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On the Malliavin differentiability of BSDEs

Thibaut Mastrolia ∗ Dylan Possamaï† Anthony Réveillac‡

June 11, 2015

Abstract

In this paper we provide new conditions for the Malliavin differentiability of solutions

of Lipschitz or quadratic BSDEs. Our results rely on the interpretation of the Malliavin

derivative as a Gâteaux derivative in the directions of the Cameron-Martin space. Inciden-

tally, we provide a new formulation for the characterization of the Malliavin-Sobolev type

spaces D1,p.

Key words: Malliavin’s calculus; abstract Wiener space; BSDEs.
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1 Introduction

Backward Stochastic Differential Equations (BSDEs) have been studied extensively in the last
two decades as they naturally arise in the context of stochastic control problems (for instance
in Finance see [8]), and as they provide a probabilistic representation for solution to semi-linear
parabolic PDEs, via a non-linear Feynman-Kac formula (see [19]). Before going further let us
recall that this class of equations has been introduced in [4, 18, 19] and that a BSDE can be
formulated as:

Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds −

∫ T

t
ZsdWs, t ∈ [0, T ], (1.1)

where T is a fixed positive number, W := (Wt)t∈[0,T ] is a one-dimensional Brownian motion
defined on a probability space (Ω,FT ,P) with natural filtration (Ft)t∈[0,T ]. The data of the
equation are the FT -measurable r.v. ξ which is called the terminal condition (as YT = ξ) and
the mapping f : [0, T ] × Ω × R

2 −→ R which is a progressively measurable process and where
according to the notations used in the literature we write f(t, y, z) for f(t, ω, y, z). A solution
to the BSDE (1.1) is then a pair of predictable processes (Y,Z) (with appropriate integrability
properties) such that Relation (1.1) holds P−a.s.
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When dealing with applications, one needs to obtain regularity properties on the solution (Y,Z),
such as the Malliavin differentiability of the random variables Yt, Zt at a given time t in [0, T ]

(note that for the Z component this question needs to be clarified a little bit because of the
definition of Z, cf. Theorem 5.1 for a precise statement). More precisely, one needs to answer
the following question:

Which conditions on the data ξ and f in (1.1) ensure that Yt, Zt are Malliavin differentiable?

This question was first addressed in the paper [19] in a Markovian setting, that is when ξ :=

g(XT ) and f(t, ω, y, z) := h(t,Xt(ω), y, z) where g : R → R and h : [0, T ]×R
3 → R are regular

enough deterministic functions and X := (Xt)t∈[0,T ] is the unique solution to a SDE of the form:

Xt = X0 +

∫ t

0
σ(s,Xs)dWs +

∫ t

0
b(s,Xs)ds, t ∈ [0, T ],

with regular enough coefficients σ, b : [0, T ] × R −→ R. In that framework, Pardoux and Peng
proved in [19, Proposition 2.2] that, under (essentially) the following conditions:

(PP1) g is continuously differentiable with bounded derivative.

(PP2) h is continuously differentiable in (x, y, z) with bounded derivatives (uniformly in time),

Yt is Malliavin differentiable at any time t (with a similar statement for Z) and the Malliavin
derivatives of Y and Z provide a solution to an explicit linear BSDE. To be more precise,
in [19] the authors make one assumption for the whole paper which is stronger than (PP1)-
(PP2) above, however a careful reading of the proof of [19, Proposition 2.2] enables one to
conclude that Conditions (PP1)-(PP2) are sufficient to obtain the Malliavin differentiability of
the solution. Assumptions (PP1)-(PP2) look pretty intuitive since they basically require the
Malliavin differentiability of the terminal condition ξ and of the generator f once the component
(y, z) are frozen, i.e., of the process (t, ω) 7−→ f(t, ω, y, z) for given (y, z). Hence, it is natural
to expect that the latter conditions can be easily generalized to the non-Markovian framework.
Unfortunately, the first result in that direction which was given by El Karoui, Peng and Quenez
in [8] requires more stringent conditions than the aforementioned intuitive ones. More explicitly,
the main result in [8] concerning the Malliavin differentiability of the solution to the BSDE (1.1)
(essentially) involves the following conditions (see [8, Proposition 5.3] for a precise statement):

(EPQ1) ξ is Malliavin differentiable1 and E[|ξ|4] < +∞.

(EPQ2) At any time t ∈ [0, T ], the r.v. ω 7−→ f(t, ω, Yt, Zt) is Malliavin differentiable2 with Malli-
avin derivative denoted by D·f(t, Yt, Zt) such that there exists a predictable process Kθ :=

(Kθ
t )t∈[0,T ] with

∫ T
0 E[(

∫ T
0 |Kθ

s |
2ds)2]dθ < +∞, and such that for any (y1, y2, z1, z2) ∈ R

4

it holds for a.e. θ ∈ [0, T ] that:

|Dθf(t, ω, y1, z1)−Dθf(t, ω, y2, z2)| ≤ Kθ
t (ω)(|y1 − y2|+ |z1 − z2|).

1is in D
1,2

2in fact as an adapted process it belongs to D
1,2, we refer to the space L

a
1,2 whose precise definition is recalled

in [8, p. 58]
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Roughly speaking, this means that ξ and ω 7−→ f(t, ω, y, z) have to be Malliavin differentiable
(which is intuitively the minimal expected requirement), but in order to prove that Y and Z

are Malliavin differentiable, one needs to enforce an extra regularity conditions on each of the
data: that is ξ has a finite moment of order 4, and the Malliavin derivative of the driver f

is Lipschitz continuous in (y, z) with a stochastic Lipschitz constant K which is sufficiently
integrable. Note that a careful reading of the proof allows one to conclude that the moment
conditions on ξ and Df can actually be relaxed to hold only in L2+ε for some ε > 0. Besides,
as noted in [8, Remark at the bottom of p. 59], if K is bounded then the proof can be modified
so that the extra integrability condition on ξ (i.e. E[|ξ|4] < +∞) can be dropped. However,
even in that case, one can check that in the Markovian framework, Conditions (EPQ1)-(EPQ2)
are strictly stronger than Conditions (PP1)-(PP2).

Since these two seminal papers, the most notable extension was concerned with the study of
the Malliavin differentiability of (Y,Z) in a quadratic setting (that is to say when the generator
f has quadratic growth in the z variable), a problem which was adressed in [1, 10, 7, 12].
Notice nonetheless that the proofs in these references are strongly influenced by the ones in
the Lipschitz setting of [19, 8], as they all start by approximating the quadratic generators by
Lipschitz ones, to which they apply the results of [19, 8]. The applications of the Malliavin
differentiability of BSDEs also received a lot of attention in the literature. Hence, it was used
in the context of numerical schemes for BSDEs in, among others, [9], or to study the existence
and regularity of densities for the marginal laws of (Y,Z) in [2, 3, 16]. However, in all the
above references, the authors always refer to either [19, 8] in a Lipschitz context or [1] in a
quadratic context, when stating differentiability results in the Malliavin sense (see for instance
the sentence before Theorem 2.2 in [3], or Step 2 in the proof of Theorem 3.3 in [2], which refers
to [3], or the proof of Part a) of Theorem 2.6 in [9], or Proposition 3.2 in [16]).

The aim of this paper is to provide an alternative sufficient condition to (EPQ1)-(EPQ2) for
the Malliavin differentiability of the solution to a BSDE of the form (1.1) in the general non-
Markovian setting. Our main result in that direction is Theorem 5.1 below, which uses a
fundamentally different approach from [8, 19], as well as different type of assumptions. Since
they involve some notations concerning the analysis on the Wiener space, we refrain from
detailing them immediately, and rather explain informally what are the main differences between
our approach and the one of [8]. A natural way to solve a BSDE of the form (1.1) when the
driver f is Lipschitz in (y, z) is to make use of a Picard iteration, that is to say a family (Y n, Zn)

of solutions to BSDEs satisfying

Y n
t = ξ +

∫ T

t
f(s, Y n−1

s , Zn−1
s )ds−

∫ T

t
Zn
s dWs, t ∈ [0, T ], (1.2)

where Y 0 ≡ Z0 ≡ 0. Then, a fixed point argument allows one to construct, in appropriate
spaces, a solution (Y,Z) to Equation (1.1). If ξ and f(t, y, z) are Malliavin differentiable (that
is in the domain of the Malliavin derivative D

1,2 which is a Banach space equipped with a
Sobolev type norm), then so is (Y n, Zn). Then, it just remains to prove that this property
extends to Y,Z which are limits (in the appropriate spaces) of respectively Y n and Zn. More
precisely this is done by a uniform (in n) control of the Sobolev norms of Y n, Zn or equivalently
by proving that the Malliavin derivatives (DY n,DZn) of (Y n, Zn) converge to the solution of
a linear BSDE whose solution will be the Malliavin derivatives (DY,DZ) of Y and Z. This
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last step is exactly where the extra regularity (EPQ1)-(EPQ2) is needed. It appears quite
clearly that for this approach, the conditions of [8] cannot be optimized in the general case.
Even though this idea seems pretty natural, it is based on a choice which is somehow arbitrary.
Indeed, a necessary condition for DYt to be well-defined (at a given time t) is that there exists
a sequence of random variables (Fn)n which converges to Yt in L2 such that each variable Fn

is Malliavin differentiable with derivative DFn and such that DFn converges (with respect to
a suitable norm) to DYt. As a consequence, in a sense in the approach described above one
believes that this sequence (Fn)n can be chosen to be the Picard iteration (Y n)n. Once again,
this idea looks very natural (according to the same type of proofs for SDEs) but then one sees
that in the BSDE framework this intuitive idea leads to pretty heavy assumptions. We elaborate
a little bit more on this point in Section 6.3.

Regarding the discussion above, one could think of trying to find a sequence of processes which
are known to approximate the Malliavin derivative of Y (and Z) when Y is Malliavin differen-
tiable. This approximation is provided by the well-known interpretation of the Malliavin deriva-
tive as a Gâteaux derivative in the directions of the Cameron-Martin space. More precisely, a
necessary condition for Yt to belong to D

1,2, is that for any absolutely continuous function h

starting from 0 at 0 with derivative denoted ḣ, the difference quotient ε−1(Yt(ω + εh)− Yt(ω))

converges (in a sense to be made precise) as ε goes to 0 to 〈DYt, ḣ〉L2([0,T ]). This fact was
initially given by Malliavin and then extended by Stroock, Shigekawa, Kusuoka and Sugita in a
series of papers [15, 22, 21, 14, 23]. In addition, Sugita proved in [23] that a r.v. F is Malliavin
differentiable if it is ray absolutely continuous1 and if it is stochastically Gâteaux differentiable.
Using the main ideas of [23] we provide incidentally a new formulation of the characterization
of the Malliavin-Sobolev type spaces D

1,p in Theorem 4.1. Since we did not find explicitly this
characterization in the literature, we believe that this result is new and maybe interesting by
itself. The main point is that this formulation is especially handy when dealing with stochastic
equations like BSDEs. With this result at hand, we obtain new conditions (see Assumptions
(D), (H1) and (H2) at the beginning of Section 5) for Y,Z to be Malliavin differentiable, see
Theorem 5.1. Our assumptions refine those of [19, 8] in the Markovian case, and our approach is
directly applicable to quadratic growth BSDEs since we do not rely on any approximation pro-
cedure. We refer the reader to Section 6 for some examples and a discussion on the differences
between our approach and the one of [19, 8].

We proceed as follows, we start below with some preliminaries. Then we turn in Section 3 to
some elements of analysis on the Wiener space. Our characterization of the sets D

1,p is given
in Section 4, and the material on the Malliavin differentiability of BSDEs itself is contained in
Section 5. We provide applications and a comparison of the results in Section 6. Finally, we
extend our approach to quadratic growth BSDEs in Section 7.

2 Preliminaries

2.1 Notations

We fix throughout the paper a time horizon T > 0. Let Ω := C0([0, T ],R) be the canonical
Wiener space of continuous function ω from [0, T ] to R such that ω(0) = 0. Let W := (Wt)t∈[0,T ]

1we refer to Section 4 where this notion is recalled
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be the canonical Wiener process, that is, for any time t in [0, T ], Wt denotes the evaluation
mapping: Wt(ω) := ωt for any element ω in Ω. We set F

o the natural filtration of W . Under
the Wiener measure P0, the process W is a standard Brownian motion and we denote by
F := (Ft)t∈[0,T ] the usual augmentation (which is right-continuous and complete) of Fo under
P0. Unless otherwise stated, all the expectations considered in this paper will have to be
understood as expectations under P0, and all notions of measurability for elements of Ω will be
with respect to the filtration F or the σ-field FT .

For any Hilbert space K, for any p ≥ 1 and for any t ∈ [0, T ], we set Lp([t, T ];K) to be following
space

Lp([t, T ];K) :=

{

f : [t, T ] −→ K, Borel-measurable, s.t.
∫ T

t
‖f(s)‖pKds < +∞

}

,

where the norm ‖·‖K is the one canonically induced by the inner product on K. We denote, for
simplicity, by H := L2([0, T ];R) and by 〈·, ·〉H its canonical inner product, that is to say

〈f, g〉H :=

∫ T

0
f(s)g(s)ds, (f, g) ∈ H

2.

Let now H be the Cameron-Martin space that is the space of functions in Ω which are absolutely
continuous with square-integrable derivative and which start from 0 at 0:

H :=

{

h : [0, T ] −→ R, ∃ḣ ∈ H, h(t) =

∫ t

0
ḣ(x)dx, ∀t ∈ [0, T ]

}

,

For any h in H, we will always denote by ḣ a version of its Radon-Nykodym density with
respect to the Lebesgue measure. Then, H is an Hilbert space equipped with the inner product
〈h1, h2〉H := 〈ḣ1, ḣ2〉H, for any (h1, h2) ∈ H × H, and with associated norm ‖h‖2H := 〈ḣ, ḣ〉H.
Define next Lp(K) as the set of all FT -measurable random variables F which are valued in an
Hilbert space K, and such that ‖F‖pLp(K) < +∞, where

‖F‖Lp(K) :=
(
E
[
‖F‖pK

])1/p
.

Let now S be the set of cylindrical functionals, that is the set of random variables F of the form

F = f(W (h1), . . . ,W (hn)), (h1, . . . , hn) ∈ Hn, f ∈ C∞
b (Rn), for some n ≥ 1, (2.1)

where W (h) :=
∫ T
0 ḣsdWs for any h in H and where C∞

b (Rn) denotes the space of bounded
mapping which are infinitely continuously differentiable with bounded derivatives. For any F

in S of the form (2.1), the Malliavin derivative ∇F of F is defined as the following H-valued
random variable:

∇F :=
n∑

i=1

fxi
(W (h1), . . . ,W (hn))hi, (2.2)

where fxi
:= df

dxi
. It is then customary to identify ∇F with the stochastic process (∇tF )t∈[0,T ].

Denote then by D
1,p the closure of S with respect to the Malliavin-Sobolev semi-norm ‖ · ‖1,p,

defined as:
‖F‖1,p :=

(
E [|F |p] + E

[
‖∇F‖pH

])1/p
.
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We set D
1,∞ :=

⋂

p≥2D
1,p. In order to link our notations with the ones of the related papers

[19, 8] we make use of the notation DF to represent the derivative of ∇F as:

∇tF =

∫ t

0
DsFds, t ∈ [0, T ].

We denote by δ : Lp(H) −→ Lp(R) the adjoint operator of ∇ by the following duality relation-
ship:

E[Fδ(u)] = E[〈∇F, u〉H ], ∀u ∈ dom(δ), where

dom(δ) :=
{
u ∈ Lp(H), ∃cu > 0, |E[〈∇F, u〉H ]| ≤ cu‖F‖Lp(R), ∀F ∈ D

1,p
}
.

δ is also known under the name of Skorohod (or divergence) operator. Recall that any element
u of the form u := Gh with G in S and h in H belongs to dom(δ) and that

δ(Gh) = GW (h)− 〈∇G,h〉H , (2.3)

see for example [17, Relation (1.46)]. Note that for any h in H, δ(h) = W (h).

Notice that in [23] the cylindrical space, that we will denote by P in the following, is the space
of functionals F of the form (2.1) with f a polynomial. More precisely let P be the set of
polynomial cylindrical functionals, that is the set of random variables F of the form

F = f(W (h1), . . . ,W (hn)), (h1, . . . , hn) ∈ Hn, f ∈ R
n[X], for some n ≥ 1, (2.4)

where W (h) :=
∫ T
0 ḣsdWs for any h in H. However, the closures of both S and P with respect

to any ‖ · ‖1,p coincide, as any polynomial together with its derivative can be approximated in
Lp(Rn) (see Lemma 2.1 below).

Lemma 2.1. Let G be in P. There exists a sequence (GN )N≥1 ⊂ S such that limN→+∞GN = G

in D
1,r for any r ≥ 1.

Proof. Let G := f(W (h1), · · · ,W (hn)) with n ≥ 1, hi in H and f in R
n[X]. Without loss of

generality, we assume that h1, . . . , hn are orthonormal in H. Let θ be a cutoff function that is
a mapping θ : Rn → R

+ such that θ(x) = 1 if ‖x‖ < 1, and θ(x) = 0 for ‖x‖ ≥ 2 such that θ is
C∞
b (Rn). For N ≥ 1, we set:

GN := fN (W (h1), · · · ,W (hn)), fN (x) := f(x)× θ(x/N), x ∈ R
n.

Note that each random variable GN belongs to S. Fix r ≥ 1. We aim in proving that
limN→+∞ ‖GN −G‖1,r = 0. On the one hand,

E[|GN −G|r] = E

[

|G|r
∣
∣
∣
∣
θ

(
W (h1)

N
, · · · ,

W (hn)

N

)

− 1

∣
∣
∣
∣

r]

≤ E[|G|2r]1/2E

[∣
∣
∣
∣
θ

(
W (h1)

N
, · · · ,

W (hn)

N

)

− 1

∣
∣
∣
∣

2r
]1/2

≤ C

∫

Rn\Bn(0,N)
e−‖x‖2/2dx,
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where C is a positive constant. Hence, lim
N→+∞

E[|GN −G|r] = 0. We now turn to the proof of

the convergence of the derivatives. We have

∇GN =

n∑

i=1

∂fN

∂xi
(W (h1), · · · ,W (hn))hi,

with ∂fN

∂xi
(x) = ∂f

∂xi
θ(x/N) +N−1f(x) ∂θ

∂xi
(x/N). Hence:

E
[
‖∇(GN −G)‖2rH

]
=

n∑

i=1

E

[∣
∣
∣
∣

∂fN

∂xi
−

∂f

∂xi

∣
∣
∣
∣

2r

(W (h1), · · · ,W (hn))

]

≤ C

(
n∑

i=1

E

[∣
∣
∣
∣

∂f

∂xi
(W (h1), · · · ,W (hn))

∣
∣
∣
∣

2r ∣∣
∣
∣
θ

(
W (h1)

N
, · · · ,

W (hn)

N

)

− 1

∣
∣
∣
∣

2r
]

+N−2r
E

[∣
∣
∣
∣
(
∂θ

∂xi
× f)(W (h1), · · · ,W (hn))

∣
∣
∣
∣

2r
])

−→
N→+∞

0.

We conclude this section by introducing the following norms and spaces which are of interest
when studying BSDEs. For any p ≥ 1, we set S

p the space of R-valued, continuous and F-
progressively measurable processes Y s.t.

‖Y ‖p
Sp

:= E

[

sup
0≤t≤T

|Yt|
p

]

< +∞.

We denote by H
p the space of R-valued and F-predictable processes Z such that

‖Z‖p
Hp := E

[(∫ T

0
|Zt|

2 dt

) p

2

]

< +∞.

3 Some elements of analysis on the Wiener space

One of the main tool that we will use throughout this paper is the shift operator along directions
in the Cameron-Martin space. More precisely, for any h ∈ H, we define the following shift
operator τh : Ω −→ Ω by

τh(ω) := ω + h.

Note that the fact that h belongs to H ensures that τh is a measurable shift on the Wiener
space. In fact, one can be a bit more precise, since according to [24, Lemma B.2.1] for any
FT -measurable r.v. F the mapping h 7−→ F ◦ τh is continuous in probability from H to L0(R),
the space of real-valued and FT -measurable random variables, see Lemma 3.2 below. Taking
F = Id, one gets that τh is a continuous mapping on Ω for any h in H. We list below some
other properties of such shifts.

Lemma 3.1 (Appendix B.2, [24]). Let X and Y be two FT -measurable random variables. If

X = Y , P0−a.s., then for any h in H,

X ◦ τh = Y ◦ τh, P0 − a.s.

7



We recall, the quite surprising result that any r.v. is continuous in probability in the directions
of the Cameron-Martin space. More precisely:

Lemma 3.2 (Lemma B.2.1, [24]). Let F be a FT -measurable random variable. The mapping

h 7−→ F ◦ τh is continuous from H to L0(R) where the convergence is in probability.

One of the main technique when working with shifts on the path space is the famous Cameron-
Martin formula.

Proposition 3.1. (Cameron-Martin Formula, see e.g. [24, Appendix B.1]) Let F be a FT -

measurable random variable and let h be in H. Then, when both sides are well-defined

E[F ◦ τh] = E

[

F exp

(∫ T

0
ḣ(s)dWs −

1

2

∫ T

0
|ḣ(s)|2ds

)]

.

For further reference, we also emphasize that for any h ∈ H and for any p ≥ 1, the stochastic
exponential E

(∫ ·
0 ḣ(s)dWs

)

:= exp
(∫ ·

0 ḣ(s)dWs −
1
2

∫ ·
0 |ḣ(s)|

2ds
)

verifies

E

(∫ ·

0
ḣ(s)dWs

)

∈ S
p, ∀p ≥ 1. (3.1)

Lemma 3.3. Let t in [0, T ] and let F be a Ft-measurable random variable. For any h in H, it

holds that

F ◦ τh = F ◦ τh1[0,t]
, P0 − a.s.

In particular, F ◦ τh is Ft-measurable.

Proof. It is well-known that by definition of P0, any Ft-measurable r.v. admits a Fo
t -

measurable version. Therefore, there exists some measurable map ϕ : Ω → R, such that

F = ϕ(W·∧t), P0 − a.s.

Hence, we deduce by Lemma 3.1 that for P0-a.e. ω ∈ Ω

F ◦ τh(ω) = ϕ(W·∧t(ω)) ◦ τh = ϕ(W·∧t ◦ τh(ω)) = ϕ(ω(· ∧ t) + h(· ∧ t)) = F ◦ τh1[0,t]
(ω).

We conclude this section with the following lemma which might be known. However since we
did not find it in the literature we provide a proof in order to make this paper self-contained.

Lemma 3.4. Let Z ∈ H
2 and h in H. It holds that

∫ T

0
ZsdWs ◦ τh =

∫ T

0
Zs ◦ τhdWs +

∫ T

0
Zs ◦ τh ḣ(s)ds, P0 − a.s.

Proof. Let S be the class of simple processes X of the form

Xt =
n∑

i=0

λti1(ti,ti+1](t),

where n ∈ N
∗, t0 = 0 < t1 < ... < tn = T and where for any 0 ≤ i ≤ n, (λti)i=1,...n are

Fti-measurable and in L2(R).

8



We start by proving the result for Z in S and then we prove the result for any element Z in
H

2 using a density argument. Let Z ∈ S with the decomposition

Zs =

n∑

i=0

λti1(ti,ti+1](s), s ∈ [0, T ].

Then, for any h ∈ H and for every ω ∈ Ω,

(∫ T

0
ZsdWs ◦ τh

)

(ω) =

(
n∑

i=0

λti(Wti+1 −Wti)

)

◦ τh(ω)

=

n∑

i=0

λti(ω + h)(Wti+1 −Wti)(ω + h)

=
n∑

i=0

λti ◦ τh(ω) (ω(ti+1)− ω(ti) + h(ti+1)− h(ti))

=

∫ T

0
Zs ◦ τhdWs(ω) +

∫ T

0
Zs ◦ τh(ω)dhs,

which gives the desired result since h is absolutely continuous. We extend this result to processes
Z in H

2. Let Z ∈ H
2, then there exists a sequence (Zn)n∈N in S which converges to Z in H

2.
Hence,

E

[∣
∣
∣
∣

∫ T

0
ZsdWs ◦ τh −

∫ T

0
Zs ◦ τhdWs −

∫ T

0
Zs ◦ τh dhs

∣
∣
∣
∣

]

≤ E

[∣
∣
∣
∣

∫ T

0
ZsdWs ◦ τh −

∫ T

0
Zn
s dWs ◦ τh

∣
∣
∣
∣

]

+ E

[∣
∣
∣
∣

∫ T

0
Zn
s ◦ τhdWs −

∫ T

0
Zs ◦ τhdWs

∣
∣
∣
∣

]

+ E

[∣
∣
∣
∣

∫ T

0
Zn
s ◦ τh dhs −

∫ T

0
Zs ◦ τh dhs

∣
∣
∣
∣

]

≤ E

[∣
∣
∣
∣

∫ T

0
(Zs − Zn

s )dWs

∣
∣
∣
∣
◦ τh

]

︸ ︷︷ ︸

=:An

+E

[∣
∣
∣
∣

∫ T

0
(Zn

s − Zs) ◦ τhdWs

∣
∣
∣
∣

]

︸ ︷︷ ︸

=:Bn

+E

[∣
∣
∣
∣

∫ T

0
(Zn

s − Zs) ◦ τh dhs

∣
∣
∣
∣

]

︸ ︷︷ ︸

=:Cn

.

Let us estimate these three terms. First, using Proposition 3.1, Cauchy-Schwarz Inequality,
then Burkholder-Davis-Gundy Inequality, we have

An = E

[∣
∣
∣
∣

∫ T

0
(Zs − Zn

s )dWs

∣
∣
∣
∣
e
∫ T

0 ḣ(s)dWs−
1
2

∫ T

0 |ḣ(s)|
2
ds

]

≤ E

[∫ T

0
|Zs − Zn

s |
2 ds

]1/2

× E

[

E

(∫ ·

0
ḣ(s)dWs

)2

T

]1/2

.

By (3.1), this clearly goes to 0 as n goes to infinity. Similarly, using Burkholder-Davis-Gundy
Inequality, we have

Bn ≤ E





(∫ T

0
((Zn

s − Zs) ◦ τh)
2 ds

)1
2



 = E





(∫ T

0
(Zn

s − Zs)
2ds

)1
2

◦ τh



 .
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Therefore, we can use Proposition 3.1 and Cauchy-Schwarz Inequality, to also deduce that
Bn →

n→+∞
0. Finally, we have

Cn = E

[

E

(∫ T

0
ḣ(s)dWs

) ∣
∣
∣
∣

∫ T

0
(Zn

s − Zs)ḣ(s)ds

∣
∣
∣
∣

]

≤ E

[

E

(∫ T

0
ḣ(s)dWs

)2
]1/2

E

[(∫ T

0
|Zn

s − Zs| |ḣ(s)|ds

)2
]1/2

≤ E

[

E

(∫ T

0
ḣ(s)dWs

)2
]1/2

E

[∫ T

0
|Zn

s − Zs|
2 ds

]1/2(∫ T

0
|ḣ(s)|2ds

)1/2

,

which also goes to 0 as n goes to infinity. Therefore the proof is complete.

This result entails the following useful consequence. Let t in (0, T ] and h in H such that ḣs = 0

for s ≥ t. Then for any Z in H
2, it holds that:

∫ T

t
ZsdWs ◦ τh =

∫ T

t
Zs ◦ τhdWs, P0 − a.s., (3.2)

since
∫ T
t Zs ◦ τh ḣ(s)ds = 0.

4 A characterization of Malliavin differentiability

Before going further we would like to recall the main finding of [23] which is that any Malliavin-
Sobolev type space D

1,p as defined in Section 2 (originally defined by Malliavin [15] and
Shigekawa [21]) agrees with the Sobolev space (due to Stroock [22] and Kusuoka [14]) D̃

1,p

which consists in the set of r.v. F in Lp(R) which are Ray Absolutely Continuous (RAC) and
Stochastically Gâteaux Differentiable (SGD) where these notions are defined as follows:

(RAC) For any h in H, there exists a r.v. F̃h such that F̃h = F , P0−a.s., and such that for any
ω in Ω, t 7−→ F̃h(ω + th) is absolutely continuous.

(SGD) There exists DF in Lp(H) such that for any h in H,

F ◦ τεh − F

ε
−→
ε→0

〈DF, h〉H , in probability. (4.1)

In addition, for any F in D
1,p, ∇F = DF , P0−a.s. Note that according to the statement of

Step 1 in the proof of [23, Theorem 3.1], if F is (RAC) and (SGD) then for any h in H and any
ε > 0 it holds that

ε−1(F̃h ◦ τεh − F̃h) = ε−1

∫ ε

0
〈∇F ◦ τsh, h〉Hds, P0 − a.s.

Furthermore, by Lemma 3.1, we have for any ε there exists a set Aε such that P0[A
ε] = 0 and

F ◦ τεh = F̃h ◦ τεh and F = F̃h outside Aε. Hence, for any ε in (0, 1), the relation above rewrites
as:

ε−1(F ◦ τεh − F ) = ε−1

∫ ε

0
〈∇F ◦ τsh, h〉Hds, P0 − a.s. (4.2)
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Remark 4.1. It has actually been proved by Janson [13] that (4.2) is equivalent to (RAC) and

(SGD), for any p > 1, see Lemma 15.89. Notice that [13] also obtained a similar characterization

for p = 1 (see Lemma 15.71). However, as stated in Remark 4 of [23], the identification of the

Kusuoka-Stroock and Shigekawa spaces when p = 1 is still an open result, so that we never

consider the case p = 1 in this paper.

The main result of this section is the following theorem whose proof is postponed to the end of
the section.

Theorem 4.1. Let p > 1 and F ∈ Lp(R). The following properties are equivalent

(i) F belongs to D
1,p.

(ii) There exists DF in Lp(H) such that for any h in H and any q ∈ [1, p)

lim
ε→0

E

[∣
∣
∣
∣

F ◦ τεh − F

ε
− 〈DF, h〉H

∣
∣
∣
∣

q]

= 0.

(iii) There exists DF in Lp(H) and there exists q ∈ [1, p) such that for any h in H

lim
ε→0

E

[∣
∣
∣
∣

F ◦ τεh − F

ε
− 〈DF, h〉H

∣
∣
∣
∣

q]

= 0.

(iv) There exists DF in Lp(H) such that for any h in H

lim
ε→0

E

[∣
∣
∣
∣

F ◦ τεh − F

ε
− 〈DF, h〉H

∣
∣
∣
∣

]

= 0.

In that case, DF = ∇F .

Remark 4.2. The implication (ii) ⇒ (i) when q = p = 2 already appears in [5] (see 8.11.3).

This is of course contained in our result.

We now give the following lemma which characterizes the Malliavin derivative using the duality
formula involving the Skorohod operator (also called divergence operator).

Lemma 4.1. Let ε > 0 and 1 < p < +∞. Suppose that F ∈ L1+ε(R) and assume that there

exists DF in Lp(H) such that:

E [Fδ(Gh)] = E [G〈DF, h〉H ] ,

for every G ∈ S and h ∈ H. Then, it holds that F ∈ D
1,p, and DF = ∇F, P0 − a.s.

Proof. We know (see e.g. [23, Corollary 2.1]) that the result is true if S is replaced by P. Let
G be in P. By Lemma 2.1 there exists (GN ) in S such that GN approximates G in D

1,p. Let h
in H. For any N ≥ 1, we have

E[Fδ(Gh)] = E[F (GW (h) − 〈∇G,h〉H )]

= E[F (GNW (h)− 〈∇GN , h〉H)]− E[(GN −G)FW (h) − F 〈∇(GN −G), h〉H ]

= E[Fδ(GNh)]− E[(GN −G)FW (h) − F 〈∇(GN −G), h〉H ]

= E[GN 〈DF, h〉H ]− E[(GN −G)FW (h)− F 〈∇(GN −G), h〉H ].
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Furthermore, by Lemma 2.1

|E[(GN −G)FW (h)]| ≤ E[|FW (h)|p]1/pE[|GN −G|p̄]1/p̄ −→
N→+∞

0,

with 1 < p < 1 + ε and where p̄ is the conjugate of p, and

|E[F 〈∇(GN −G), h〉H ]| ≤ E[|F |p]1/pE[‖∇(GN −G)‖p̄H ]1/p̄‖h‖H −→
N→+∞

0,

by Lemma 2.1 again. Hence,

E[Fδ(Gh)] = lim
N→+∞

E[GN 〈DF, h〉H ]

= E[G〈DF, h〉H ] + lim
N→+∞

E[(GN −G)〈DF, h〉H ],

and

lim
N→+∞

|E[(GN −G)〈DF, h〉H ]| ≤ lim
N→+∞

E[|GN −G|p]1/pE[‖DF‖p̄H ]1/p̄‖h‖H −→
N→+∞

0.

Thus we have proved that for any G in P and for any h in H,

E[Fδ(Gh)] = E[G〈DF, h〉H ],

which gives the result by [23, Corollary 2.1].
We now prove the following lemma for the Malliavin differentiability of a given random variable.

Lemma 4.2. Let p > 1. Let F be in D
1,p. Then, for any q in [1, p) and for any h in H,

F ◦ τεh − F

ε
−→
ε→0

〈∇F, h〉H in Lq(R).

Proof. Fix q in [1, p), h in H and η > 0 such that q + η < p. We know from [23, Theorem
3.1] that since F is in D

1,p, F is (SGD), (RAC), and Relation (4.2) holds true. We thus have
by Jensen’s inequality,

E

[∣
∣ε−1(F ◦ τεh − F )

∣
∣
q+η
]

= E

[

ε−(q+η)

∣
∣
∣
∣

∫ ε

0
〈∇F ◦ τsh, h〉Hds

∣
∣
∣
∣

q+η
]

≤ ε−1
E

[∫ ε

0
|〈∇F ◦ τsh, h〉H |q+η ds

]

≤ ε−1

∫ ε

0
E
[
|〈∇F, h〉H |q+η ◦ τsh

]
ds

= ε−1

∫ ε

0
E

[

|〈∇F, h〉H |q+η E

(

s

∫ T

0
ḣrdWr

)]

ds

≤ E [|〈∇F, h〉H |p]
q+η

p sup
t∈(0,1)

E

[∣
∣
∣
∣
E

(

t

∫ T

0
ḣrdWr

)∣
∣
∣
∣

p

p−q−η

] p−q−η

p

< +∞.

Hence by de La Vallée Poussin Criterion, we deduce that the family of random variables
(∣
∣ε−1(F ◦ τεh − F )

∣
∣q
)

ε∈(0,1)
is uniformly integrable which together with the convergence in prob-

ability (4.1) gives the result.
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Remark 4.3. Note that the conclusion of the previous Lemma may fail for q = p1

We can now proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1. From Lemma 4.2 we have (i) ⇒ (ii) and of course (ii) ⇒ (iii) ⇒ (iv).
We turn to (iv) ⇒ (i). Let F be such that there exists DF in Lp(H) such that

lim
ε→0

E

[∣
∣
∣
∣

F ◦ τεh − F

ε
− 〈DF, h〉H

∣
∣
∣
∣

]

= 0.

The proof consists in applying Lemma 4.1 by proving the duality relationship

E[Fδ(Gh)] = E [G〈DF, h〉H ] , G ∈ S, h ∈ H. (4.3)

By Lemma A.1 (in the Appendix) with ε = 0,

E [Fδ(Gh)] =
d

dε
E [F ◦ τεhG]|ε=0

= lim
η→0

1

η
E [(F ◦ τηh − F )G]

= lim
η→0

E

[(
F ◦ τηh − F

η
− 〈DF, h〉H

)

G

]

+ E [〈DF, h〉HG]

= E [〈DF, h〉HG] , (4.4)

where the proof that the first term on the right-hand side goes to 0 is reported below.

Note that E[|〈DF, h〉HG|] < +∞ since G is bounded and DF belongs to Lp(H). The Equality
(4.5) is justified by Hölder’s inequality since

E

[∣
∣
∣
∣

(
F ◦ τηh − F

η
− 〈DF, h〉H

)

G

∣
∣
∣
∣

]

≤ ‖G‖∞E

[∣
∣
∣
∣

F ◦ τηh − F

η
− 〈DF, h〉H

∣
∣
∣
∣

]

−→
ε→0

0.

Corollary 4.1. Let F be in D
1,p. For any ε > 0 and any h in H, F ◦ τεh belongs to D

1,p and

∇(F ◦ τεh) = (∇F ) ◦ τεh.

Proof. Let F be in D
1,p. Using Theorem 4.1, we know that for any h in H and any q ∈ [1, p)

lim
ε→0

E

[∣
∣
∣
∣

F ◦ τεh − F

ε
− 〈∇F, h〉H

∣
∣
∣
∣

q]

= 0.

By Lemma A.1 (in the Appendix) it holds that

E [F ◦ τεh δ(Gh)] =
d

dε
E [F ◦ τεhG]

= lim
η→0

1

η
E
[
(F ◦ τ(ε+η)h − F ◦ τεh)G

]

= lim
η→0

E

[(
F ◦ τ(ε+η)h − F ◦ τεh

η
− 〈(∇F ) ◦ τεh, h〉H

)

G

]

+ E [〈(∇F ) ◦ τεh, h〉HG]

= E [〈(∇F ) ◦ τεh, h〉HG] , (4.5)

1After the first version of this paper, a counter example has been given in [11].
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where the proof that the first term on the right-hand side goes to 0 is reported below.

Note that E[|〈(∇F ) ◦ τεh, h〉HG|] < +∞ since 〈(∇F ) ◦ τεh, h〉H = 〈∇F, h〉H ◦ τεh, P0−a.s., G
belongs to all the spaces Lr(R) for r ≥ 1 and

E[|〈∇F, h〉H |p] ≤ ‖h‖pHE
[
‖∇F‖pH

]
< +∞.

The Equality (4.5) is justified by Hölder’s inequality since

E

[∣
∣
∣
∣

(
F ◦ τ(ε+η)h − F ◦ τεh

η
− 〈∇F ◦ τεh, h〉H

)

G

∣
∣
∣
∣

]

≤ E

[∣
∣
∣
∣

F ◦ τ(ε+η)h − F ◦ τεh

η
− 〈∇F ◦ τεh, h〉H

∣
∣
∣
∣

r] 1
r

E[|G|r̄]
1
r̄

= E

[∣
∣
∣
∣

F ◦ τηh − F

η
− 〈∇F, h〉H

∣
∣
∣
∣

r

◦ τεh

] 1
r

E[|G|r̄]
1
r̄

≤ E

[∣
∣
∣
∣

F ◦ τηh − F

η
− 〈∇F, h〉H

∣
∣
∣
∣

q] 1
q

E

[

E

(

ε

∫ T

0
ḣ(s)dWs

)ᾱ
] 1

rᾱ

E[|G|r̄]
1
r̄

where 1 < r < q and α := q
r and where r̄ (resp. ᾱ) is the Hölder conjugate of r (resp. α).

Consequently, E [F ◦ τεh δ(Gh)] = E [〈∇F ◦ τεh, h〉HG], and from Lemma 4.1 ∇(F ◦ τεh) =

(∇F ) ◦ τεh.

5 Malliavin’s differentiability of BSDEs

In this section we derive a sufficient condition ensuring that the solution to a BSDE is Malliavin
differentiable. To simplify the comparison of the results with the companion papers [8, 19] we
adopt the notations used in these papers concerning the Malliavin calculus. More precisely, for
any F in D

1,p (for p > 1) we have defined the Malliavin derivative ∇F as an H-valued random
variable. Recall that denoting DF the derivative of ∇F that is ∇tF =

∫ t
0 DsFds, DF coincides

with the Malliavin derivative introduced in [8, 19, 17]. In particular 〈∇F, h〉H = 〈DF, ḣ〉H for
any h in H.

We consider now the following BSDE:

Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs, t ∈ [0, T ], P0 − a.s., (5.1)

where ξ is a FT -measurable r.v. and f : [0, T ]× Ω× R
2 −→ R is a F-progressively measurable

process where as usual the ω-dependence is omitted.

The aim of this section is to show that for any t ∈ [0, T ], we can apply Theorem 4.1 under the
following assumptions:

(L) The map (y, z) 7−→ f(·, y, z) is differentiable with uniformly bounded and continuous
partial derivatives.

(D) ξ belongs to D
1,2, for any (y, z) ∈ R

2, (t, ω) 7−→ f(t, ω, y, z) is in L2([0, T ];D1,2), f(·, y, z)
and Df(·, y, z) are F-progressively measurable, and

E

[∫ T

0
‖D·f(s, Ys, Zs)‖

2
H ds

]

< +∞.
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(H1) There exists p ∈ (1, 2) such that for any h ∈ H

lim
ε→0

E

[(∫ T

0

∣
∣
∣
∣

f(s, ·+ εh, Ys, Zs)− f(s, ·, Ys, Zs)

ε
− 〈Df(s, ·, Ys, Zs), ḣ〉H

∣
∣
∣
∣
ds

)p
]

= 0,

(H2) Let (εn)n∈N be a sequence in (0, 1] such that lim
n→+∞

εn = 0, and let (Y n, Zn)n be a sequence

of random variables which converges in S
p × H

p for any p ∈ [1, 2) to some (Y,Z). Then
for all h ∈ H, the following convergences hold in probability

‖fy(·, ω + εnh, Y
n
· , Z·)− fy(·, ω, Y·, Z·)‖H −→

n→+∞
0

‖fz(·, ω + εnh, Y
n
· , Zn

· )− fz(·, ω, Y·, Z·)‖H −→
n→+∞

0, (5.2)

or

‖fy(·, ω + εnh, Y
n
· , Zn

· )− fy(·, ω, Y·, Z·)‖H −→
n→+∞

0

‖fz(·, ω + εnh, Y·, Z
n
· )− fz(·, ω, Y·, Z·)‖H −→

n→+∞
0. (5.3)

Before turning to the main result of this section, we would like to comment on Assumption (H2).
On the one hand, by Lemma 3.2, at given (s, y, z), fy(s, ω + εnh, y, z) converges in probability
to fy(s, ω, y, z) as n goes to infinity. On the other hand, fy(s, ω, ·) is continuous by assumption.
Thus, Condition (H2) is just requiring joint continuity of fy in L2([0, T ],R). The same comment
holds for fz. Note finally, that since fy is assumed to be bounded, a sufficient condition for (H2)

to hold true is that fy(t, Y
n
t , Zt) converges in probability to fy(t, Yt, Zt) for dt-almost every t

(and the same for fz).

Theorem 5.1. Let t be in [0, T ]. Under Assumptions (L), (D), (H1) and (H2), Yt belongs to

D
1,2 and Z ∈ L2([t, T ];D1,2).

Proof. We only consider the case where (5.2) holds in Assumption (H2), since the other one
can be treated similarly. We prove first that Yt belongs to D

1,p where p ∈ (1, 2) is the exponent
appearing in Assumption (H1), and then we extend the result to D

1,2. To this end we aim at
applying Theorem 4.1. Let h in H. Since Y is F-progressively measurable, by Lemma 3.3, we
can assume without loss of generality that ḣs = 0 for s > t. Let ε > 0. By Lemmas 3.1 and
3.4, it holds that1

Ys ◦ τεh = ξ ◦ τεh +

∫ T

s
f(r, Yr, Zr) ◦ τεhdr −

∫ T

s
Zr ◦ τεhdWr, ∀s ∈ [t, T ], P0 − a.s.

As a consequence, setting for simplicity

Y ε
s :=

1

ε
(Ys ◦ τεh − Ys), Zε

s :=
1

ε
(Zs ◦ τεh − Zs), ξε :=

1

ε
(ξ ◦ τεh − ξ), s ∈ [t, T ],

we have that (Y ε, Zε) solves the BSDE:

Y ε
s = ξε +

∫ T

s
Ãε

r + Ãy,ε
r Y ε

r + Ãz,ε
r Zε

rdr −

∫ T

s
Zε
rdWr, (5.4)

1note that by Cameron-Martin formula the process (Ys ◦ τεh)s is continuous which enables us to get that the

Ω-exception set does not depend on s.
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with

Ãy,ε
r := fy(r, · + εh, Ȳ ε,h

r , Zr)

Ãz,ε
r := fz(r, ·+ εh, Yr ◦ τεh, Z̄

ε,h
r )

Ãε
r :=

1

ε
(f(r, ·+ εh, Yr, Zr)− f(r, ·, Yr, Zr)),

where Ȳ ε,h
r (resp. Z̄ε,h

r ) is some intermediary point between Yr and Yr ◦ τεh (resp. Zr and
Zr ◦ τεh).

Under Assumptions (D) and (L), the following linear BSDE on [t, T ] is also well-posed

Ỹ h
s = 〈Dξ, ḣ〉H+

∫ T

s
〈Df(r, ·, Yr, Zr), ḣ〉H+ Ỹ h

r fy(r, ·, Yr, Zr)+ Z̃h
r fz(r, ·, Yr, Zr)dr−

∫ T

s
Z̃h
r dWr.

(5.5)
Besides, we have (Ỹ h, Z̃h) ∈ S

2 × H
2. Using a priori estimates (see Proposition 3.2 in [6]) in

Lp, we have for some constant Cp, independent of ε

E

[

sup
s∈[t,T ]

|Y ε
s − Ỹ h

s |
p

]

+ E

[(∫ T

t
|Zε

s − Z̃h
s |

2ds

)p/2
]

≤ Cp

(

E

[

|ξε − 〈Dξ, ḣ〉H|
p
]

+ E

[(∫ T

0

∣
∣
∣Ãε

s − 〈Df(s, ·, Ys, Zs), ḣ〉H

∣
∣
∣ ds

)p
])

+ CpE

[(∫ T

0

∣
∣
∣Ãy,ε

s − fy(s, ·, Ys, Zs)
∣
∣
∣

∣
∣
∣Ỹ h

s

∣
∣
∣ ds

)p
]

+ CpE

[(∫ T

0

∣
∣
∣Ãz,ε

s − fz(s, ·, Ys, Zs)
∣
∣
∣

∣
∣
∣Z̃h

s

∣
∣
∣ ds

)p
]

. (5.6)

Since ξ is in D
1,2, limε→0 E

[

|ξε − 〈Dξ, ḣ〉H|
p
]

= 0 by Lemma 4.2. By Assumption (H1), the

second term in the right-hand side of (5.6) goes to 0 as ε goes to 0. For the last two terms, we will
use Assumption (H2). First, the above estimate implies directly that (Y ◦ τεh−Y,Z ◦ τεh−Z)ε
goes to 0 in S

q × H
q for any q ∈ (1, 2). We can therefore conclude with Assumption (H2)

together with the fact that fy is bounded that by the dominated convergence theorem:

E

[(∫ T

0

∣
∣
∣Ãy,ε

s − fy(s, ·, Ys, Zs)
∣
∣
∣

∣
∣
∣Ỹ h

s

∣
∣
∣ ds

)p
]

≤ CE

[(∫ T

0

∣
∣
∣Ãy,ε

s − fy(s, ·, Ys, Zs)
∣
∣
∣

2
ds

)p/2
]

E

[(∫ T

0

∣
∣
∣Ỹ h

s

∣
∣
∣

2
ds

)p/2
]

−→
ε→0

0.

We can show similarly that the last term on the right-hand side of (5.6) also goes to 0, by
using the fact that Z̃h ∈ H

2. It just remains to prove that Ỹ h
t is a random operator on H or

equivalently that there exists DYt an H-valued r.v. such that Ỹ h
t = 〈DYt, h〉H for any h in H.

To this end, let (hn)n be an orthonormal system in H, we set:

DYt :=
∑

n≥1

Ỹ hn
t hn, DZs :=

∑

n≥1

Z̃hn
s hn, s ≥ t.
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Note that these elements are well-defined since, one can prove that DYt ∈ L2(H) and that
DZ ∈ L2([t, T ];H). Indeed using once again a priori estimates for affine BSDEs, there exists
C > 0 (which may differ from line to line) such that:

E

[

‖DYt‖
2
H +

∫ T

t
‖DZs‖

2
Hds

]

=
∑

n≥1

E

[

|Ỹ hn
t |2 +

∫ T

t
|Z̃hn

s |2ds

]

≤ C
∑

n≥1

E

[

|〈∇ξ, hn〉H |2 +

∫ T

t
|〈∇f(s, Ys, Zs), hn〉H |2ds

]

≤ CE

[

‖∇ξ‖2H +

∫ T

t
‖∇f(s, Ys, Zs)‖

2
Hds

]

< +∞, (5.7)

by our assumptions on ξ and f . We now identify Ỹ h
t (respectively Z̃h

t ) with the inner product
〈DYt, h〉H (respectively 〈DZt, h〉H). For any s ≥ t, it holds that:

〈DYs, h〉H =
∑

n≥1

〈∇ξ, hn〉〈hn, h〉H +
∑

n≥1

〈hn, h〉H

∫ T

s
〈∇f(r, Yr, Zr), hn〉Hdr

+
∑

n≥1

〈hn, h〉H

∫ T

s
fy(r, Yr, Zr)Ỹ

hn
r + fz(r, Yr, Zr)Z̃

hn
r dr

+
∑

n≥1

〈hn, h〉H

∫ T

s
Z̃hn
r dWr

=

∫ T

s
〈∇f(r, Yr, Zr), h〉H + fy(r, Yr, Zr)〈DYr, h〉H + fz(r, Yr, Zr)〈DZr, h〉Hdr

+ 〈∇ξ, h〉H +

∫ T

s
〈DZr, h〉HdWr,

where we justify the exchange between the series and the Riemann integrals by Fubini’s Theo-
rem. Concerning the Wiener integral we make use of the stochastic Fubini’s Theorem (see e.g.
[25]) since by a priori estimates:

∑

n≥1

E

[∫ T

0
|〈hn, h〉H Z̃hn

t |2dt

]1/2

≤ C
∑

n≥1

|〈hn, h〉H |E

[

|〈∇ξ, hn〉H |2 +

∫ T

0
|〈∇f(r, Yr, Zr), hn〉H |2dt

]1/2

≤ CE

[

‖∇ξ‖2H +

∫ T

0
‖∇f(r, Yr, Zr)‖

2
Hdt

]

< +∞,

where C is a constant which may vary from line to line. Thus, by uniqueness of the solution
to affine BSDEs with square integrable data, it holds that Ỹ h

t = 〈DYt, h〉H in L2(R) and
Z̃h1[t,T ] = 〈DZ, h〉H in H

2 for any h in H. Thus, using Estimate (5.6) we have proved that for
any h in H,

lim
ε→0

E [|Y ε
t − 〈DYt, h〉H |p] = 0.
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Hence by Theorem 4.1, Yt belongs to D
1,p and ∇Yt = DYt.

If we set

D

∫ T

t
ZsdWs :=

∑

n≥1

∫ T

t
Z̃hn
s dWshn,

the stochastic Fubini Theorem implies that:

〈D

∫ T

t
ZsdWs, h〉H =

∫ T

t
〈DZs, h〉HdWs =

∫ T

t
Z̃h
s dWs.

Moreover, Burkholder-Davis-Gundy’s inequality implies that there exists C̃p > 0 such that

E

[∣
∣
∣
∣
ε−1

(∫ T

t
ZrdWr ◦ τεh −

∫ T

t
ZrdWr

)

− 〈D

∫ T

t
ZsdWs, h〉H

∣
∣
∣
∣

p
]

= E

[∣
∣
∣
∣
ε−1

(∫ T

t
ZrdWr ◦ τεh −

∫ T

t
ZrdWr

)

−

∫ T

t
Z̃h
r dWr

∣
∣
∣
∣

p
]

≤ E

[

sup
t≤s≤T

∣
∣
∣
∣

∫ s

t
ε−1(Zr ◦ τεh − Zr)− Z̃h

r dWr

∣
∣
∣
∣

p
]

≤ C̃pE

[(∫ T

t
|Zε

r − Z̃h
r |

2dr

)p/2
]

,

which tends to 0 as ε goes to 0 (once again by (5.6)). Therefore,
∫ T
t ZsdWs is in D

1,p and

∇
∫ T
t ZsdWs = D

∫ T
t ZsdWs. Furthermore, by the computations (5.7) we deduce that Yt belongs

to D
1,2 and that

∫ T
t ZsdWs belong to D

1,2 which, by [19, Lemma 2.3] implies that Z belongs to
L2([t, T ];D1,2). Finally, to match with the notations of the papers [19, 8] note that taking the
derivatives DY and DZ of respectively ∇Y and ∇Z we can prove that a version of

(DsYt,DsZt)0≤s≤t,0≤t≤T

is given as the solution to the affine BSDE:

DsYt = Dsξ +

∫ T

t
Dsf(r, Yr, Zr) + fy(r, Yr, Zr)DsYr + fz(r, Yr, Zr)DsZrdr −

∫ T

t
DsZrdWr,

(5.8)
which admits in fact a unique solution in S

2 ×H
2 by our assumptions.

Remark 5.1. We would like to point out that since the process Z is defined as a H-valued r.v.,

one may be careful not to study Z directly at a given time, as Zt is not well defined for a given

t. Hence, in the proof we rather study at any time t the random variable
∫ T
t ZsdWs and prove

that it belongs to D
1,2. Then by [19, Lemma 2.3] the latter result is equivalent to the fact that

Z belongs to L2([t, T ];D1,2).

Remark 5.2. We emphasize that our criterion can also be readily used to study higher-order

differentiability properties for (Y,Z). For instance, the pair (DY,DZ) is itself the solution of a

(linear) BSDE. Therefore, as long as one is able to derive appropriate a priori estimates for this

BSDE, the methodology above can then be applied to obtain conditions ensuring second-order

Malliavin differentiability of (Y,Z).
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6 Applications and discussion of the results

6.1 Application to FBSDEs

We consider in this section a FBSDE of the form







Xt = X0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs, t ∈ [0, T ], P0 − a.s.

Yt = g(XT ) +

∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
ZsdWs, t ∈ [0, T ], P0 − a.s.

(6.1)

We make the following Assumptions:

(A1) b, σ : [0, T ] × R → R are continuous in time and continuously differentiable in space for
any fixed time t and such that there exist kb, kσ > 0 with

|bx(t, x)| ≤ kb, |σx(t, x)| ≤ kσ , for all x ∈ R.

Besides b(t, 0), σ(t, 0) are bounded functions of t.

(A2) (i) g is continuously differentiable with polynomial growth.

(ii) f : [0, T ] × R
3 −→ R is continuously differentiable in (x, y, z) with bounded first

partial derivatives in y, z uniformly in t, such that E[
∫ T
0 |f(s, 0, 0, 0)|2 ds] < +∞ and

satisfying for some C > 0

∃(q, κ) ∈ R+×[0, 2), |fx(t, x, y, z)| ≤ C(1+|y|κ+|z|κ+|x|q), ∀(t, x, y, z) ∈ [0, T ]×R
3.

The well-known following lemma provides the existence of a Malliavin derivative for Xt for all
t ∈ [0, T ] under Assumption (A1) (see e.g. [17, Theorem 2.2.1]).

Lemma 6.1. Under Assumption (A1), for any p ≥ 1, Xt ∈ D
1,p for all t ∈ [0, T ], and X ∈ S

p.

The theorem below shows that in the Markovian case, Theorem 5.1 holds directly under As-
sumption (A1) and (A2).

Theorem 6.1. Let t ∈ [0, T ] and assume that (A1) and (A2) hold. Then, Yt ∈ D
1,2 and

Z ∈ L2([t, T ];D1,2).

Proof. We aim at applying Theorem 4.1. Property (D) holds by the chain rule formula and
(L) follows from our assumptions. It remains to prove (H1) and (H2). We start with (H1). Let
1 < p < 2 and h in H. Below C denotes a positive constant which can differ from line to line.
Recall that from our assumptions,

E

[

sup
t∈[0,T ]

|Yt|
r +

(∫ T

0
|Zt|

2dt

)r/2
]

< ∞, ∀r ≤ 2. (6.2)
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Denoting by X̄t a random point between Xt and Xt ◦ τεh, where we suppressed the dependence
on ε for notational simplicity. We have for any t in [0, T ], that

E

[∣
∣
∣ε−1(f(t,Xt ◦ τεh, Yt, Zt)− f(t,Xt, Yt, Zt))− fx(t,Xt, Yt, Zt)〈DXt, ḣ〉H

∣
∣
∣

p]

= E

[∣
∣
∣
∣

Xt ◦ τεh −Xt

ε
fx(t, X̄t, Yt, Zt)− fx(t,Xt, Yt, Zt)〈DXt, ḣ〉H

∣
∣
∣
∣

p]

≤ CE

[∣
∣
∣ε−1(Xt ◦ τεh −Xt)− 〈DXt, ḣ〉H

∣
∣
∣

p
(1 + |Yt|

κp + |Zt|
κp + |Xt|

pq + |Xt ◦ τεh|
pq)
]

+ CE

[∣
∣fx(t, X̄t, Yt, Zt)− fx(t,Xt, Yt, Zt)

∣
∣p
∣
∣
∣〈DXt, ḣ〉H

∣
∣
∣

p]

≤ CE

[∣
∣
∣ε−1(Xt ◦ τεh −Xt)− 〈DXt, ḣ〉H

∣
∣
∣

pr] 1
r
E
[
(1 + |Yt|

κp + |Zt|
κp + |Xt|

pq + |Xt ◦ τεh|
pq)r̄

] 1
r̄

+ CE

[∣
∣fx(t, X̄t, Yt, Zt)− fx(t,Xt, Yt, Zt)

∣
∣p
∣
∣
∣〈DXt, ḣ〉H

∣
∣
∣

p]

=: A1,ε
t +A2,ε

t ,

where r̄ > 1 and p are chosen so that pκr̄ < 2 and r denotes the Hölder conjugate of r̄. Using
the above estimates, we deduce

E

[(∫ T

0

∣
∣
∣ε−1(f(t,Xt ◦ τεh, Yt, Zt)− f(t,Xt, Yt, Zt))− fx(t,Xt, Yt, Zt)〈DXt, ḣ〉H

∣
∣
∣ dt

)p
]

≤

∫ T

0

(

A1,ε
t +A2,ε

t

)

dt.

Then, we have

∫ T

0
A1,ε

t dt ≤ C

(∫ T

0
E

[∣
∣
∣ε−1(Xt ◦ τεh −Xt)− 〈DXt, ḣ〉H

∣
∣
∣

pr]2/r
dt

)1/2

×

(∫ T

0
E
[
(1 + |Yt|

κp + |Zt|
κp + |Xt|

pq + |Xt ◦ τεh|
pq)r̄

]2/r̄
dt

)1/2

. (6.3)

In addition by Lemma 3.4, we have that M ε,h := X ◦ τεh −X is solution to the linear SDE:

dM ε,h
t = M ε,h

t (bx(t,X t)dt+ σx(t,X t)dWt) + εσ(t,Xt ◦ τεh)ḣtdt,

where Xs denotes once again a random point between Xs and Xs◦τεh. Hence using Assumption
(A1) and standard estimates for SDEs, we get that for any q ≥ 1,

lim
ε→0

E

[

sup
t∈[0,T ]

|Xt ◦ τεh −Xt|
q

]

= 0.

Following the same lines as above, and recalling that Nh := 〈DXt, ḣ〉H is solution to the SDE:

dNh
t = Nh

t (bx(t,Xt)dt+ σx(t,Xt)dWt) + σ(t,Xt)ḣtdt,

we get that the process P ε,h := ε−1(X ◦ τεh −X)− 〈DX, ḣ〉H is solution to the affine SDE:

dP ε,h
t = dHε

t + P ε,h
t (bx(t,X t)dt+ σx(t,X t))dWt,
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with

dHε
t :=

(

〈DXt, ḣ〉H(bx(t,X t)− bx(t,Xt)) + ḣt(σ(t,Xt ◦ τεh)− σ(t,Xt))
)

dt

+ 〈DXt, ḣ〉H(σx(t,X t)− σx(t,Xt))dWt

Using the fact that σx, bx are bounded, σ has linear growth and is continuous, we get by similar
computations than those done several times in this paper that:

lim
ε→0

E

[

sup
t∈[0,T ]

|Hε
t |

q

]

= 0, ∀q ≥ 1,

from which we deduce using the explicit representation of solutions to affine SDEs (see e.g. [20,
Theorem V.9.53]) that

lim
ε→0

E

[

sup
t∈[0,T ]

|ε−1(X ◦ τεh −X)− 〈DXt, ḣ〉H|
q

]

= 0, ∀q ≥ 1.

As a consequence, combining this estimate with (6.3), we get that:

∫ T

0
A1,ε

t dt ≤ C



E

[

sup
t∈[0,T ]

∣
∣
∣ε−1(Xt ◦ τεh −Xt)− 〈DXt, ḣ〉H

∣
∣
∣

pr
]2/r





1/2

which goes to 0 as ε goes to 0, since we recall that we have chosen p, r̄ > 1 so that κpr̄ < 2,
which implies by (6.2), Lemma 6.1 and the Cameron-Martin formula that

∫ T

0
E
[
(1 + |Yt|

κp + |Zt|
κp + |Xt|

pq + |Xt ◦ τεh|
pq)r̄

]2/r̄
dt < ∞.

Concerning the term
∫ T
0 A2,ε

t dt, choosing p̃ > 1 so that pp̃ < 2, it holds by Hölder and by Jensen
inequalities that

∫ T

0
A2,ε

t dt ≤ C

(∫ T

0
E

[∣
∣fx(t, X̄t, Yt, Zt)− fx(t,Xt, Yt, Zt)

∣
∣pp̃
]

dt

)1/p̃

,

since

E

[

sup
t∈[0,T ]

∣
∣
∣〈DXt, ḣ〉H

∣
∣
∣

q
]

< ∞, ∀q > 1.

As

lim
ε→0

E

[

sup
t∈[0,T ]

|Xt ◦ τεh −Xt|
q

]

= 0, ∀q ≥ 1

it holds that
lim
ε→0

∣
∣fx(t, X̄t, Yt, Zt)− fx(t,Xt, Yt, Zt)

∣
∣pp̃ = 0, P0 ⊗ dt− a.e.

Furthermore, for any 2 > ρ > 1,

sup
ε∈(0,1)

∫ T

0
E

[∣
∣fx(t, X̄t, Yt, Zt)− fx(t,Xt, Yt, Zt)

∣
∣ρpp̃
]

dt

≤ C sup
ε∈(0,1)

∫ T

0
E

[

(1 + |Xt|
q + |Xt ◦ τεh|

q + |Yt|
κ + |Zt|

κ)ρpp̃
]

dt < ∞,
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by choosing p small enough so that κρpp̃ ≤ 2. So by Lebesgue’s dominated convergence theorem,

lim
ε→0

∫ T

0
A2,ε

t dt = 0,

which proves (H1). Concerning, (H2) we just mention that fy (respectively fz) is bounded,
jointly continuous in (x, y, z) and we make use of Lemma 3.2.

6.2 Affine BSDEs

The aim of this section is to prove that with our condition, we can provide weaker conditions
compared to [8] for affine BSDEs. We take a driver of the form

f(t, ω, y, z) := αt(ω) + βt(ω)y + γt(ω)z

with bounded F-progressively measurable processes, and ξ in D
1,2. The conditions given in [8,

Proposition 5.3] for proving that the associated solution (Y,Z) is Malliavin differentiable read
as follows (together with some measurability conditions):

∃η > 0 such that E[|ξ|2+η] < ∞ and
∫ T

0
E

[(∫ T

θ
|Kθ(s)|

2ds

)2+η
]1/(2+η)

dθ < +∞,

(6.4)
with Kθ(s) := |Dθβ(s)|+ |Dθγ(s)|.

In our setting, one needs to check assumptions (L), (D), (H1) and (H2). As mentioned below
by Lemma 3.2 Condition (H2) comes for free, and Assumptions (D) and (L) are also trivially
satisfied. The interesting point is that (H1) is true as soon as (6.4) is replaced with:

∃η > 0 such that lim
ε→0

∫ T

0
E

[∣
∣
∣ε−1(µt ◦ τεh − µt)− 〈Dµt, ḣ〉H

∣
∣
∣

2+η
]

dt = 0, for µ ∈ {β, γ}.

(6.5)
Hence our condition only involve a condition on γ and β and not on ξ. For instance if β and γ

are given as:
βt = ϕ1(Xt), γt := ϕ2(Xt), t ∈ [0, T ],

with ϕ1, ϕ2 two smooth functions with polynomial growth and X is the solution to an SDE of
the form of the one considered in Section 6.1, then the requirements of Conditions (6.4) and
(6.5) are satisfied for β and γ, however in contradistinction to Condition (6.4), Assumption
(6.5) does not put extra regularity on the terminal condition ξ.

We make precise our result.

Proposition 6.1. Let ξ in D
1,2, and α, β, γ bounded F-progressively processes in L2([0, T ];D1,2)

such that Dα,Dβ and Dγ are F-progressively measurable. Assume that Assumption (6.5) is in

force. Then for any t in [0, T ], Yt belongs to D
1,2, Z ∈ L2([t, T ];D1,2) where (Y,Z) is the unique

solution in S
2 ×H

2 to the affine BSDE:

Yt = ξ +

∫ T

t
αs + βsYs + γsZsds−

∫ T

t
ZsdWs, t ∈ [0, T ].
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Proof. Once again we check that assumptions of Theorem 4.1 are in force. Properties
(D) and (L) are immediately satisfied. Let f(t, ω, y, z) := αt(ω) + βt(ω)y + γt(ω)z. Since
fy(t, ω, y, z) = βt(ω), and fz(t, ω, y, z) = γt(ω) we immediately get by Lemma 3.2 and since β, γ

are bounded that (H2) is satisfied. Concerning (H1), we have for any 1 < p < 2 and h in H,
that

E

[(∫ T

0
|ε−1(f(t, ·+ εh, Yt, Zt)− f(t, ·, Yt, Zt))− 〈Df(t, ·, Yt, Zt), ḣ〉H|dt

)p
]

≤ CE

[(∫ T

0
|ε−1(αt ◦ τεh − αt)− 〈Dαt, ḣ〉H|dt

)p
]

+ CE

[(∫ T

0
|Yt(ε

−1(βt ◦ τεh − βt)− 〈Dβt, ḣ〉H)|dt

)p
]

+ CE

[(∫ T

0
|Zt(ε

−1(γt ◦ τεh − γt)− 〈Dγt, ḣ〉H)|dt

)p
]

=: Aε
1 +Aε

2 +Aε
3, (6.6)

where C is a constant. By Lemma A.2 we have that limε→0A
ε
1 = 0. We consider the term Aε

3.
We have that:

Aε
3 ≤ E

[∫ T

0

∣
∣
∣Zt(ε

−1(γt ◦ τεh − γt)− 〈Dγt, ḣ〉H)
∣
∣
∣

p
dt

]

≤ C

∫ T

0
E
[
|Zt|

2
]p/2

E

[∣
∣
∣ε−1(γt ◦ τεh − γt)− 〈Dγt, ḣ〉H

∣
∣
∣

2p
2−p

] 2−p

2

dt

≤ C

(∫ T

0
E
[
|Zt|

2
]
dt

)p/2(∫ T

0
E

[∣
∣
∣ε−1(γt ◦ τεh − γt)− 〈Dγt, ḣ〉H

∣
∣
∣

2p
2−p

]

dt

) 2−p

2

.

Choosing p such that 2p
2−p = 2 + η we get that Aε

3 converges to 0 as ε tends to 0 by (6.5).
Similarly, limε→0A

ε
2 = 0 for this choice of p.

Remark 6.1. Note that, since the BSDE is affine, Yt can be expressed explicitly as:

Yt = E

[

Mt,T ξ −

∫ T

t
Mt,sαsds|Ft

]

,

where

Mt,s := exp

(∫ s

t
γudWu −

1

2

∫ s

t
|γu|

2du+

∫ s

t
βudu

)

, s ∈ [t, T ].

Hence, on the one hand, Yt belongs to D
1,2 if and only if the coefficients α, β, γ belong to

L2([0, T ];D1,2) and ξ is in D
1,2. The same conclusion follows for the Z component. Hence,

neither our condition (6.5) nor the one of [8] namely (6.4) are sharp. However, both are sharp

in the case where β = γ = 0. On the other hand, Conditions (6.4) or (6.5) give more information

that the simple fact that Y,Z are Malliavin differentiable, since they imply that the BSDE solved

by (DY,DZ) is limit in S
2 ×H

2 of respectively (DY n,DZn) (where (Y n, Zn) is the solution to

the Picard iteration equation at order n approximating (Y,Z)) for (6.4), and of the difference

quotient (ε−1(Y ◦ τεh − Y ), ε−1(Z ◦ τεh − Z)) in our case (6.5).
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6.3 Discussion and comparison of the results

We would like before going to the quadratic BSDE case to make a comment about the difference
between our approach and the one of [19, 8] and our approach. In these references, the authors
consider the sequence of BSDEs:

Y n
t = ξ +

∫ T

t
f(s, Y n−1

s , Zn−1
s )ds−

∫ T

t
Zn
s dWs, t ∈ [0, T ],

which approximate in S
2 ×H

2 the solution to the original BSDE:

Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds −

∫ T

t
ZsdWs, t ∈ [0, T ].

Now, under mild assumptions on f , the processes (Y n, Zn) are Malliavin differentiable and it
holds that a version of (DrY

n
t ,DrZ

n
t ) satisfies for t ∈ [0, T ], r ≤ t:

DrY
n
t = Drξ +

∫ T

t
[Drf(s,Θ

n−1
s ) + ∂yf(s,Θ

n−1
s )DrY

n−1
s + ∂zf(s,Θ

n−1
s )DrZ

n−1
s ]ds

−

∫ T

t
DrZ

n
s dWs,

with Θn−1
s := (Y n−1

s , Zn−1
s ). On the other if (Y,Z) where Malliavin differentiable we would

have that a version of (DrYt,DrZt) would satisfy for t ∈ [0, T ], r ≤ t:

DrYt = Drξ+

∫ T

t
[Drf(s, Ys, Zs)+∂yf(s, Ys, Zs)DrYs+∂zf(s, Ys, Zs)DrZs]ds−

∫ T

t
DrZsdWs.

In other words, assuming that ∂yf and ∂zf to be continuous, we would get formally that
(DY n,DZn) converges to (DY,DZ) (in S

2 × H
2) as n goes to infinity provided that at the

limit one can replace Drf(s, Y
n−1
s , Zn−1

s ) by Drf(s, Ys, Zs) which is exactly where comes the
main assumption in [8, 19] which impose Drf to be (stochastic) Lipschitz continuous in (y, z)

with integrability conditions on the Lipschitz constant to make the aforementioned argument
rigorous. However, it is not a necessary condition for (Y,Z) to be Malliavin differentiable
that (DY n,DZn) to converge to (DY,DZ), this is why this assumption is somehow arbitrary.
However, for Yt to be in D

1,2, it is necessary (and sufficient) to have that ε−1(Yt ◦ τεh − Yt) to
converge in Lp for some p < 2 to 〈DYt, ḣ〉H for any h in H (according to Theorem 4.1). Hence,
we feel that our conditions are more precise.

7 Extension to quadratic growth BSDEs

The aim of this section is to extend our previous results to so-called quadratic growth BSDEs.
Some results for these equations already exist in the literature, see in particular [1, 12] or the
thesis [7], however they are generally limited to specific forms of the generators or to a Markovian
setting. We will show that our approach to the Malliavin differentiability is flexible enough to
be able to treat this problem without major modifications to our proofs.

We will now list our assumptions in this quadratic setting
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(D∞) ξ is bounded, belongs to D
1,∞ and its Malliavin derivative Dξ is bounded, for any (y, z) ∈

R
2, (t, ω) 7−→ f(t, ω, y, z) is in L2([0, T ];D1,∞), f(·, y, z) and Df(·, y, z) are F-progressively

measurable, Df(·, y, z) is uniformly bounded in y, z.

(Q) The map (y, z) 7−→ f(·, y, z) is continuously differentiable and there exists some constant
C > 0 such that for any (s, ω, y, z, z′) ∈ [0, T ] × Ω× R

3

∣
∣f(s, ω, y, z)− f(s, ω, y, z′)

∣
∣ ≤ C

(
1 + |z|+

∣
∣z′
∣
∣
) ∣
∣z − z′

∣
∣ , |f(s, ω, 0, 0)| ≤ C,

|fy(s, ω, y, z)| ≤ C, |fz(s, ω, y, z)| ≤ C(1 + |z|).

(H1,∞) For any p > 1 and for any h ∈ H

lim
ε→0

E

[(∫ T

0

∣
∣
∣
∣

f(s, ·+ εh, Ys, Zs)− f(s, ·, Ys, Zs)

ε
− 〈Df(s, ·, Ys, Zs), ḣ〉H

∣
∣
∣
∣
ds

)p
]

= 0.

(H2,∞) Let (εn)n∈N be a sequence in (0, 1] such that lim
n→+∞

εn = 0, and let (Y n, Zn)n be a sequence

of random variables which converges in S
p × H

p for any p > 1 to some (Y,Z). Then for
all h ∈ H, the following convergences hold in probability

‖fy(·, ω + εnh, Y
n
· , Z·)− fy(·, ω, Y·, Z·)‖H −→

n→+∞
0

‖fz(·, ω + εnh, Y
n
· , Zn

· )− fz(·, ω, Y·, Z·)‖H −→
n→+∞

0, (7.1)

or

‖fy(·, ω + εnh, Y
n
· , Zn

· )− fy(·, ω, Y·, Z·)‖H −→
n→+∞

0

‖fz(·, ω + εnh, Y·, Z
n
· )− fz(·, ω, Y·, Z·)‖H −→

n→+∞
0. (7.2)

Let S∞ be the set of F-progressively measurable processes Y such that supt∈[0,T ] |Yt| is bounded
and H

2
BMO the set of predictable processes Z such that:

essup
τ∈T

E

[∫ T

τ
|Zs|

2ds
∣
∣
∣Fτ

]

< +∞, P0 − a.s.,

where T denotes the set of F-stopping times with values in [0, T ]. We start by recalling the
following by now classical results on quadratic growth BSDEs and stochastic Lipschitz BSDEs,
which can be found among others in [12].

Proposition 7.1. Under Assumptions (D∞) and (Q), the BSDEs (5.1) and (5.5) both admit a

unique solution in S
∞ ×H

2
BMO.

We have the following extension of Theorem 5.1.

Theorem 7.1. Let t be in [0, T ]. Under Assumptions (D∞), (Q), (H1,∞) and (H2,∞), Yt

belongs to D
1,∞ and Z ∈ L∞([t, T ];D1,2).
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Proof. We follow the proof of Theorem (5.1), using the same notations. Since the BSDEs are
now quadratic, we can use the a priori estimates of Lemma A.1 in [12] to obtain that for any
p > 1, there exists some q > 1 such that

E

[

sup
s∈[t,T ]

|Y ε
s − Ỹ h

s |
2p

]

+ E

[(∫ T

t
|Zε

s − Z̃h
s |

2ds

)p
]

≤ Cp



E

[

|ξε − 〈Dξ, ḣ〉H|
pq
]1/q

+ E

[(∫ T

0

∣
∣
∣Ãε

s − 〈Df(s, ·, Ys, Zs), ḣ〉H

∣
∣
∣ ds

)pq
]1/q





+ CpE

[(∫ T

0

∣
∣
∣Ãy,ε

s − fy(s, ·, Ys, Zs)
∣
∣
∣

∣
∣
∣Ỹ h

s

∣
∣
∣ ds

)pq
]1/q

+ CpE

[(∫ T

0

∣
∣
∣Ãz,ε

s − fz(s, ·, Ys, Zs)
∣
∣
∣

∣
∣
∣Z̃h

s

∣
∣
∣ ds

)pq
]1/q

. (7.3)

Since ξ ∈ D
1,∞, the first term on the right-hand side above goes to 0 thanks to Theorem

4.1. Moreover, the second term also goes to 0 thanks to Assumption (H∞). Then, since fy is
bounded by Assumption (Q) and since Ỹ h ∈ S

∞ by Proposition 7.1, we can easily conclude
with Assumption (H2) and the dominated convergence theorem that the third term on the
right-hand side also goes to 0. Let us now concentrate on the fourth term involving the control
variable. By Cauchy-Schwarz inequality we have that

E

[(∫ T

0

∣
∣
∣Ãz,ε

s − fz(s, ·, Ys, Zs)
∣
∣
∣

∣
∣
∣Z̃h

s

∣
∣
∣ ds

)pq
]

≤ E

[(∫ T

0

∣
∣
∣Ãz,ε

s − fz(s, ·, Ys, Zs)
∣
∣
∣

2
ds

)pq
]1/2

E

[(∫ T

0

∣
∣
∣Z̃h

s

∣
∣
∣

2
ds

)pq
]1/2

. (7.4)

Since (Ỹ h, Z̃h) is the solution to the stochastic linear BSDE (5.5) with bounded coefficients Df

and fy (by (D∞)) and fz(s, Ys, Zs) is in H
2
BMO since |fz(s, Ys, Zs)| ≤ C(1+|Zs|) (by Assumption

(Q)), we deduce that Z̃h ∈ H
2
BMO which implies that Z̃h ∈ H

m for any m > 1 by the energy
Inequalities. Furthermore, for any η > 0 it holds that

E

[(∫ T

0
|Ãz,ε

s − fz(s, ·, Ys, Zs)||Z̃
h
s |ds

)pq+η
]

≤ CE

[(∫ T

0
(1 + |Zs|+ |Zs ◦ τεh|) |Z̃

h
s |ds

)pq+η
]

≤ CE





(∫ T

0
(1 + |Zs|+ |Zs ◦ τεh|)

2 ds

) pq+η

2
(∫ T

0
|Z̃h

s |
2ds

) pq+η

2





≤ CE

[(∫ T

0
(1 + |Zs|+ |Zs ◦ τεh|)

2ds

)pq+η
]1/2

E

[(∫ T

0
|Z̃h

s |
2ds

)pq+η
]1/2

≤ C



1 + E

[(∫ T

0
|Zs|

2ds

)p′
]1/q′



E

[(∫ T

0
|Z̃h

s |
2ds

)pq+η
]1/2

< ∞,
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where p′, q′ > 1 using Hölder Inequality and Proposition 3.1. Hence, taking limit as ε goes to 0

in (7.4) we get that limε→0E

[

sups∈[t,T ] |Y
ε
s − Ỹ h

s |
2p
]

+E

[(∫ T
t |Zε

s − Z̃h
s |

2ds
)p]

= 0. Following
the same lines as in the proof of Theorem 5.1, one can use a priori estimates for quadratic
growth BSDEs to obtain that Ỹ h and Z̃h are linear operators-valued r.v.. This proves that Yt

and
∫ T
t ZsdWs belongs to D

1,∞ by Theorem 4.1. In particular, Z1[t,T ] belongs to L2([t, T ];D1,2)

(see [19]). Moreover, since (DtY,DtZ) is the solution of the stochastic linear BSDE (5.8) for
any t ∈ [0, T ] and Assumptions (D∞) and (Q) hold, from the relation DtYt = Zt for all t ∈ [0, T ]

we obtain Z1[t,T ] ∈ L∞([t, T ];D1,2).

Remark 7.1. We would like to point out that our conditions cover the case of Markovian

quadratic BSDEs presented in [10, Theorem 2.9]. Indeed, assume that we consider a forward-

backward system of the form (6.1) under assumptions, (D∞), (Q), (A1), (A2)(i) and where

(A2)(ii) is replaced by the following assumption:

(A2)(ii
′) f : [0, T ] × R

3 −→ R is continuously differentiable in (x, y, z) and satisfying for some

C > 0

∃q ∈ R+, |fx(t, x, y, z)| ≤ C(1 + |y|+ |z|2 + |x|q), ∀(t, x, y, z) ∈ [0, T ] ×R
3.

Under these assumptions, we can check that (H1,∞) and (H2,∞) are in force. To see this we

just make a comment about how the proof of Theorem 6.1 has to be modified to obtain (H1,∞),

whereas (H2,∞) is met trivially. Using the notations of this proof one can manage a term of the

form:

E

[(∫ T

0

∣
∣
∣ε−1(Xt ◦ τεh −Xt)− 〈DXt, ḣ〉H

∣
∣
∣ |fx(t, X̄t, Yt, Zt)|dt

)p
]

as follows:

E

[(∫ T

0

∣
∣
∣ε−1(Xt ◦ τεh −Xt)− 〈DXt, ḣ〉H

∣
∣
∣ |fx(t, X̄t, Yt, Zt)|dt

)p
]

≤ CE

[

sup
t∈[0,T ]

∣
∣
∣
∣

Xt ◦ τεh −Xt

ε
− 〈DXt, ḣ〉H

∣
∣
∣
∣

p(∫ T

0
(1 + |Xt|

q + |Xt ◦ τεh|
q + |Yt|+ |Zt|

2)dt

)p
]

≤ CE

[

sup
t∈[0,T ]

∣
∣
∣ε−1(Xt ◦ τεh −Xt)− 〈DXt, ḣ〉H

∣
∣
∣

2p
]1/2

× E

[(∫ T

0
(1 + |Xt|

q + |Xt ◦ τεh|
q + |Yt|+ |Zt|

2)dt

)2p
]1/2

,

which goes to 0 as ε goes to 0 since Z belongs to H
2
BMO and since Y is bounded. The term

involving A2,ε can be treated similarly.

A Appendix

The following lemma was remarked in [23, Remark 2] with the set of polynomial cylindrical
functions P, we provide a proof of it with the set of cylindrical functions S.
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Lemma A.1. Let p > 1 and F be in Lp(R), G ∈ S and h ∈ H. The mapping ε 7−→ E[F ◦τεhG]

is differentiable in ε and
d

dε
E[F ◦ τεh G] = E[F ◦ τεh δ(Gh)]. (A.1)

Proof. Let η > 0, by the Cameron-Martin formula, we have that

η−1
(
E[F ◦ τ(η+ε)hG]− E[F ◦ τεhG]

)

= E



F ◦ τεh
G ◦ τ−ηh exp

(

η
∫ T
0 ḣ(u)dWu − |η|2

2

∫ T
0 |ḣ(u)|2du

)

−G

η



 .

Hence

lim
η→0

η−1
(
E[F ◦ τ(η+ε)hG]− E[F ◦ τεhG]

)

= E



F ◦ τεh lim
η→0

G ◦ τ−ηh exp
(

η
∫ T
0 ḣ(u)dWu − |η|2

2

∫ T
0 |ḣ(u)|2du

)

−G

s





= E



F ◦ τεh lim
η→0




G ◦ τ−ηh −G

η
+G ◦ τ−ηh

exp
(

η
∫ T
0 ḣ(u)dWu − |η|2

2

∫ T
0 |ḣ(u)|2du

)

− 1

η







 ,

where the exchange between the limit and the expectation is justified by the fact that

sup
η∈(0,1]

η−q
E

[∣
∣
∣
∣
G ◦ τ−ηh exp

(

η

∫ T

0
ḣ(u)dWu −

|η|2

2

∫ T

0
|ḣ(u)|2du

)

−G

∣
∣
∣
∣

q
]

< ∞ (A.2)

for any q > 1 and by the Cameron-Martin formula. Indeed for any r in (1, p) we have by Hölder
Inequality:

E





∣
∣
∣
∣
∣
∣

F ◦ τεh
G ◦ τ−ηh exp

(

η
∫ T
0 ḣ(u)dWu − |η|2

2

∫ T
0 |ḣ(u)|2du

)

−G

η

∣
∣
∣
∣
∣
∣

r



≤ E [|F ◦ τεh|
p1 ]r/p1

︸ ︷︷ ︸

=:E1

E





∣
∣
∣
∣
∣
∣

G ◦ τ−ηh exp
(

η
∫ T
0 ḣ(u)dWu − |η|2

2

∫ T
0 |ḣ(u)|2du

)

−G

η

∣
∣
∣
∣
∣
∣

rp2



1/p2

︸ ︷︷ ︸

=:E2

,

where r < p1 < p and p2 is the Hölder conjugate of p1/r. Using Cameron-Martin Formula for
E1, Relation (3.1) and Hölder Inequality with r1 =

p
p1

and r2 such that 1
r1

+ 1
r2

= 1, we deduce
that:

E1 ≤ E[|F |p]r/pE

[∣
∣
∣
∣
E

(∫ T

0
ḣsdWs

)∣
∣
∣
∣

r2
]1/r2

< +∞.

28



We now turn to E2, for any q > 1

sup
η∈(0,1]

E





∣
∣
∣
∣
∣
∣

G ◦ τ−ηhE
(

η
∫ T
0 ḣ(u)dWu

)

−G

η

∣
∣
∣
∣
∣
∣

q



≤ sup
η∈(0,1]

E

[∣
∣
∣
∣

G ◦ τ−ηh −G

η
E

(

η

∫ T

0
ḣ(u)dWu

)∣
∣
∣
∣

q
]

︸ ︷︷ ︸

=:A1

+ sup
η∈(0,1]

E





∣
∣
∣
∣
∣
∣

E
(

η
∫ T
0 ḣ(u)dWu

)

− 1

η
G

∣
∣
∣
∣
∣
∣

q



︸ ︷︷ ︸

=:A2

,

hence, on the one hand there exists α1, α2 > 1 such that:

A1 ≤ sup
η∈(0,1]

η−q
E [|G ◦ τ−ηh −G|qα1 ]

1
α1 E

[∣
∣
∣
∣
E

(

η

∫ T

0
ḣ(u)dWu

)∣
∣
∣
∣

qα2
] 1

α2

< +∞,

using the fact that G is polynomial, so G is locally Lipschitz and we conclude by Relation (3.1).
On the other hand, using the mean value theorem and Relation (3.1), we obtain also A2 < +∞.
We deduce that Relation (A.2) holds. Moreover, given that G ∈ P is polynomial, we deduce
that G◦τ−ηh−G

η →
η→0

−〈∇G,h〉H a.s.. Hence,

lim
η→0

η−1
(
E[F ◦ τ(η+ε)hG]− E[F ◦ τεhG]

)

= E



F ◦ τεh lim
η→0




G ◦ τ−ηh −G

η
+G ◦ τ−ηh

exp
(

η
∫ T
0 ḣ(u)dWu − |η|2

2

∫ T
0 |ḣ(u)|2du

)

− 1

η









= E [F ◦ τεh (−〈∇G,h〉H +Gδ(h))] = E [F ◦ τεh δ(Gh)] ,

by (2.3), so (A.1) holds.

Lemma A.2. Let α in L2([0, T ];D1,2). Then for any p in (1, 2),

lim
ε→0

E

[∫ T

0

∣
∣
∣
∣

αs ◦ τεh − αs

ε
− 〈∇αs, h〉H

∣
∣
∣
∣

p

ds

]

= 0.

Proof. Note first that the space L2([0, T ];D1,2) can be identified with the space D
1,2(H) which

is the completion of the set of H-valued r.v. of the form:

n∑

i=1

Fiui, Fi ∈ S, ui ∈ L2([0, T ]), n ≥ 1,

with respect to the norm ‖ · ‖1,2,2 defined as:

‖u‖21,2,2 := E[‖u‖2L2([0,T ])] + E[‖∇u‖2H⊗L2([0,T ])].

Alternatively, an element u in D
1,2(H) is identified with a stochastic process such that for almost

avery t in [0, T ], ut belongs to D
1,2 and such that

E[‖∇u‖2H⊗L2([0,T ])] = E

[∫ T

0

∫ T

0
|Dsut|

2dsdt

]

< +∞.
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Hence we can assume that α belongs to D
1,2(H). Thus by [23, Theorem 3.1], α satisfies (RAC)

and (SGD), which entails in this setting that for any h in H, there exists a H-valued r.v. α̃h

such that α̃h = α in H, P0-a.s., and for any ε > 0

α̃h ◦ τεh − α̃h

ε
= ε−1

∫ ε

0
〈∇α ◦ τsh, h〉Hds, in H, P0 − a.s..

Using Lemma 3.1 we thus get that for any r ∈ (p, 2), it holds that:

E

[∫ T

0

∣
∣ε−1(αs ◦ τεh − αs)

∣
∣
r
ds

]

= E

[∫ T

0

∣
∣ε−1((α̃h)(s) ◦ τεh − (α̃h)(s))

∣
∣
r
ds

]

≤ E

[∫ T

0
ε−1

∫ ε

0
|〈∇αs ◦ τuh, h〉H |rduds

]

≤ C

∫ T

0
E [|〈∇αs, h〉H |p]r/p ds

≤ CE

[∫ T

0
|〈∇αs, h〉H |pds

]r/p

≤ C‖h‖rHE
[
‖∇α‖pH⊗H

]r/p
< +∞,

where we have used Cameron-Martin formula and similar computations to those of the proof
of Lemma 4.2, and C denotes a positive constant which can differ from line to line. Hence, the
family

(∫ T
0

∣
∣ε−1(αs ◦ τεh − αs)− 〈∇αs, h〉H

∣
∣p ds

)

ε∈(0,1)
is uniformly integrable. In addition, by

Property (SGD), ε−1(α◦τεh−α) converges in probability to 〈∇α, h〉H (with respect to the norm
L2([0, T ])) which implies that

∫ T
0

∣
∣ε−1(αs ◦ τεh − αs)− 〈∇αs, h〉H

∣
∣p ds converges in probability

to 0 as ε goes to 0, which provides the result.
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