both performance and energy as well as to deal with their

tradeoffs.

3. Static server placement and a greedy heuristic

In this section, we consider the problem of static server place­

ment. We  first motivate the study from the perspective of  cooling

in heterogeneous datacenters. We then formulate the problem and

present a greedy heuristic.

3.1.  Motivation

The literature contains extensive studies on virtual machine

placement (e.g., [6,15,44]) for datacenters, but the placement of

physical servers has received little attention. There are two main

reasons. First, many traditional datacenters are homogeneous, so

different placements of identical servers do not make a difference.

Second, traditional metrics such as job performance and energy

consumption (due to computing) are  independent of the servers’

relative positions, so  they are unaffected by the different placement

configurations.

As far as the cooling cost is concerned for heterogeneous data­

centers, however, the placement of the physical servers will have

an impact. In particular, the studies in [39,38] have shown that the

heat recirculation phenomenon in typical datacenters exhibits the

following properties:

(1)  Different rack positions tend to behave differently in terms of

heat  recirculation. Typically, servers located at the upper parts

of  the racks “inhale” more recirculated hot air while servers

located  at the lower parts “contribute” more hot air to recircu­

late  in the room.

(2) In a closed computer room with fixed locations of all major

objects and without moving objects, the airflow pattern that

characterizes  the heat recirculation among different rack pos­

itions  is relatively stable.

While the first property suggests that the heat distribution matrix

tends to be highly asymmetric, the second property assures that the

matrix does not change significantly with different workloads in the

servers or different positions of the servers. In the next section, we

will rely on workload placement (or job scheduling) techniques to

manage the cooling cost together with other objectives. Here, we

focus on arranging the positions of the servers with different power

profiles. The goal is to reduce the maximum inlet temperature of

the servers so as to minimize the cooling cost under a given load

condition.

To illustrate the effectiveness of this approach, consider a simple

datacenter with two servers, two rack slots, and the following heat

distribution matrix:

D =

[

0.002 0.004

0.001 0.002

]

.

Suppose the two  servers consume an average power of 100 W

and 200 W, respectively. By  placing the first server in slot 1 and

the second server in slot 2,  their inlet temperatures increase by  1◦C

and 0.5◦C respectively according to Eq. (3). By simply swapping the

positions of  the two  servers, their temperature increases will now

become 0.4 ◦C and 0.8 ◦C.  The 0.2 ◦C difference in  the maximum inlet

temperature of these two configurations directly determines the

temperature of the supplied air by Eq. (4), and therefore impacts

the cooling cost. For instance, consider a redline temperature of

25 ◦C and the following CoP  model for a water­chilled CRAC unit in

an HP datacenter [25,38]:

CoP(T) = 0.0068T2 + 0.0008T + 0.458. (14)

According to Eqs. (4) and (5), the cooling costs for the two place­

ment configurations are 68.275 W and 67.269 W,  respectively. The

impact will be more significant with a  lower redline temperature

or a more skewed heat distribution matrix, or when the servers are

consuming more power. The problem will also become more chal­

lenging when there is a large number of servers/positions, since

exhaustive search will no longer be possible. The next section con­

siders this general case and proposes a heuristic algorithm for the

problem.

3.2. Greedy heuristic

To  reduce the cooling cost, we should minimize the max­

imum temperature increase at the inlet of any server in the

datacenter. As we  have seen previously, this is determined by

both the heat­distribution matrix and the power consumption

profile of  all servers. While the former is relatively stable and

can be measured using a sensor­based approach [39], the latter

essentially depends on the servers’ workloads, which can vary

with time. To cope with this uncertainty, we  characterize the

power consumption of  each server statically using the average

power it consumes when executing historical workloads. This

provides a reasonable estimation on the server’s typical power

consumption during runtime. We call this static value the ref­

erence power, and use it to determine the placement of the

servers.

Let U
ref
j

denote the reference power of  server Mj ∈ M. The static

server placement problem can then be formulated as follows: find a

mapping �  :  {1, 2, .  .  .,  m} → {1, 2,  . . ., m}  from rack slots to servers,

so as to

minimize max  D ·  U
ref
� , (15)

where U
ref
� = [U

ref
�(1)

, U
ref
�(2)

, . . .,  U
ref
�(m)

]
T
. Finding the optimal place­

ment  turns out to be a NP­hard problem for arbitrary heat­

distribution matrix and reference power vector. Appendix A

provides the NP­hardness proof.

Given the hardness result, we design a heuristic algorithm for

the static server placement problem based on a greedy allocation

strategy. Algorithm 1 presents the pseudocode of our greedy server

placement (GSP) heuristic.



Algorithm 1. Greedy server placement (GSP)
Input: The set M = {M1, M2,  .  .  .,  Mm}  of m servers, and  the reference power

Uref

j
of  each server Mj ∈ M; the set S =  {S1,  S2,  . . .,  Sm}  of  m rack slots, and

the heat distribution matrix D.

Output: A mapping � from rack slots to servers.

1:  Sort the servers in descending order of  reference power, i.e.,

U
ref

1
≥Uref

2
≥· · ·≥Uref

m

2: Initialize T incr
l

= 0  for all 1 ≤ l ≤  m

3: for each server Mj ∈ M do

4: k∗ = 0 and T incr
max(k∗) = ∞

5: for each slot Sk ∈ S do

6:  T incr
max(k) = max

l=1,...,m

(T incr
l

+ dl,k ·  Uref

j
)

7:  If T incr
max(k) < T incr

max(k∗) then

8: T incr
max(k∗) = T incr

max(k)  and k∗ = k

9: end if

10:  end for

11:  Place server Mj to  slot  Sk∗ , i.e.,�(k∗)  =  j

12: Update T incr
l

= T incr
l

+ dl,k∗ · Uref

j
for all 1 ≤ l ≤ m

13: Update S = S\Sk∗

14: end for

First, GSP sorts the servers in descending order of reference pow­

ers (Line 1). Since the servers that consume more power on average

will have larger contributions to the temperature increases at all

inlets, they are placed first to have more flexibility in the slot selec­

tion and so to avoid high peak temperature. Let T incr
l

denote the

existing temperature increase at the inlet of slot Sl,  and it is initially

set to zero for all inlets (Line 2). Let T incr
max(k) denote the maximum

temperature increase if the next server Mj ∈ M is placed in slot Sk,

i.e.,

T incr
max(k) = max

l=1,...,m
(T incr

l
+  dl,k ·  U

ref
j

). (16)

Server Mj will be placed in one of the remaining slots Sk∗ ∈ S

that  minimizes the maximum temperature increase, i.e., k∗ =

arg minkT incr
max(k). The temperature increase at all inlets will then

be updated and the filled slot Sk∗ will be removed from the avail­

able set S (Lines 12 and 13). The algorithm iterates over all servers

and terminates after the last one is placed.

For the complexity of the algorithm, sorting and initialization

takes O(m log m) time. In the iteration, placing each server incurs

O(m2) time as all remaining slots are examined to determine the

maximum temperature increase at all inlets. Therefore, the over­

all complexity is O(m3).  This is reasonable even for a large number

of servers, since the process is performed relatively infrequently:

new placement of the servers is only necessary if there are signifi­

cant alteration to the datacenter layout or when some servers are

removed and new ones are introduced.

4. Online job scheduling and a fuzzy­based priority

approach

Once the servers have been placed in a  datacenter, they will

start operation by  executing the applications or jobs. In practice,

jobs are submitted by different users over time, so each job must

be assigned to a server without knowing future job arrivals. This

section considers online job scheduling under a given server place­

ment to optimize performance and energy, and to deal with their

tradeoffs.

4.1. Greedy scheduling framework

All online scheduling algorithms described in this section fall

under a greedy scheduling framework (GSF), which is evoked

whenever a new job arrives or an existing job completes execution.

Algorithm 2 presents the pseudocode of this framework.

Algorithm 2. Greedy scheduling framework (GSF)
Input: Job queue Q, and for each job Ji ∈ Q, the  processor requirement li ,

processing time Pi,j and power consumption Ui,j; Server set M, and  for

each server Mj ∈ M, the number Lj of available processors, which is

initialized  to Lj = Lj .

Output: Assignments of  the newly arrived job and the jobs in  Q to the

servers in M.

1:  if a  new job Ji arrives

2:  j∗ =  0 and Hi,j∗ = ∞

3: for each server Mj ∈ M then

4: if Lj≥li & Hi,j < Hi,j∗ then

5: Hi,j∗ =  Hi,j and j∗ = j

6: end if

7:  end for

8:  if Hi,j∗ /=  ∞then

9: Assign job Ji to server Mj∗

10: Update Lj∗ = Lj∗ − li
11: else

12: Put job Ji in queue Q in  shortest job first order

13:  end if

14:  else if a  job Ji completes execution on server Mj then

15:  Update Lj = Lj + li
16: for each job Jk ∈  Q do

17: if Lj≥lk then

18: Assign job Jk to server Mj

19: Update Lj = Lj − lk
20: end if

21:  end for

22:  end if

The variable Hi,j shown in the pseudocode represents the cost

of assigning job Ji to server Mj. Specifically, Hi,j can be a single­

objective cost function of job response time, energy consumption,

etc. (see Section 4.2), or it  can be a  composite cost function of  two

or more objectives (see Section 4.3).

For  each newly arrived job Ji, among the servers that have suffi­

ciently available processors to host it, the server with the minimum

cost in terms of  Hi,j will be chosen for assigning the job (Lines

2–9). This makes the scheduling framework greedy. If no  server

has enough processors to host it, the job will be put in a waiting

queue Q in shortest job first (SJF) order, which is known to opti­

mize the average response time [35] (Line 12). Note that although

the processing times of the jobs are  server­dependent, their relative

sizes are assumed to be consistent on different servers, i.e., a fast

server is fast for all jobs. Hence, SJF can be realized by using any

server as the reference for comparing the jobs’ processing times.

When a job completes execution on a server and therefore releases

the occupied processors, the waiting jobs in the queue will be tested

in sequence to see if they can be assigned to this server (Lines

16–18). Whenever a job is assigned or a running job completes

execution, the number of available processors on the server will

be updated (Lines 10, 15, 19). Under this greedy scheduling frame­

work, the assignment of each job takes O(m) time, so the overall

complexity is O(mn)  for assigning n jobs.

The next two sections will describe heuristic algorithms that

minimize different single­ and multi­objective cost functions

depending on the optimization criteria.

4.2. Single­objective scheduling

Single­objective  scheduling considers one optimization crite­

rion when deciding where to assign each job. In this section, we

will present several single­objective scheduling heuristics. Some of

them will also be used as the base algorithms for designing the more

complex multi­objective scheduling heuristics in the next section.

First, the following describes some single­objective heuristics

proposed in the literature [25,38].

• Uniform: Assign each job randomly to a server according to the

uniform  distribution.



• MinHR:  Assign each job to a server that contributes minimally to

the heat recirculation in the room. The cost function is defined as

HHR
i,j =

m
∑

k=1

dk,j. (17)

• CoolestInlet: Assign each job to a server with the lowest temper­

ature  at its inlet. The cost function is defined as

HCI
i,j

= T in
j

, (18)

where T in
j

denotes the current temperature at the inlet of server

Mj.

Note  that, in [25,38], these heuristics were applied in the offline

setting, where the information of all jobs is available to the sched­

uler. Here, they are cast as online heuristics. While the aim of

Uniform is to balance the workload on all servers, MinHR and

CoolestInlet attempt to minimize the overall heat recirculation

and to achieve a  uniform temperature distribution, respectively.

However, these heuristics were proposed for the homogeneous dat­

acenter environments, and therefore do not consider job­specific

characteristics. The following heuristics take job­dependent infor­

mation into account by minimizing the performance, energy

consumption, and temperature, respectively.

• Perf­Aware: Assign job Ji to a server that renders the minimum

response time. The cost function is defined as

HP
i,j = Pi,j, (19)

where Pi,j denotes the execution time of job Ji on  server Mj.
• Energy­Aware:  Assign job Ji to a server that incurs the minimum

dynamic  energy consumption due to both computing and cooling.

The  cost function is defined as

HE
i,j = E

dync
total

(ıi,j = 1), (20)

where E
dync
total

is the total dynamic energy defined in Eq. (13), and

it  is evaluated based on the currently running jobs and with job

Ji assigned to server Mj, i.e., ıi,j = 1.
• Thermal­Aware:  Assign job Ji to a server that minimizes the max­

imum  inlet temperature. The cost function is defined as

HT
i,j = max

k=1,...,m

(

T in
k

+

m
∑

k=1

dk,j · Ui,j

)

, (21)

where T in
k

denotes the current temperature at the inlet of server

Mk,  and Ui,j denotes the power consumption of job Ji on  server Mj.

Except for Uniform, all heuristics above break the tie by ran­

domly selecting a server with the best cost function. The difference

between CoolestInlet and Thermal­Aware is that the former con­

siders the current inlet temperature before the job is assigned,

whereas the latter considers the resulting temperature if the job is

assigned to the server. Note that all of these heuristics make greedy

decisions locally for each arriving job, so they are not guaranteed

to provide the optimal global cost.

4.3. Multi­objective scheduling with fuzzy­based priority

Scheduling jobs to optimize two or more objectives usually

require exploring the tradeoff between the conflicting goals. In this

section, we propose a novel fuzzy­based priority approach to handle

such a tradeoff.

4.3.1. Fuzzy­based priority for bi­objective scheduling

We first consider optimizing two  objectives, for which we  define

the following composite cost function:

HX,Y
i,j

= 〈H
X
i,j(f ), HY

i,j〉. (22)

In this case, the objectives X  and Y  are considered one after another

by first selecting all servers that offer the best performance in terms

of X, and then selecting among this subset any server that offers

the best performance in terms of Y. To avoid depriving the sec­

ond objective altogether, a fuzzy factor f,  where f ∈ [0, 1], is used to

relax the selection criterion for the first objective up to a predefined

margin (in percentage). The purpose is to explore any potential

improvement for Y  while maintaining the performance for X within

a user­defined range of  acceptance. The approach will be partic­

ularly effective if a small compromise in X can lead to a large

improvement in Y. Setting f =  0 indicates the high importance of  X

that should not be compromised at all, while setting f =  1 suggests

that X does not matter in the optimization. Varying f in between

gives the user a flexible and intuitive way to specify the tradeoff

between the two objectives.

To  implement the fuzzy­based priority approach in the online

Greedy Scheduling Framework (GSF) as shown in Algorithm 2,

the cost function for the first objective X needs to be normalized

between 0 and 1 in order to take the fuzzy factor into account, i.e.,

H
X
i,j =

HX
i,j

− HX
i,min

HX
i,max

− HX
i,min

(23)

where HX
i,min

and HX
i,max

denote the minimum and maximum costs

in terms of objective X among all available servers to assign job  Ji.

The implementation then relies on the following rule for comparing

the relative cost of assignment on any two  servers.

Fuzzy­based priority rule (for two objectives): The costs

incurred by assigning job Ji to any two  servers Mj1
and Mj2

satisfy

HX,Y
i,j1

< HX,Y
i,j2

if and only if one of the following conditions holds:

• H
X
i,j1

≤ f < H
X
i,j2

,  or

• H
X
i,j1

≤ f and H
X
i,j2

≤  f  and HY
i,j1

< HY
i,j2

, or

• H
X
i,j1

< H
X
i,j2

≤ f and HY
i,j1

= HY
i,j2

,  or

• f  <  H
X
i,j1

<  H
X
i,j2

,  or

• f <  H
X
i,j1

= H
X
i,j2

and HY
i,j1

< HY
i,j2

.

This  rule can be applied to optimize any two objectives, as

long as they have well­defined cost functions, such as the ones

given in Section 4.2. The value of the fuzzy factor as well as the

priority depend on the relative importance of the two  objectives

to optimize, which can be determined by the user or the system

administrator.

4.3.2. Extension to multi­objective scheduling

The fuzzy­based priority approach can be extended to include

more than two objectives. As in the bi­objective case, we can opti­

mize a sequence of objectives one after another, while using a

(possibly different) fuzzy factor to specify the acceptable range for

each objective. The following illustrates this method with a com­

posite cost function consisting of s objectives:

HX1,X2,...,Xs
i,j = 〈H

X1
i,j (f1), H

X2
i,j (f2), .  . ., HXs

i,j 〉. (24)

In this case, the servers that are ranked among the top f1 percent in

terms of objective X1 will be selected first. Then, within this subset,

the ones that fall into the top f2 percent in  terms of  objective X2

will be further selected. This process continues until the (s − 1)­th



Fig. 1. Comparison of the fuzzy­based priority approach with four other approaches

in  bi­objective scheduling. Each dot represents a  potential solution, and the solution

returned by each approach is indicated.

objective is considered. Finally, a  server that survives the first s − 1

rounds of selection and has the best performance in terms of the

last objective Xs will be chosen as the final winner.

Again, the order of  the priorities and the values of the fuzzy fac­

tors should be determined by the relative importance of  different

objectives to optimize.

4.3.3.  Comparison with other approaches

We now comment on the similarities and differences of the

fuzzy­based priority approach in  comparison with a few other

multi­objective optimization approaches commonly found in the

literature. Fig. 1  illustrates the basic principles of  these approaches

using bi­objective scheduling as an example. Section 6 describes

some related work on the applications of these approaches in  multi­

objective scheduling.

(1)  Simple priority. This is a special case of  the fuzzy­based priority

approach  with fuzzy factor f = 0. It is usually applied in settings

where strict priorities are imposed on different objectives. This

approach  provides better result for the first objective, but may

lead  to much worse performance for the second one. In contrast,

the  fuzzy­based priority approach is more effective in settings

with  soft (or non­strict) priorities, especially if an  objective with

slightly  lower priority can be significantly improved with just

a  little compromise for a high­priority objective.

(2) Pareto frontier. This approach returns a set of nondominated

solutions5 to the user instead of only one solution. It is widely

applied in offline settings to quantify the tradeoffs among dif­

ferent  objectives. In the context of online scheduling, however,

multiple solutions are hard to maintain over time, and one of

the  intermediate solutions must be selected on­the­fly in order

to  decide where each job should be assigned.

(3)  Constraint optimization. This approach optimizes one objective

subject  to certain constraints imposed on the other(s). It is com­

monly  applied in environments with strict or clearly­defined

requirements, e.g., job  deadline or energy budget. Instead of

using  an absolute value as the constraint, the fuzzy­based pri­

ority  approach specifies the constraint as a relative threshold,

i.e.,  fuzzy factor, in terms of percentage.

5 A solution is called nondominated if no other solution has better performance in

terms of all the objectives.

Table 1

Values of the parameters used  in  the simulation.

Parameter Value

Air density (p) 1.168 kg/m3

Air flow rate (fj) 0.1 m3/s

Air heat capacity (c) 1004 J/(◦C kg)

Base  power (Ubase
j

)  130 W

Redline temperature (Tred) 25 ◦C

(4) Weighted sum. This approach transforms multiple objectives

into  a single one by optimizing a weighted combination.

Although priorities are  not explicitly specified, it uses weights

to  indicate the relative importance of the objectives. As different

objectives  can have different units, they are often normalized

in  order to be combined. However, it may  not be intuitive to set

the  values of the weights, e.g., for time and energy.

Compared  to simple priority and constraint optimization,

fuzzy­based priority is particularly suitable for scheduling HPC

applications in datacenters, where no strict constraints or priority

are normally imposed on job performance or energy consumption.

Compared to weighted sum, fuzzy­based priority provides an intu­

itive alternative to describing the tradeoffs while specifying soft

preference of the user on the priority of the objectives. Setting

an appropriate fuzzy factor encodes such preference in an online

manner. As shown in Fig. 1, the solution returned by fuzzy­based

priority (and other approaches) when scheduling an individual job

actually lies on the pareto frontier.

5. Performance evaluations

In  this section, we  will evaluate the proposed online scheduling

heuristics with the fuzzy­based priority approach and the greedy

heuristic for server placement. The evaluations are performed by

simulation using the Data Center Workload and Resource Manage­

ment Simulator (DCworms) [22].

5.1. Simulation setup

5.1.1.  Datacenter configuration

We  simulate a datacenter with 50 servers and which has the

same configuration as the one considered in [38]. Specifically, the

datacenter consists of two rows of  racks in  a typical cold aisle and

hot aisle layout. The cool air is supplied by the CRAC unit from the

cold aisle between the two  rows. Each row has five racks and each

rack contains five servers. The server platform used in the simula­

tion is based on Christmann’s Resource Efficient Cluster Server (RECS)

unit [8], which is a multi­node computer system consisting of  18

processors. The datacenter consists of  900 processors in total. The

RECS platform is chosen because it represents an emerging class of

high­density and energy­efficient servers with built­in power and

temperature sensors and integrated cooling support.

Table 1 shows the parameters used in the simulation, whose

values are based on real measurements in a RECS unit. From the

first three parameters, the heat recirculation matrix D is derived by

assuming the same airflow pattern as the one measured in [39,38].

The coefficient of performance (CoP) is based on the one in an HP

datacenter [25] as shown by Eq. (14).

5.1.2. Processor types

To  construct a heterogeneous datacenter, we select a set of

five nondominated processors in  terms of performance and energy

indices (the smaller the better). The performance index of  a proces­

sor is calculated as the reciprocal of  its performance score measured

by the passmark software [28], which synthesizes thousands of
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Fig. 2. The performance and  energy indices of 500+ processors released by Intel

between 2009 and 2013. Five processors (marked) in the pareto frontier are selected

for our simulation.

Table 2

Passmark scores (as of January 2014) and TDPs of five types of processors used in

the simulation.

Passmark TDP (W)

Intel CoreI7 4770R 10,381 65

Intel CoreI7 4960HQ 10,310 47

Intel CoreI7 4600U 4498 15

Intel XeonE5 2697v2 19,125 130

Intel XeonE3 1230Lv3 7344 25

benchmark results as the processor’s performance indicator. The

energy index is simply the product of the processor’s performance

index and its Thermal Design Power (TDP), which gives a relative

indicator (compared to other processors) on the average energy the

processor consumes when running typical benchmarks.

Fig. 2  plots the two indices for more than 500 types of  processors

released by Intel between 2009 and 2013, among which five pro­

cessors in the pareto frontier are  selected (marked in the figure).

Table 2 shows the passmark scores and TDPs of the five selected

processors. We  choose these processors because they form a non­

dominated set, making the scheduling problem non­trivial. In this

case, no processor is dominated by others in terms of  both per­

formance and energy consumption; hence tradeoff exists when

assigning a job to different processor types. In the simulation, each

type of processor makes up 10 RECS servers with 180 computing

nodes in total.

5.1.3.  Benchmarks and workloads

The benchmarks used in the simulation consist of the following

high­performance computing applications, which are included in

DCWorms.

• fft:  a program to compute Fast Fourier Transforms.
• c­ray: a raytracing software.
• abinit:  a tool to compute material properties at the atom level.
• linpack:  a library for performing numerical linear algebra.
• tar:  a program to create and manipulate tar archives.

These benchmarks exhibit a large spectrum of behaviors, from

CPU intensive to memory intensive, to communication and I/O

intensive. More explanation and rationale of  this choice can be

found in [10]. To profile the execution time and power consump­

tion of these benchmarks, an application­specific approach [22]

was adopted. Specifically, average measurements are collected for

each application with different input parameters on Intel Core

I7 2715QE, a less powerful processor available in our RECS testbed.

The results are then translated to our target platforms using the

Table 3

Average execution time (above, in  second) and power consumption (below, in Watt)

of each benchmark on each type of processor.

CoreI7 CoreI7 CoreI7 XeonE5 XeonE3

4770R  4960HQ 4600U 2697v2 1230Lv3

fft 3400 3450 7850 1850 4800

62.27  45.03 14.37 124.54 23.95

c­ray 1150 1200 2700 650 1650

33.70  24.37 7.78 67.41 12.96

abinit 1700 1750 3950 950 2450

36.11  26.11 8.33 72.22 13.89

linpack 3350 3400 7700 1850 4750

53.81  38.91 12.42 107.61 20.69

tar 2000 2050 4600 1100 2800

50.92  36.82 11.75 101.83 19.58

relative performance and power indicators as shown in Table 2.

Table 3 details the average execution time and the corresponding

power consumption of the benchmarks on each of the five selected

processors.

Each job is randomly selected from one of these benchmarks and

the number of  processors it requires is randomly generated from 1

to 8 with uniform distribution. Following the definition in [11], the

system load � is defined to be

� =
� · E[P]
∑m

j=1
Lj

, (25)

where � is the arrival rate (in #jobs per hour), E[P] is the aver­

age sequential execution time of the jobs on all processor types

(roughly 4.5 hours) and
∑m

j=1
Lj is the total number of  processors,

which is 900 in the simulation. Jobs arrive according to the Poisson

process, and the arrival rate � is increased from 20 to 200 with a

fixed arrival duration of 8 hours. The total number of jobs ranges

from 160 to 1600, and the system load is between 0.1 and 1.

5.2.  Simulation results

This  section presents the simulation results. First, we evaluate

the performance of various online scheduling heuristics with a fixed

placement for the servers. We then study the impact of different

placement configurations on the performance of the scheduling

heuristics. All results are obtained by carrying out the experiments

10 times and taking the average.

5.2.1. Results of single­objective scheduling heuristics

We first evaluate the online scheduling heuristics for a  sin­

gle objective. The results are used as references for exploring the

energy­performance tradeoff in  the next section. In both cases, the

server placement is fixed with each type of  processor occupying

10 contiguous server slots over two racks, according to the order

specified in  Table 2.

Six  heuristics presented in Section 4.2 are  evaluated, namely,

Uniform, MinHR, CoolestInlet, Perf­Aware, Energy­Aware and

Thermal­Aware. Fig. 3 presents the results of these heuristics. As

we can see in Fig. 3(a), Perf­Aware has  significantly better average

job response time compared to the other heuristics, especially

under light system loads. This is because all jobs in Perf­Aware are

assigned to high­performance (faster) processors before slower

ones whenever possible. For the same reason, Perf­Aware also has

better makespan (completion time of the last finished job) and

processor utilization (ratio between the utilized processor cycles

and all processor cycles during the simulation period), as shown in

Fig. 3(b) and (c). Note that the processor utilizations remain under

70% even when the system load reaches 1.  This is partly due to

the fragmented processors in some servers that cannot be utilized

because a ready job simply has higher processor requirement.
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Fig. 3. Performance of six single­objective online scheduling heuristics. The legend applies to all subfigures.

Fig. 3(d) compares the total (dynamic) energy consumption of

the scheduling heuristics, and Fig. 3(e) and (f) shows the energy

consumed for computing and cooling, separately. For all heuris­

tics, the energy consumption increases with the system load or

the total number of jobs in the arrival interval. Energy­Aware con­

sumes less total energy compared to the other heuristics, since

jobs are assigned to processors with better energy efficiency. The

improvement is more significant in terms of computing energy. For

the cooling part, MinHR and Thermal­Aware consumes roughly the

same energy as Energy­Aware, since they are designed to minimize

the heat recirculation and the maximum inlet temperature, which

in turn increases the supplied temperature in the room and hence

directly impacts the cooling cost. Fig. 4 shows the average supply

temperature of the different scheduling heuristics in the simulation

period. Indeed, Thermal­Aware and MinHR are better than Energy­

Aware in terms of the average supply temperature by up to 1.3◦C

and 1.6◦C, respectively.

As the system load increases further and hence the processor

utilization becomes higher, the performance of all heuristics tend

to converge, since all servers are roughly equally loaded under all
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Fig. 4. Average supply temperature of the heuristics.

heuristics. In particular for Energy­Aware, some jobs are forced to be

assigned to the high­performance servers since the energy­efficient

ones are all occupied, resulting in improved average job response

time.

5.2.2. Energy­performance tradeoff with fuzzy­based priority

We  now evaluate the effectiveness of the fuzzy­based priority

approach for exploring the energy­performance tradeoff in  online

scheduling. To this end, we consider the composite cost function

HE,P
i,j

= 〈H
E
i,j(f ), HP

i,j
〉 that optimizes the energy consumption fol­

lowed by the job response time.

Fig. 5 shows the results of minimizing HE,P
i,j

when the fuzzy fac­

tor f is increased from 0 to 1 at three different system loads (0.2,

0.5 and 0.8). The values of both objectives are plotted as a  function

of f, with energy consumption shown on the left Y axis and average

response time on the right. In addition, the figure also shows the

results when f = −1 and f = 2, denoting the cases where the sched­

uling decision is based solely on the first objective (energy) and

the second objective (response time). The two  cases are equiva­

lent to the single­objective heuristics Energy­Aware and Perf­Aware,

respectively.

As we can see, the average response time improves with

increased fuzzy factor at the expense of the energy consumption

under all system loads. However, the improvement can be sig­

nificant even before major compromise in energy consumption is

observed. For instance, at medium load (� = 0.5), the response time

is reduced by  about 1000 when f reaches 0.6 without much increase

in the energy consumption. Similar results can also be observed at

light load and heavy load. The fuzzy­based priority approach can

take advantage of such characteristics by setting suitable fuzzy fac­

tors in  order to achieve desirable energy­performance tradeoff in

the online setting.

Fig.  6 shows the energy­performance tradeoff curve for HE,P
i,j

=

〈H
E
i,j(f ), HP

i,j
〉  obtained by varying the fuzzy factor from 0 to 1. The
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Fig. 5. Bi­objective scheduling for HE,P

i,j
= 〈H

E

i,j(f ),  HP
i,j

〉  with different fuzzy factors at three system loads. The legend applies to all subfigures.
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Fig. 6. Energy­performance tradeoff curve for HE,P

i,j
= 〈H

E

i,j(f ), HP
i,j

〉 at three system loads. The legend applies to all subfigures.

results of the six single­objective heuristics are also shown in

the figure under the respective load. We can see that MinHR and

Thermal­Aware lie  around the curve (or  even slightly to the left of

the curve in the case of MinHR), indicating that they achieve fairly

efficient tradeoffs between job response time and energy consump­

tion. On the other hand, Uniform and CoolestInlet are completely

dominated by the curve, which suggests that they provide less

attractive tradeoff results.

Fig.  7 plots the tradeoff curves achieved by optimizing the heat

recirculation and the maximum inlet temperature followed by the

job response time, i.e., with cost functions HHR,P
i,j

= 〈H
HR
i,j (f ), HP

i,j
〉

and HT,P
i,j

= 〈H
T
i,j(f ),  HP

i,j
〉. The results under three different system

loads are shown alongside the ones for HE,P
i,j

. The curves indicate

that the two heuristics are able to provide better tradeoffs in the

medium to high energy range (e.g., between 150 and 220 for MinHR

at � = 0.5) while the tradeoff remains efficient for the cost func­

tion HE,P
i,j

when the energy consumption is close to the minimum.

The results demonstrate the flexibility of the fuzzy­based priority

approach in exploring the energy­performance tradeoff in online

scheduling. The approach can be potentially applied to other multi­

objective optimization problems.

5.2.3. Evaluation of server placement strategies

We now study the impact of server placement on the per­

formance of the online scheduling heuristics. Besides the simple

location­based placement used in the previous evaluations, which

we call LOC, we  generate three additional placements for the

servers. One is based on our GSP heuristic and the other two

are based on its  variations. We call the three placement con­

figurations GSP1, GSP2 and GSP3, respectively. The two  variants

(GSP2 and GSP3) are obtained in  a similar fashion as GSP1. In

particular, in GSP2 the servers are sorted in ascending order of

reference power instead of descending order, and in GSP3 each

server is assigned to a remaining rack slot that maximizes the

maximum inlet temperature instead of minimizing it. Apparently,

these two heuristics are counter­intuitive and are  expected to pro­

vide undesirable configurations. The purpose of including them
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Fig. 7. Energy­performance tradeoff curves for HE,P

i,j
,  HHR,P

i,j
and HT,P

i,j
at three system loads. The legend applies to all subfigures.
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is to demonstrate the impact of different server placements on

a scheduling algorithm’s performance, especially on the cooling

cost.

Fig. 8 shows the inlet temperature distribution of  the 50 servers

under the four placement configurations. In all cases, each pro­

cessor is loaded with the average power consumption of the

benchmarks shown in Table 3. As we can see,  GSP1 has better ther­

mal  balance than the other configurations. Specifically, it improves

LOC by about 8◦C in terms of the maximum inlet temperature

and improves GSP2 and GSP3 by over 14◦C and 16◦C,  respec­

tively.

Figs. 9 and 10 show the performance of Perf­Aware and Energy­

Aware under the four server placements at different system loads.

In both heuristics, job response time and computing energy are not

affected by different configurations. However, GSP1 has reduced

cooling energy compared to the other configurations. This is par­

ticularly evident under heavy system load, where all servers are

almost fully and equally loaded, thus their power consumption

ratios match closely those of  the average values used in the server

placement heuristic. Under light system load, however, the servers

could experience unbalanced loads, which causes their power con­

sumption ratios to deviate from those of the average values. As a

result, the advantage of  GSP1 becomes smaller or even diminishes,

but since the overall energy consumption is small in this case, the

impact of  server placement is not significant.

Quite similar effect on the cooling energy can be observed for

Thermal­Aware and MinHR as shown in Figs. 11 and 12. Notice that,

for these two  heuristics, different server placements also lead to

a tradeoff between job response time and computing energy. To

further investigate the tradeoff efficiency, Fig. 13 shows the energy­

performance tradeoff curves for three heuristics with cost functions

HE,P
i,j

,  HHR,P
i,j

and HT,P
i,j

at load � = 0.8 under different server place­

ments. We can see that, although the tradeoff remains, in all cases

GSP1 provides the best cooling energy and hence improves the

overall tradeoff efficiency. Note that MinHR and Perf­Aware behave

exactly the same under GSP1, since servers with faster process­

ors and hence more power consumptions are  placed in the slots

with less heat recirculation. Therefore, the same performance and

energy are observed for HHR,P
i,j

regardless of the fuzzy factor, as

shown in Fig. 13(b).

The  results confirm that strategic server placement indeed

improves the thermal balance in a heterogeneous datacenter,

which helps reduce the cooling cost. This is achieved with little

impact on the job response time and computing energy, or the

tradeoff between them.
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Fig. 9. Performance of Perf­Aware under different server placements and  system loads. The legend applies to all subfigures.
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Fig. 10. Performance of  Energy­Aware under different server placements and  system loads. The legend applies to all subfigures.
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Fig. 11. Performance of Thermal­Aware under different server placements and system loads. The legend applies to all subfigures.
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Fig. 12. Performance of MinHR under different server placements and system loads. The legend applies to all subfigures.
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Fig. 13. Energy­performance tradeoff curves for HE,P

i,j
,  HHR,P

i,j
and HT,P

i,j
under four different server placements at load � =  0.8. The legend applies to all subfigures.

6. Related work

In  this section, we review some related work in  the literature

on multi­objective scheduling and thermal­aware scheduling for

datacenters.

6.1. Multi­objective scheduling

Scheduling  with multiple conflicting objectives has attracted

much attention in many optimization problems. Section 4.3

described a few commonly used approaches. The following reviews

some applications of  these approaches in  various problem domains.

(1) Simple priority. This is a simple priority­based approach to

optimize  multiple objectives in sequence. Assayad et al. [2]

introduced a bi­criteria compromise function to set priori­

ties  between makespan and reliability for scheduling real­time

applications. To minimize carbon emission and to maximize

profit,  two­step policies were proposed by Garg et al. [18] to

map  applications to heterogeneous datacenters based on  the

relative  priority of the two objectives. Du et al. [12] proposed

heuristics to optimize the QoS for interactive services before

considering energy consumption on multicore processors with

DVFS  (Dynamic Voltage & Frequency Scaling) capability.

(2) Pareto frontier. This approach is often used in the offline set­

ting  to generate a set  of nondominated solutions. Durillo et  al.

[13]  applied this technique to tradeoff makespan and energy

consumption for heterogeneous servers. Torabi et al. [41] used

particle  swarm optimization to approximate the pareto frontier

for  the unrelated machine scheduling problem with uncertain­

ties  in  the inputs. Gao et  al. [15] utilizes ant colony optimization

to  obtain the pareto frontier for resource wastage and power

consumption in virtual machine placement. Evolutionary algo­

rithms  were employed in [45,17] to obtain a set of alternative



solutions for scheduling scientific workloads in the Grid envi­

ronment.

(3) Constraint optimization. This approach optimizes one objective

subject  to constraint(s) on the other(s). Rizvandi et  al. [31]

applied  it to minimize the energy consumption subject to the

makespan  achieved in an initial schedule. A mixed integer pro­

gramming  model was  used by Petrucci et al. [29] to reduce

the  power consumption of virtualized servers subject to QoS

requirements. Fard et  al. [14] developed a double strategy to

minimize  the Euclidean distance between the generated solu­

tions  to a set of user­specified constraints in a four­objective

optimization problem. The authors in [19] applied �­constraint

method to cloud scheduling, which optimizes each objective in

turn with upper bounds specified for the others.

(4) Weighted combination. This approach combines multiple objec­

tives  into a single one. Lee and Zomaya [23] used DVFS to

tradeoff  makespan with energy consumption by considering a

weighted sum of the two objectives. The same technique was

used  by the authors of [1,36] in an online manner to minimize a

combined objective of  job response time and energy. A similar

approach  was taken by Sheikh and Ahmad [34], who  consid­

ered  an additional objective of peak temperature in a multicore

system, and hence optimizing three objectives at the same

time. Instead of summation, some work (e.g., [7,30]) also used

energy­delay product as a metric for scheduling applications in

heterogeneous multicore systems.

Compared to these approaches, our fuzzy­based priority

approach provides a rather flexible solution to handling two or

more conflicting objectives. Although multi­objective scheduling

with “fuzzy” or “good enough” solutions [44,46] are known in the

pareto­based approach, our fuzzy method is novel when (soft)

priorities exist between different objectives. The principle can be

potentially applied to other multi­objective optimization prob­

lems.

6.2. Thermal­aware scheduling

As  cooling energy constitutes a significant fraction of the total

energy consumption in today’s large­scale datacenter, thermal­

aware scheduling for this environment has been the focus of many

research in recent years.

Wang et al. [42,43] considered thermal­aware workload

placement in datacenters to reduce the server temperatures char­

acterized by an RC­model, while minimizing the job response time.

They proposed simple heuristics that allocate “hot” jobs to “cool”

computing nodes, as well as backfilling techniques for scheduling

parallel applications. In their study, the thermal map  of the data

center is assumed to be available through ambient and on­board

sensors.

Moore et al. [25] first introduced the concept of heat recircula­

tion effect and proposed workload placement algorithms, including

MinHR, to reduce the recirculation of heat and the cooling cost in

a datacenter. A prediction tool called Weatherman [24] was used

to predict the data center thermal map  using machine learning

techniques. The authors showed that the tool accurately predicts

the heat distribution of  the datacenter without the need of static

thermal configuration, and a scheduling algorithm based on Weath­

erman achieves similar performance as MinHR.

Tang et al. [38] also studied the problem of minimizing the

cooling cost in datacenters with heat recirculation consideration.

Based on an abstract heat flow model, they characterized the ther­

mal  behavior of datacenters via a heat distribution matrix. The

model was validated by computational fluid dynamics (CFD) sim­

ulations in [39,32]. They proposed offline scheduling solutions by

using genetic algorithms and quadratic programming, which were

evaluated using the heat distribution matrix captured for a small­

scale datacenter. The same matrix is used in  this paper for

evaluating our online scheduling heuristics.

Instead of minimizing only the cooling cost, Pakbaznia and

Pedram [27] considered minimizing the total energy of a datacenter

from both computation and cooling. They showed that performing

consolidation to turn off  idle servers together with job scheduling

to account for the heat recirculation can significantly reduce the

total power usage. Banerjee et  al. [3] further considered cooling­

aware scheduling workload placement by exploring the dynamic

cooling behavior of  the CRAC unit in a datacenter.

While the above results considered only the energy con­

sumption of  a datacenter, the following also takes application

performance into consideration. Mukherjee et al. [26] considered a

similar problem as in  [27] but further took the temporal dimension

of the job placements into account. They formulated the problem as

a non­linear program and proposed both offline and online heuris­

tics to minimize the total energy subject to the deadline constraint

for the jobs. Sansottera and Cremonesi [32] considered a datacen­

ter environment hosting web services, and presented heuristics to

minimize the total energy subject to service response time con­

straints. Kaplan et al. [20] studied the dual optimization of cooling

and communication costs for HPC applications in a  datacenter.

They proposed a heuristic algorithm that achieves a good trade­

off between the two objectives, and subject to reliability constraint

specified by the processor junction temperature.

In contrast to the previous work, which focused on either offline

scheduling or homogeneous datacenters, we studied the problem of

online scheduling for heterogeneous datacenters with both energy

and performance considerations, as well as their tradeoffs. Fur­

thermore, we  considered static server placement to balance the

thermal distribution in the presence of nonuniform heat distribu­

tion matrix. In our previous work [37], we have applied this concept

to the arrangement of computing nodes in a smaller scale problem

(at the server level). To  the best of our knowledge, no prior work

has considered this problem for heterogeneous datacenters.

7.  Conclusion and future work

In this paper, we have considered the energy­efficient and

thermal­aware placements for both servers and workloads in het­

erogeneous datacenters. For the static server placement problem,

we have shown that it  is NP­hard and presented a greedy heuristic.

To schedule the workloads, we have presented a greedy sched­

uling framework, which can be applied in  an online manner with

any well­defined cost function. Moreover, a novel fuzzy­based pri­

ority approach was proposed to simultaneously optimize two or

more conflicting objectives. Simulations were conducted for a het­

erogeneous datacenter with heat recirculation effect. The results

demonstrated the effectiveness of the proposed approaches for

exploring the energy­performance tradeoff with cooling consid­

eration. Our static server placement heuristic was  also shown to

provide better thermal balance, which directly leads to reductions

in cooling cost.

For  future work, other resource management techniques, such

as DVFS or server consolidation, can be applied to achieve better

energy and thermal efficiency. In this context, the tradeoff between

the computing energy and cooling energy can be explored, possibly

with the fuzzy­based priority approach. For the static server place­

ment problem, it will be useful to design better heuristic solutions

or good approximation algorithms, and to consider large datacen­

ters with more rack slots than servers, which will provide additional

space for optimization. Finally, we  considered server placement

and job scheduling separately in this paper; it  may be helpful to

consider the two  aspects jointly to achieve further energy savings.
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Appendix A. NP­hardness proof of the static server

placement problem

Claim.  The static server placement problem is NP­hard.

Proof. We  reduce the 3­partition problem to the static server

placement problem. In 3­partition, a  finite set A  = {a1, a2, . . ., an}  ⊂

Z
+ of n = 3h positive integers is given, and the sum of the integers

is
∑

j=1,. . .,naj = h · B. The question is whether A  can be partitioned

into  h disjoint subsets such that the sum of the numbers in each

subset is equal to B. The problem is known to be NP­hard even if

every integer in A  is strictly between B/4 and B/2, so  each subset

must contain exactly three numbers [16].

Given an instance A  of the 3­partition problem, where each

integer aj ∈ A  satisfies B/4 < aj < B/2, we construct an instance of

the static server placement problem as follows. Let m = n =  3h, and

assign

U
ref
j

= aj ∀j = 1, .  . .,  n.

The heat­distribution matrix D is specified by setting

d3l,3l−2 =  d3l,3l−1 = d3l,3l =  1 ∀l = 1, .  . .,  h,

and setting all the other elements to zero.

Suppose �* is an optimal mapping for the server placement

instance constructed above. The temperature increase at the inlet

of slot Sk, where server M�∗(k) is  placed, is given by

T incr
k

=

{

a�∗(k−2) + a�∗(k−1) + a�∗(k), if k mod  3 = 0

0, otherwise
.

The maximum temperature increase at any inlet is therefore

T incr
max = max

k=3,6,...,3h

(

a�∗(k−2) + a�∗(k−1) + a�∗(k)

)

.

This leads to the conclusion that the server placement instance has

a maximum temperature increase of  B if and only if A  can be par­

titioned into h disjoint subsets, where the sum of the numbers in

each subset is also B. �
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