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Abstract: Critical embedded systems are often designed as a set of real-time
tasks, running on shared computing modules, and communicating through
networks. Because of their critical nature, such systems have to meet
strict timing properties. To help the designers to prove the correctness of
their system, the real-time systems community has developed numerous
approaches for analysing the worst case scenarios either on the processors
(e.g., worst case response time of a task) or on the networks (e.g., worst
case traversal time of a message). These approaches provide results only for
local components behaviours. However, there is a growing need for having
a global view of the system, in order to determine end-to-end properties.
Such a property applies to functional chains which describe the behaviour of
sequences of tasks. We propose an approach to analyse worst case behaviour
along functional chains in critical embedded systems. It is based on mixed
integer linear programming (MILP) and is general in the sense that it can
be applied to a variety of end-to-end properties. This paper focuses on
two essential properties: end-to-end latency and temporal consistency. This
work was supported by the French National Research Agency within the
SATRIMMAP project.

Keywords: real-time systems; embedded systems; worst-case analysis;
latency; temporal consistency; mixed integer linear programming; MILP.
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1 Introduction

1.1 Problem description

Most embedded systems rely on distributed architectures whatever the applicative
domains. For instance, in the automotive domain (Navet and Simonot-Lion, 2008),
embedded architectures are composed of several electronic control units (ECUs)



connected via a several communication networks such as controller area network (CAN),
FlexRay, or time triggered protocol (TTP). The software running on each ECU is
often composed of real-time tasks scheduled following a fixed priority policy. In
the civil aeronautics domain, embedded architectures follow the integrated modular
avionics (IMA) standard (ARINC 653, 1997). An IMA architecture relies on a platform
composed of modules (also knows as CPMs – core processing modules) communicating
through an avionics full dupleX (AFDX switched ethernet) network. The scheduling is
based on the reservation of static pre-defined time windows for the execution of each
task. In the aerospace or military aeronautics domain, embedded architectures involve
shared processors with fixed priority scheduling (under the RTEMS operating system
for instance) interconnected with SpaceWire or Mil-1553B buses. These embedded
architectures host highly critical functions such as X-by-wire functions (where ‘X’
denotes any safety application, such as steering, braking or guidance). Typically, these
functions have to meet hard real-time requirements in order to interact correctly with
their environment (i.e., others systems, sensors, actuators, human pilot, etc.). Failure to
meet these requirements may lead to hazardous or even catastrophic situations. Hence,
real-time analysis is a major issue for the design of safe and reliable embedded systems.

In general, the real-time analysis is decomposed in three steps:

1 Verification of the temporal behaviour of each task. This is done by proving that
in any case and in particular in a worst case scenario, an execution always lasts
within some time intervals.

2 Evaluation of the network worst case traversal times for each message crossing
the network.

3 The combination of the last two analyses to verify end-to-end properties.

The first and second steps are already abundantly addressed in the literature (Sha et al.,
2004). The first step is usually done by combining a worst case execution time (WCET)
analysis of a task, with a worst case response time (WCRT) analysis in order to take
into account the interference of the other tasks executing on the same module. The
second step can be treated with various formal methods, depending on the nature of
the network. For instance, the trajectory approach (Martin and Minet, 2006) has been
successfully applied to AFDX networks in Bauer et al. (2009). The network calculus
(Le Boudec and Thiran, 2001) has been extended to multi-priority switched ethernet
network (Sofack and Boyer) as well. Similarly, Herpel et al. (2009), Chokshi and
Bhaduri (2010) and Ferrandiz et al. (2011) propose methods to evaluate lower and upper
bounds of communication delays in other classical real-time networks such as CAN,
Flexray, and SpaceWire. Generally speaking, these methods involve the communication
path parameters (route in the network, throughput of the network nodes, maximum
size of the messages allocated to the path, . . . ), and they determine for each path its
minimal and maximal traversal times. We do not describe these analysis techniques in
the following. Readers interested in worst case traversal times analysis are invited to
consult the provided references.

In this paper, we focus on the third step by considering two specific properties:
end-to-end latency and end-to-end temporal consistency along a functional chain. A
functional chain a0→ τ1

a1→ . . .τR
aR→ (task τ1 receives data a0 and produces a1 for task



τ2. . . until a final output aR) is a sequence of tasks deployed on computing modules,
and communicating through a network or a set of buses.

1.1.1 Latency analysis

The end-to-end latency of a functional chain f =
a0→ τ1

a1→ . . .τR
aR→ is defined as the

time elapsed from an input event a0 of f to the related response of the system aR
(the one related to the received a0). Usually a requirement regarding an end-to-end
latency is expressed as a δ-latency requirement: for any occurrence of a0, the reaction
aR must always be produced before a time δ at the latest. Noting t0 the arrival time
of an occurrence of a0 and tR the related production of aR, then we must always have
tR ≤ t0 + δ. This is equivalent to impose that the maximal end-to-end latency of the
functional chain f is less than δ.

For instance, a fly-by-wire control system must apply the pilot’s orders to the flight
control surfaces within a maximum delay depending on the speed of the aircraft. For
civil aircraft, this maximum delay is about 50 ms. For military aircraft, it is about 5 ms.
Such a requirement is essential for embedded systems and has to be carefully verified.
However, because of the distributed nature of the fly-by-wire control function, and
because of the increasing complexity of the embedded architecture (i.e., the increasing
number of functions running in parallel on the architecture), analyse end-to-end latency
becomes a difficult challenge for realistic systems.

1.1.2 Temporal consistency analysis

The second type of property is the notion of temporal consistency between outputs.
Informally, if an input results in multiple outputs, then we need to guarantee that the
outputs are temporally consistent, i.e., all outputs must occur within a certain time
window. A little more formally, let us consider two functional chains f1 =

a0→ τ1
a1→

. . .τR
aR→ and f2 =

a0→ τ ′1
a′
1→ . . .τ ′R

a′
R→. If those chains belong to a critical part of the

system, they may have to satisfy a temporal δ-consistency requirement: whenever an
instance of a0 arrives at t (note that a0 belongs to the two chains), then taR the date
of aR (related to the received a0) and ta′

R
the date of a′R (related to the same received

occurrence of a0) must satisfied | taR − ta′
R
|≤ δ.

For instance, a fly-by-wire control system must apply the pilot’s orders to the two
opposite ailerons within a maximum time window the length of which is 3 ms (for civil
aircraft). Put differently, the dates at which the order is applied on each side of the
aircraft must be temporally separated by at most 3 ms.

In this work, we do not consider consistency of data with regard to their values, but
only with regard to time. Thus, from now on, the adjective temporal may be implicit
and we will either mention temporal consistency or simply consistency. The aim of the
rest of the paper is to propose an efficient formal method, based on linear programming,
for verifying δ-latency and δ-consistency requirements on networked real-time systems.

1.2 Related work

Numerous works can be found in the literature on latency and worst case response
time analysis. The holistic approach (Tindell and Clark, 1994; Spuri, 1996) has been



introduced to analyse worst case end-to-end response time of whole systems. This
approach can be pessimistic as it considers worst case scenarios on every component,
possibly leading to impossible scenarios. Indeed, a worst case scenario for a functional
chain on a component does not generally result in a worst case scenario for this
functional chain on any component visited after this component. Illustration of this
pessimism is given in Section 4.

The real-time calculus by Thiele et al. (2000) (a variation of the network calculus
defined by Le Boudec and Thiran, 2001) has been proposed as an efficient method to
determine worst case latencies in real-time systems. However, similarly to the holistic
approach, worst case end-to-end delay is computed by adding the worst case delay
of each crossed element, leading to very pessimistic results. The trajectory approach
(Martin and Minet, 2006) has been developed to deal with such over-approximations
but can only be applied to evaluate network traversal time. Thus it cannot be used as
such to compute real-time properties along functional chains.

The authors of Carcenac and Boniol (2006) have developed a first methodology
to compute upper-bounds of end-to-end properties in a networked embedded system.
To do so, they model the functional chains and the networked architecture as a set of
timed automata. In order to cope with the combinatorial explosion, they propose several
abstractions. However, this work suffers from two shortcomings with respect to our
objective:

1 their model does not take into account the real-time behaviour of each computing
module

2 the abstractions remain insufficient and not efficient enough for realistic systems.

The study of temporal consistency between data is relatively sparse in the literature.
Temporal consistency is studied in real-time databases in Jha et al. (2006) but the
authors do not study the notion of functional chains. This notion can be found in Song
and Liu (1995) and Pontisso et al. (2010). However, both papers do not deal with
IMA assumptions and Song and Liu (1995) evaluates temporal consistency through a
simulation angle and thus cannot be used to provide safe guarantees to a critical system.

Works linking real-time systems and linear programming can also be found. For
instance, the authors of Sagaspe and Bieber (2007) propose an automatic method
based on integer linear programming (ILP) for allocating functional specifications on a
platform while ensuring some safety (i.e., fault-tolerance) requirements. In Al Sheikh
et al. (2012), the authors also propose a technique based on mixed ILP to automatically
allocate and schedule avionics functions on an IMA platform. Their objective is
the maximisation of the spare resource on each module in order to meet future
resource demand growth. Also, the authors of Cucu-Grosjean and Buffet (2009) use a
constraint satisfaction problem (CSP) to find a feasible real-time schedule of tasks in a
multi-processor context.

1.3 Contributions

In Boniol et al. (2012) we proposed a latency analysis method for a specific class of
real-time systems, in which tasks are scheduled with a preemptive fixed priority policy,
and are supposed to satisfy a strong assumption: the worst and best execution times of
a task are equal, i.e., the execution time does not vary. It is easy to show that under



such an assumption, the system is deterministically and statically scheduled. Outputs
were produced deterministically (with respect to the initial time of the task) at the end
of each job. Put differently, this first work only considered deterministic systems. In the
next sections, we extend Boniol et al. (2012) in two directions.

• We continue to consider statically scheduled systems in which tasks run within
time intervals. However, the system model is now more general and fits a wider
variety of embedded real-time systems. First, we consider non-deterministic
systems: indeed, task execution time can vary from a lower bound (zero in this
article, however any positive value could be used as well) to the WCET.
Secondly, we consider that a task can be interrupted and resumed later in its next
time interval. Formally, each job of each task has got several non-contiguous time
intervals to complete its execution, contrary to Boniol et al. (2012) in which each
job completely runs in a single deterministic time interval. Such an extension
allows to capture more general behaviours, and some kind of non-determinism.

• The approach has been extended to analyse an other real-time property: temporal
consistency. We show that such a property can be computed in the same
framework, following a mixed integer linear programming (MILP) modelling.

We illustrate these contributions on an industrial case study built from the Airbus A380
configuration, and we show using several benchmarks that the method remains scalable
even for temporal consistency properties and for large functional chains.

1.4 Organisation

Section 2 details the main assumptions of the real-time systems we consider in the
paper and gives a model for the attributes required for the analysis. This model is also
instantiated on a motivational case study taken from the aerospace domain. In Section 3
we present our approach by describing the modelling and then the computation of worst
case properties. Several aspects of our approach are discussed in Section 4: the tightness
of its results compared to a local approach, its scalability and its possible extension to
best case analysis. Section 5 concludes the paper and opens some research directions.
The different concepts introduced in the paper are illustrated on the case study.

2 Model and main assumptions

In this section, we introduce a model for the systems under consideration and the
assumptions we use. We also instantiate the model on a motivational case study taken
from the aerospace domain.

2.1 Model

Critical embedded systems are often composed of tasks statically scheduled on shared
computing resources and communicating through a shared network. This is the case
for modern aircraft such as the Airbus A380 or the Boeing B787. These embedded
systems follow the IMA standard ARINC 653 (1997). The scheduling on each



computing module is time-triggered, meaning that each task periodically executes at
fixed and predetermined time intervals. However, in order to avoid the use of complex
synchronisation protocols, modules are globally asynchronous. Such systems can be
considered as globally asynchronous and locally time-triggered (GALTT). Executions of
the tasks on a module describe a periodic pattern. Each instance of a task in this pattern
is called a job and a time interval (or a set of time intervals) is strictly reserved for its
execution.

In the following we consider GALTT systems composed of N tasks
T = {τ1, . . . , τN} running on a set of m modules M = {M1, . . . ,Mm} communicating
via a shared network. We note T (Mi) the set of tasks hosted by module Mi. The
assumptions made for the system under analysis are:

• Module: each module Mi ∈ M is characterised by a period Hi, i.e., the
hyper-period of the tasks running on the module. The hyper-period is the least
common multiple of the hosted tasks periods, Hi = lcm(τj)τj∈T (Mi).

• Task: each task τj ∈ T (Mi) is characterised by a set of jobs τkj for k = 0..nj ,
meaning τkj is the kth job of the task τj in the period of Mi. Each job is
characterised by a set of time intervals [bkj (l), ekj (l)] for l = 0..nk

j , where bkj (l)

and ekj (l) are the beginning and ending dates respectively of each interval.

More precisely, the kth job of the task τj starts at bkj (0). If it is not finished at
ekj (0), then the job is suspended until bkj (1). If it is not finished at ekj (1), then the
job is suspended until bkj (2), and so on until ekj (nk

j ). It is assumed that a job
always finishes during one of its intervals. During any interval [bkj (l), ekj (l)], only
the job τkj is executing on the module. These dates are relative to the beginning
of the period of the module Mi. Note that the sum of the intervals of a job is
equal to the task WCET.

• TCommunication scheme: tasks communicate in an asynchronous way. Each job
τkj consumes input data arrived before the beginning of its first reserved time
interval: between bkj (0) and bk−1

j (0). Inputs received after the beginning of the job
will be consumed by the next job. This is consistent with typical queuing
communication scheme. Each job produces output data at any time during its
execution, meaning during any interval [bkj (l), ekj (l)] for l = 0..nk

j .

• TCommunication delay: tasks running on the same module communicate through
the memory of the module, i.e., without delay. Tasks running on different modules
communicate through the shared network. The communication delays in the
network are supposed to be bounded.

• TGlobal asynchronism: finally, we suppose that the modules M are globally
asynchronous, i.e., they can be shifted by an arbitrary amount of time.
Nevertheless, these offsets are supposed constant.

In the paper, we do not take into account any drift between the clocks of the module.
Although clock drift is a major issue in synchronised systems where a shared time
reference needs to be established, in asynchronous systems, by definition, such time
reference is not required. Still, the discrepancies in clock frequencies which cause the



clock drift could have an impact in our analysis. Some modules could run a little
faster (or slower). This may modify the actual tasks periods and executions times.
However, worst case latency or consistency are usually measured in hundreds of ms. A
high-quality quartz typically used in avionics systems is assumed to lose at most 10−8

seconds per second. Hence, clock drift could not significantly impact our results. To
the best of our knowledge, it is an implicit assumption in every performance evaluation
papers dealing with asynchronous systems.

2.2 Motivation: an avionics case study

Let us consider an avionics case study depicted in Figure 1. This case study is a part of
a flight management system (FMS).

Figure 1 Case-study: a flight management system (see online version for colours)

Task Period WCET Module

MFDi 40 19 M1i

KCi 40 22 M1i

CPAutoTesti 60 5 M1i

FlightMi 40 10 M2i

WayPointMi 60 16 M2i

CockpitReqMi 60 10 M2i

FMAutoTesti 120 5 M2i

NDBReqM 100 12 M3

NDBServ 100 17 M3

NDBRep 100 16 M3

NDBAutoTest 200 10 M3

2.2.1 System description

The system manages some displays in the cockpit. It provides some information on
a waypoint requested by the crew (distance and estimated time of arrival). The pilot



and the co-pilot use a personal keyboard and two displays to interact with the FMS.
Information displayed on both screens must be similar although they are not processed
by the same components. The FMS uses a redundant implementation of its functions
which are segregated on each side of the plane (named side 1 and side 2). This system is
composed of 18 tasks mapped onto five modules and communicating through a network
(not shown in the figure). M11 and M12 are two redundant modules. They implement
the same redundant tasks. They manage the interface, keyboard and display, for the pilot
(M11) and for the co-pilot (M12). Each module M1i hosts three tasks: KCi (keyboard
control) which reads data sent by the pilot (if i = 1) or the co-pilot (if i = 2) through
their respective navigation keyboard; MFDi (MultiFunction Display) which manages
the data to be displayed on side i, and a background autotest task. Two redundant
modules M21 and M22 host the tasks of the FMS1 and FMS2: FlightMi is the main task,
computing periodically the flight plan; CockpitReqMi manages the interactions between
the crew and the FMSi; it receives/sends messages from KCi / to MFDi; WayPointMi

elaborates the data of the flight plan waypoint, and it computes distance and estimated
time of arrival of the waypoint requested by the pilot to be displayed; and FMAutoTesti
is the background autotest of M2i. Finally, a single module M3 hosts the navigation
database (NDB), which contains information related to the flight plan. This database is
common to the two redundant sides. It is composed of four tasks: a background autotest;
NDBReqM manages the request received from other modules; NDBServ processes the
request; and finally NDBRep builds the response message.

These tasks are scheduled on their corresponding modules as followed:

• KCi = 3 jobs in 120 ms: ([19, 31[), ([62, 74[), ([99, 111[)

• MFDi = 3 jobs in 120 ms: ([0, 19]), ([43, 62[), ([80, 99[)

• CockpitReqMi = 2 jobs in 120 ms: ([31, 41[), ([76, 80[, [95, 101[)

• WayPointMi = 2 jobs in 120 ms: ([15, 31[), ([60, 76[)

• NDBReqMi =2 jobs in 200 ms: ([0, 12[), ([102, 114[)

• NDBServi = 2 jobs in 200 ms: ([12, 39[), ([114, 141[)

• NDBRepi =2 jobs in 200 ms: ([39, 54[), ([141, 156[).

For example, the task CockpitReqMi executes two jobs during the period of the module.
Its first job executes in a single interval while the second has two intervals. According
to the previously introduced notation, the first interval of the second job starts at
b1CockpitReqMi

(0) = 76 and it finishes at e1CockpitReqMi
(0) = 80. Then, the second interval

of the second job starts at b1CockpitReqMi
(1) = 95 and it finishes at e1CockpitReqMi

(1) = 101.
This system is part of the whole avionics system composed of almost 100 modules
communicating via more than 100,000 data through almost 1,000 communication paths.

2.2.2 System behaviour

Let us consider the following scenario. The pilot (on side 1) requests some information
on a given waypoint. This request can be entered at any time via his navigation
keyboard. KC1 (on M11) controls this keyboard. When KC1 receives a request, it
broadcasts it to CockpitReqM1 and CockpitReqM2, which then query the navigation



database for information on this waypoint (task NDBReqM). Each query is processed by
tasks NDBServ and NDBRep (in that order). The answer (information on the waypoint)
is sent to WayPointM1 on module M12 and to WayPointM2 on module M22. Upon
the reception of this message, each WayPointMi computes two complementary dynamic
data: the distance to the waypoint, and the estimated time of arrival (ETA). These data
are periodically sent to MFDi on module M1i which periodically elaborates the pages to
be displayed on the screen. This communication flows, from KC1 to MFD1 and MFD2

via the database, form two functional chains summarised in Figure 2.

Figure 2 The functional chains of the flight management system
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2.2.3 System requirements

These chains have to meet the following end-to-end temporal requirements:

• φL: pages relative to a pilot’s request must be displayed on each side within a
time window of 700 ms, meaning that the duration between treq , the date of the
pilot’s request, and tdispi , the time at which the requested information is
displayed, must satisfy

tdispi − treq ≤ 700 ms for i = 1, 2

• φC : the two pages on side 1 and 2 relative to a same pilot’s request must be
displayed in a bounded time window, more precisely:

| tdisp1 − tdisp2 |≤ 300 ms.

φL is a worst case end-to-end latency requirement. φC is a worst case temporal
consistency requirement.

3 Worst case properties

In this section, we present our method to analyse temporal properties in networked
real-time systems. We first model the behaviour of each element involved in the
functional chain (modules, tasks, communication delays, . . . ) by a set of variables and
constraints. The behaviour of the whole system is obtained by the conjunction of all
these constraints. Using an objective function measuring the latency of the functional
chain, we define a MILP which optimal solution gives the worst case latency of the
chain. In the following, all variables used for offsets and dates are reals. All variables
used to designate a specific hyper-period or a job interval are integers. We also use



Boolean variables for technical reasons. Although not mandatory, we only use integers
for parameters in order to improve readability.

To capture the temporal behaviour of a functional chain, F =
a0→ τ1

a1→ . . .τR
aR→, we

need to ‘follow’ the propagation along the chain of an occurrence of an input a0 until
a related output aR is produced.

We then describe the case of latency in Section 3.2 and the specificities of
consistency in Section 3.3.

3.1 Constraints and variables definition

We define the constraints and variables allowing to capture the expected behaviour of
the modules, tasks and communications.

3.1.1 Module

Let Mi be a module. The only variable which characterises Mi is its possible offset
with respect to the other modules. Modules are asynchronous, thus the time origin of
their execution frame may be shifted by an offset Oi. This offset may be arbitrary.
However, as we are interested in the regular behaviour, and not the specific case of
the initialisation phase, it is not necessary to consider offsets greater than the maximal
hyper-period of the system. The first constraints for Mi are then:

Oi ∈ R, 0 ≤ Oi ≤ max
k=0...m

Hk (1)

3.1.2 Task

In the following, we focus on a single task of the chain τj . The link with its previous
and next tasks in the chain is later realised with the constraints on the communication
delays (see 3.1.3). Let τj ∈ F be a task of the functional chain executing on module
Mi, such as

u→ τj
v→, meaning the task consumes data u in order to produce data v. We

first describe how to capture the job and hyper-period of the task in which a specific
occurrence of u is consumed. Then, we show how to constrain the production of the
occurrence of v related to this u in order to follow the propagation of u through v.

3.1.2.1 Consumption of data

Let tu be the date where an occurrence of u is available on Mi. As presented in
Section 2.1, depending on the location of the task preceding τj , it may be delivered
by the network, or put in a shared memory of the module. To capture the temporal
behaviour along the functional chain we need to link tu to the job of τj that
consumes this occurrence of u. From the task model, we have for each start of a job
of τj : ∃n ∈ N, ∃k ∈ 0..nj such that Oi + nHi + bkj (0), where Oi is the offset of the
module Mi, Hi its hyper-period, n the number of the current hyper-period and bkj (0)

the beginning of the first interval of the kth job of the task τj . Hence, the occurrence of



u arriving at tu is consumed by the kth job of the task τj during the nth hyper-period of
Mi if and only if:

tu ≤ Oi + nHi + bkj (0){
Oi + nHi + bk−1

j (0) < tu , ∀k = 1..nj

Oi + (n− 1)Hi + b
nj

j (0) < tu , for k = 0

(2)

as shown in Figure 3 there is a special case for k = 0, i.e., the first job of the
hyper-period.

Figure 3 Special case for the first job of the hyper-period (see online version for colours)
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In order to take into account these constraints into the MILP, we define a set of Boolean
variables Ck

j , for all k = 0..nj (one Boolean per job, C stands for consumption). These
are indicator variables: Ck

j is true iff job τkj consumes the occurrence of u arrived at
time tu. The Boolean variables are constrained by:

nj∑
k=0

Ck
j = 1 (3)

meaning that one and only one job consumes u, and in order to respect the
constraints (2), the Boolean variables are also constrained by:

tu ≤ Oi + nHi +

nj∑
k=0

Ck
j · bkj (0)

Oi + nHi +

nj∑
k=1

Ck · bk−1
j − Infty · C0

j < tu

Oi + (n− 1)Hi + Infty · (C0
j − 1) + b

nj

j < tu

(4)



where Infty is a large integer representing infinity. We use this large value in order to
deal with the two cases of constraints (2). Indeed, if C0

j = 1 (meaning the consumer
job is τ0j ) then the second constraint is always true and the only active constraint is the
third one. Otherwise, if C0

j = 0 (meaning the consumer job is τkj , k = 1..nj) the third
constraint is always true and the second one is the only one active. As a result, for a
given Oi and for a given tu (arrival of u), the previous constraints determine a single
n and a single k, i.e., the hyper-period and the job consuming u.

3.1.2.2 Production of data

We now capture the behaviour for the production of data v by task τj following the
consumption of an occurrence of u arrived at tu. Let tv be the date of this production
of v. Data can only be produced during one of the job intervals. If tv happens during
the nth hyper-period of Mi and the lth interval of the kth job, then necessarily we have:

Oi + nHi + bkj (l) ≤ tv ≤ Oi + nHi + ekj (l) (5)

In order to take into account these constraints into the MILP, we use a set of Boolean
variables P k

j (l), for all k = 0..nj and for all l = 0..nk
j (one Boolean per job and per

interval, P stands for Production). These are indicator variables: P k
j (l) is true iff job

τkj produces the occurrence of v at time tv during interval [bkj′(l), ekj′(l)]. Since the job
producing v is the same than the one which consumed u arrived at tu, the Boolean
variables are constrained by

Ck
j −

nk
j∑

l=0

P k
j (l) = 0, ∀k = 0..nj (6)

We show that the constraints (6) model the link between the job consuming u arrived
at tu and the interval of the job producing v. Let k = 0..nj be a job, if Ck

j = 0 then
necessarily, ∀l = 0..nk

j , P k
j (l) = 0, meaning that no interval of job k produces the

occurrence of v we want to follow. Conversely, if Ck
j = 1 then necessarily, ∃l = 0..nk

j ,
P k
j (l) = 1, and ∀l′ = 0..nk

j , l
′ ̸= l, P k

j (l
′) = 0 meaning that one and only one interval

of job k produces v. From constraint (4), we know that only one job k can consume u.
Thus, the constraints model the expected behaviour.

We now use the Boolean variables P k
j (l) to constrain tu to happen during the

interval selected by the previous constraints:

Oi + nHi +

nj∑
k=0

nk
j∑

l=0

P k
j (l) · bkj (l) ≤ tv

tv ≤ Oi + nHi +

nj∑
k=0

nk
j∑

l=0

P k
j (l) · ekj (l)

(7)



3.1.3 Communication delay

The communication constraints link the tasks in the chain. We describe this link between
a task τj producing v and τj′ consuming v: τj

v→ τj′ . Two cases arise for the
communication delay. Either the communication between τj and τj′ happens through
the network or, if the tasks execute on a common module, through a shared memory. Let
toutv be the time at which τj produces data v (it was noted tv in the previous constraints)
and tinv be the time at which v is available for consumption in the module of τj′ .

3.1.3.1 Communication through a timed channel

As presented previously, communications through the network are abstracted with a
timed channel characterised by a communication delay in [δmin, δmax]. Hence, toutv and
tinv are constrained by:

toutv + δmin ≤ tinv

tinv ≤ toutv + δmax
(8)

3.1.3.2 Communication through shared memory

If the communication is realised through a shared memory, then it is considered
instantaneous. Hence, we have:

toutv = tinv (9)

a shared memory is similar to a timed channel characterised by the interval [0, 0].

3.2 Objective function: worst case latency

Let F =
a0→ τ1

a1→ . . .τR
aR→ be a functional chain. The possible behaviour of this chain is

obtained by the conjunction of all the constraints of all the tasks and the communication
involved in the chain. The set of constraints thus obtained forms a MILP (because some
variables are reals and some are integers). Let us note t0 the arrival date of a0, and tR
the production date of aR. Then the latency of the chain is

L = tR − t0

The worst case latency is obtained on a particular behaviour maximising L. This
behaviour can be found by using a MILP solver with the objective function:

maximise: tR − t0

3.3 Objective function: worst case consistency

In this section, we detail the specificities of the proposed MILP formulation for the
worst case consistency analysis. We consider a set of functional chains F1, . . . ,FK .



For all c = 1..K, we note Rc the number of task in Fc. Every functional chain has the
following form:

Fc =
ac,0→ τc,1

ac,1→ . . .
ac,Rc−1→ τc,Rc

ac,Rc→ (10)

We are interested in the temporal consistency of divergent chains, thus all chains share
a common first element: ∀(c, c′) ∈ [1..K]2, ac,0 = ac′,0.

Temporal consistency measures the distance between the outputs of functional chains
relating to a common input. Let t1,R1 , . . . , tK,RK

be the dates of such outputs. All these
dates depend on a common initial date t0 which corresponds to an arrival at the input of
the chains. t0 is also a variable of the problem. Moreover, the dates are constrained with
the same constraints as for the latency. The worst case consistency is then the maximum
distance between the largest tc,Rc , ∀c = 1..K and the smallest one. More precisely, the
objective is:

maximise: max
c=1..K

{tc,Rc} − min
c=1..K

{tc,Rc} (11)

However, this objective is not linear and cannot be used in a MILP. In the following, we
propose a linearisation of this objective function. First, we define two technical variables
(maxT,minT) ∈ R2. They represent respectively the maximum and minimum dates of
the outputs. The objective becomes:

maximise: maxT− minT (12)

Then, we add some constraints to ensure that at least one of the dates is equal to maxT
and one of the dates is equal to minT. Since the objective is a maximisation, the solver
will choose the largest value for maxT and the smallest for minT. We start with maxT.
For each tc,Rc , c = 1..K, we add the two following constraints:

maxT ≤ tc,Rc + (1−BmaxT
c ) · Infty

maxT ≥ tc,Rc − (1−BmaxT
c ) · Infty

(13)

where BmaxT
c is a Boolean variable and Infty is a large integer representing infinity. If

BmaxT
c = 1 then necessarily tc,Rc = maxT. Otherwise the variable tc,Rc is free. We also

add the following constraint to ensure that at least one variable BmaxT
c is equal to 1:

K∑
c=1

BmaxT
c ≥ 1 (14)

We proceed in a similar manner to constrain the value of minT. For each tc,Rc
, c = 1..K,

we add the following constraints:

minT ≤ tc,Rc + (1−BminT
c ) · Infty

minT ≥ tc,Rc − (1−BminT
c ) · Infty

K∑
c=1

BminT
c ≥ 1

(15)

The linearisation of the objective function results in the addition of two real variables,
2K Boolean variables and 4K + 2 constraints.



4 Discussions

The purpose of this section is to discuss several aspects of our approach. First, we
benchmark our global approach against a local approach for the latency and consistency
properties. The gain we achieve is intuitively explained in a simple example. The
improved tightness of the analysis comes at a price: complexity. Our global approach
involves solving a MILP. It is obviously more complex than a local approach that
typically involves analytical formulas. We run several experiments to test the scalability
of our approach. Finally, we consider that a key feature of our work is its flexibility. We
show how it can be extended to analyse other properties. As an example, we propose
an extension to best case latency and best case consistency evaluations.

4.1 Local vs. global analysis

For each property, we first give results for a local approach. These results are similar
to formulas used in Al Sheikh et al. (2012) for latency and in Pontisso et al. (2010) for
consistency. However, we specialise these local approaches to our model.

4.1.1 Worst case latency

As described in the related works, a local approach consists in determining worst case
response time (WCRT) of each component visited by the functional chain, then the
end-to-end latency is the sum of the WCRT.

4.1.1.1 Local Worst Case Latency

The WCRT of a timed channel ci is the upper bound of the communication delay:
δmax
i . If we note WCRT(τj) the worst case response time of a task τj , then with a local
approach an upper bound of worst case latency of a functional chain F =

a0→ τ1
a1→ . . .τR

aR→ which uses a set c1, . . . , cl of timed channels to communicate is:

WCL(F) =

R∑
j=1

WCRT(τj) +
l∑

j=1

δmax
j (16)

In our model, the WCRT of a job τkj of a task τj happens when a data waits the longest
possible time before being acquired by the job and the processing in the job takes the
longest possible time. This scenario occurs when the data arrives just after the beginning
of the first interval of the previous job, and the production happens at the end of the
last interval, as shown in Figure 4 (u represents the data and v the resulting data of its
processing by τkj ). Taking into account the hyper-period of the module Mi hosting the
task, the WCRT of this job is then:

(
ekj (n

k
j )− b

p(k)
j (0)

)
mod Hi, p(k) =

{
k − 1 if k > 0

nj if k = 0
(17)

where p(k) the index of the job preceding job k.



Figure 4 Local worst case scenario for the job τk
j (see online version for colours)

⇣
ekj (n

k
j )� b

p(k)
j (0)

⌘
mod Hi

bkj (n
k
j ) ekj (n

k
j )bp(k)j (0)

⌧kj (n
k
j )⌧kj (0)⌧p(k)j (np(k)

j )

u v

... ...

job ⌧p(k)j
job ⌧kj

⌧p(k)j (0)

The worst case response time of a task τj is the maximum response time of all its jobs:

WCRT(τj) = max
k=0..nj

{(
ekj (n

k
j )− b

p(k)
j (0)

)
mod Hi

}
(18)

For example, in the case study the task WaypointM is characterised by two jobs
{[15, 31]} and {[60, 76]} (only one interval per job) on the hyper-period H2 = 120.
Thus, WCRT(WaypointM) = max{(31− 60) mod 120, (76− 15) mod 120} =
max{91, 61} = 91

To be fair with the local approach, we use the following idea: because of the
scheduling of the navigation database tasks, the result of the first (resp. second) job of
NDBReqM is necessarily processed in the first (resp. second) job of NDBServ and which
result is then processed in the first (resp. second) job of NDBRep. Thus, this sequence
of tasks can be considered as only one task with two jobs per hyper-period. The
beginning of the first (resp. second) job is the beginning of the first job (resp. second) of
NDBReqM and the end of the first job (resp. second) job is the end of the first job (resp.
second) of NDBRep. In the following, we name this task NDB and it is characterised by
the intervals: [0, 54], [102, 156]. Table 1 provides the WCRT considered for the tasks.

Table 1 Worst case response time of the case study tasks

Task KC CockpitReqM NDB WayPointM MFD

WCRT 55 85 156 91 62

4.1.1.2 Local vs. global worst case latency

We compare the global approach against the local one by varying the upper bound
of the communication delays (for simplicity we assume that all the δmax

i are equals).
The results are plotted in Figure 5. According to equation (16) the worst case latency
determined with the local approach is linear (straight dashed line). The results of
the global approach form a step function which is right continuous: for example
∀δmax

i ∈ [0, 15),WCL = 403, ∀δmax
i ∈ [15, 22),WCL = 443. . .

We can see on the results that the global approach provides more accurate results
than the local approach. The curve of the global approach varies by steps. One of the
reason is that the involved functional chain crosses twice the modules M1 and M2.
Consider a part of the worst case scenario depicted in Figure 6. The task CockpitReqM
(noted CRM) on module M2 sends a query to the task NDB on module M3, the answer
is then processed by the task WaypointM (noted WP) on module M2 resulting in an
output data wpInfo. We can see that variations in δmax value (up to a certain point) do



not change which job of WP processes NDB answers. Thus, the end-to-end latency is
unaffected by variations of the worst case communication delay. In the case of the local
approach, it is the job with the worst case response time which is always assumed to
process the data. Which also explains the improvement obtained by the global approach.

Figure 5 Results of the case study – global vs. local approach (see online version for
colours)
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Figure 6 Interpretation of the global approach curve
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System designers could take advantage of this more accurate evaluation technique:
within certain range they could increase the network load with no impact on high-level
requirement, which could be crucial for future evolution of the system.

To confirm the trend in this results, we extend the case study to build two
experiments:

• A module M ′
3, similar to M3, is added. The tasks of M ′

3 correspond to the
navigation database tasks and as for M3 we consider them as a bundle of tasks
noted NDB’. The functional chain considered is then: req→ KC wpId→ CockpitReqM
query→ NDB answer→ NDB’ answer’→ WayPointM wpInfo→ MFD display→ .

• A module M ′
2, similar to M2, is added. The tasks of M ′

2 correspond to the flight
management tasks of M2. In particular, we add the tasks CockpitReqM’ and
WayPointM’ to the functional chain. The goal is to add a module which is crossed
twice. The functional chain considered is then: req→ KC wpId→ CockpitReqM query→
CockpitReqM’ query’→ NDB answer→ WayPointM’ wpInfo’→ WayPointM wpInfo→ MFD display→ .



The results of these experiments are plotted in Figures 7 and 8 respectively.
The improvement of the global approach is more important with the experiment 2.

Indeed, the module added to the case study is crossed twice by the functional chain
and so the benefit of the approach (as presented in Figure 6) is more significant. These
results indicate that the more modules are crossed multiple time by the functional chain,
the more the proposed approach may be relevant.

Figure 7 Results with module M ′
3 added (see online version for colours)
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Figure 8 Results with module M ′
2 added (see online version for colours)
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4.1.2 Worst case temporal consistency

An upper bound on the worst case consistency is given by the maximum difference
between the worst case and best case latency of the functional chains. Thus, to express
this bound we first need to define a lower bound on the best case latency of a chain.



4.1.2.1 Local best case latency

For the local approach, the best case response time (BCRT) of a job of a task happens
when data arrives just before the beginning of the job and the data is processed with
minimum delay. In our model, no minimum delay is defined, thus processing can be
instantaneous. The best case latency is then reduced to the sum of the lower bound of
the communication delays. For a functional chain F =

a0→ τ1
a1→ . . .τn

an→ which uses a
set c1, . . . , cl of timed channels to communicate, we have:

BCL(F) =
l∑

j=1

δmin
j (19)

Note that a minimal processing delay could be included in our model without technical
difficulty.

4.1.2.2 Local worst case consistency

With a local approach, we can obtain the following upper bound for the consistency of
the functional chains F1, . . . ,FK :

WCC(F1, . . . ,FK) = max
c=1..K

{
WCL(Fc)

}
− min

c=1..K
{BCL(Fc)} (20)

4.1.2.3 Local vs. global worst case consistency

As for the worst case latency, we compare the global approach against the local one
by varying the upper bound δmax of the communication delays. The lower bound of the
communication delays is assumed to be constant δmin = 1ms. The results are plotted in
Figure 9.

Figure 9 Worst case consistency – global vs. local approach (see online version for colours)
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4.2 Scalability

We have developed a prototype which takes the description of a system and a set of
functional chains as inputs. It automatically generates the MILPs to determine the worst
case latency of a chain or the worst case consistency of a set of chains. Then, the MILPs
are solved with the open source solver lp solve. Experiments run on a Intel Core 2 Duo
2.53 GHz processor.

To find the limiting factors of the approach, we further extend the case study. In
Figure 10(a) we add up to four modules with navigation database tasks and we plot the
required computation time to the corresponding MILPs. In Figure 10(b) we add up to
four modules with flight management tasks and we plot the required computation time
to solve the corresponding MILPs. For the consistency, we both increase the length of
the functional chains by adding NDB modules and increase the number of functional
chains by duplicating the modules. The corresponding computation times are plotted in
Figure 11.

Figure 10 Worst case latency computation time, (a) number of NDB modules
(b) number of FM modules (see online version for colours)
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Figure 11 Worst case consistency computation time – for K functional chains
(see online version for colours)
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In all these cases, the required computation time increases exponentially with the
number of added modules. This is due to the fact that for each added task, n
binary decision variables must be added to the MILP (with n the number of interval
characterising the task). Remember that these binary variables are used to decide which
job in the hyper-period of the task module is involved in the functional chain. Solving
the MILP for the consistency is also more complex for two reasons:

1 Boolean variables have been added to linearise the objective function
(c.f., Section 3.3).

2 The problem is highly symmetrical. This is known to be a burden for solvers.

We can also notice that solving the MILP for the experiments with a module similar
to M2 (flight management module) is more difficult. Let us consider again the scenario
depicted in Figure 6. Finding the jobs of CRM and WP involved in the worst case
depends on the time elapsed between the production of the query and the reception of
the answer. Thus, inter-dependencies exist between part of the functional chain and the
MILP becomes more complex to solve.

4.3 Extension to best case evaluation

One advantage of the proposed approach is that it is easily extendable. Indeed, it allows
to evaluate other relevant properties like the minimum latency or consistency of the
functional chains for instance. A classical example of system which must verify a
minimum and a maximum latency is an airbag: upon a collision, it must neither be
inflated too early nor too late. We first present the ideas for extending our approach
to best case latency and compare the results to a local approach. Then we discuss the
specificities of the best case consistency.

4.3.1 Best case latency

To apply our approach to the best case latency, we can reuse the MILP defined for the
worst case. We just need to change the objective function to:

minimise: tR − t0 (21)

As for the worst case latency, we compare a local approach with a global approach. We
use the same methodology as with the worst case to benchmark the global approach
against the local one. Increasing the upper bound of communication delay does not
impact the best case latency, thus only the lower bound (δmin

i ) is varying. The results
are plotted in Figure 12. The straight dashed line corresponds to the local approach.
Because some steps of the results of the global approach are small, we do not plot
the discontinuities (i.e., the jumps of the function). The function is left continuous. We
can see the global approach improves the analysis of best case latency. The reasons are
similar to the analysis of the worst case.



Figure 12 Best case latency – global vs. local approach (see online version for colours)
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4.3.2 Best case consistency

The best case consistency is the minimum distance between the outputs of the functional
chains:

minimise: max
c=1..K

{tc,Rc} − min
c=1..K

{tc,Rc} (22)

The concept of best case consistency is less intuitive than the worst case, we give an
illustration in Figure 13. The consistency of 3 functional chains F1,F2 and F3 are
considered. The ranges of possible values for the outputs t1,R1 , t2,R2 and t3,R3 are
represented. These ranges depend on the constraints of the MILP. On this example,
the best case consistency is obtained by giving the largest possible value to t3,R3 , the
smallest one to t2,R2 and any value in between to t1,R1 .

Figure 13 An example of best case consistency
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As for the maximisation problem, two technical variables maxT and minT are introduced
to linearise the objective function:

minimise: maxT− minT (23)

and the same constraints (13), (14) and (15) are used. However, to apply our approach
to the best case consistency, some constraints must be added to the MILP used for



the worst case. Indeed, otherwise for the minimisation solver could assign the minimal
value to maxT and the maximal one to minT. For each tc,Rc , c = 1..K, we add the two
following constraints:

maxT ≥ tc,Rc

minT ≤ tc,Rc

(24)

thus, maxT is constrained to be equal to the largest tc,Rc and minT is constrained to
be equal to the smallest tc,Rc . Applied to the case study, the best consistency is always
null. This is because the problem is highly symmetrical and the data can be produced
at the output at exactly the same time.

5 Conclusions and perspectives

The article presents an analysis method for end-to-end freshness and end-to-end
temporal consistency properties on GALTT systems. This verification method is based
on a MILP modelling. Worst case end-to-end properties are computed as optimal
solutions of the MILP problem. An interesting feature of this approach is that it
computes more accurate temporal bounds than local approaches as shown in Section 4.1.
Another interesting point, as shown in Section 4.3, is its flexibility: one can easily
compute best case end-to-end bounds by only modifying the objective function of the
MILP form max to min. From a scalability point of view, the case study considered
previously is composed of 11 tasks. This case study is representative from industrial
systems (usually composed of 5 to 10 tasks). Our method applied to this case study
does not take more than 1s for the latency or consistency analysis (with a non-optimised
solver). We think that these results are promising.

In this article, we made however a strong hypothesis about the internal behaviour
of the tasks. We implicitly considered that each job of each task does not induce a
delay greater than its worst case response time, i.e., the end of its last time interval.
Obviously it is not always the case in realistic systems. Some tasks can implement
‘confirmation tests’ waiting for a given amount of time (generally a multiple of its
period) before producing a consolidated output. Obviously this internal latency impacts
the global latency and the global consistency of the chain. Our next work is to extend
our global method by tasks involving internal delays.
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