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Abstract—Hyperspectral unmixing consists of identifying,
from mixed pixel spectra, a set of pure constituent spectra
(endmembers) in a scene and a set of abundance fractions for
each pixel. Most linear blind source separation (BSS) techniques
are based on Independent Component Analysis (ICA) or Non-
Negative Matrix Factorization (NMF). Using only one of these
techniques does not resolve the unmixing problem because of,
respectively, the statistical dependence between the abundance
fractions of the different constituents and the non-uniqueness of
the NMF results. To overcome this issue, we propose an unsuper-
vised unmixing approach called ModifICA-NMF (which stands
for modified version of ICA followed by NMF). Consider the ideal
case of a hyperspectral image combining (M − 1) statistically

independent source images, and an M th image depending on
them due to the sum-to-one constraint. Our modified ICA first
estimates these (M−1) sources and associated mixing coefficients,
then derives the remaining source and coefficients, while it also
removes the BSS scale indeterminacy. In real conditions, the
above (M−1) sources may be somewhat dependent. Our modified
ICA method then only yields approximate data. These are then
used as the initial values of an NMF method, which refines
them. Our tests show that this joint modifICA-NMF approach
significantly outperforms the considered classical methods.

Keywords—ICA; NMF; hyperspectral unmixing.

I. INTRODUCTION

Remote sensing is the set of techniques used to determine,
from a distance, object properties from the radiations they
emit or reflect, depending on their molecular composition or
shape. Historically, spatial remote sensing came to birth in the
1970s when different types of multispectral sensors emerged.
Since then, these sensors have continued to improve up to
the emergence of hyperspectral space sensors in the 2000s
[1]. For each image pixel, the latter are capable to produce
reflectance spectra in a large number of narrow and contiguous
spectral bands. This allows the representation of a continuous
spectrum, which is not the case of multispectral conventionally
used sensors.
Nevertheless, due to the limited spatial resolution of most
hyperspectral sensors, the pixel spectra composing the image
are usually linear mixtures of elementary contributions from
pure materials [2]. In such situations, traditional classification
techniques are not acceptable for many major applications. It
is therefore necessary to perform a Linear Spectral Unmixing
(LSU). This procedure permits the decomposition of a mixed

pixel spectrum into a set of pure material spectra (endmembers)
and a set of abundance fractions. A review of classical
LSU methods may be found in [2]. Mathematically, LSU
corresponds to the typical linear blind source separation (BSS)
problem [3], where the collected pixels, endmember spectra
and corresponding abundance fractions can be respectively
considered as the observations, mixing matrix and sources.
Most developed linear BSS methods are based on Independent
Component Analysis (ICA) (see e.g. the review of classical
methods in [3]). Under the source independence constraint,
they provide a unique theoretical solution up to permutation
and scale indeterminacies. However, the independence con-
straint on sources is not met for remote sensing data [4]. When
the sources and mixing matrix are non-negative, as in remote
sensing images, methods relying on non-negativity constraints
may be used. This especially includes methods based on non-
negative matrix factorization (NMF). However, standard NMF
methods are not guaranteed to provide a unique solution and
their convergence point usually depends on their initialization
[5]. In this paper, we propose an extended version of a new
unsupervised unmixing approach, called modifICA-NMF [6],
which combines a modified version of ICA with NMF. Our
approach avoids the limitations which arise when using only
one of the ICA and NMF methods. Indeed, we will show
how the physical constraints of our problem can be used to
eliminate indeterminacies related to ICA and to provide a first
approximation of endmembers and abundance fractions. These
approximations are then used to initialize NMF which provides
refined estimates.
The remainder of the paper is organized as follows. In the
second section, we present the data model. Section III de-
scribes ICA and NMF methods and their limitations. Our
proposed approach is presented in Section IV. In Section V, a
comparative performance analysis for the proposed approach
is provided, before concluding in Section VI.

II. DATA MODEL

We hereafter assume that each incident radiation interacts
with a single type of material, which implies a linear mixing
model [2]. In this case, the lth spectral component of the nth

observed pixel can be expressed as follows:

xl(n) =
M
∑

m=1

almsm(n), (1)



where:

• alm is the lth spectral component of the mth pure
material,

• sm(n) represents the abundance fraction of the mth

pure material in the nth pixel,

• M is the number of pure materials.

If one considers the N pixels of a hyperspectral image
composed of L spectral bands, one gets the following matrix
expression:

X = AS, (2)

where:

• X is the observed hyperspectral image, defined as:

X = [x(1) · · ·x(N)] with x(n) = [x1(n) · · ·xL(n)]
T

,

• the columns of A contain the endmember spectra:

A = [a1 · · · aM ] with am = [a1m · · · aLm]
T

,

• each column of S contains the abundance fractions of
all pure components in the considered pixel:

S = [s(1) · · · s(N)] with s(n) = [s1(n) · · · sM (n)]
T

.

Moreover, these data meet the following positivity and sum-
to-one constraints:

sm(n) ≥ 0, alm ≥ 0 ∀
m = {1 · · ·M}
n = {1 · · ·N}
l = {1 · · ·L} ,

(3)

M
∑

m=1

sm(n) = 1 ∀n = {1 · · ·N} . (4)

Using the BSS terminology, the abundance fraction matrix
S and the endmember spectra matrix A will be hereafter
respectively called source and mixing matrices. We aim at
estimating the matrices S and A from an observation matrix
X , representing the hyperspectral image.

III. LIMITATIONS OF STANDARD ICA AND NMF

When observations are linear combinations of statistically
independent sources, ICA may be used to achieve BSS [3].
In our study, ICA cannot be applied in a standard manner
to extract the M sources because they are statistically
dependent due to the sum-to-one constraint (4) [4]. Besides,
because of the scale indeterminacy inherent to ICA, the
estimated abundance fractions provided by standard ICA
are not physically interpretable. Nevertheless, we will show
hereafter that a non-conventional use of ICA here yields
approximations of source signals and mixing matrix without
scale indeterminacy.

NMF [5] aims at deriving, from an observation matrix X
consisting of non-negative elements, two other non-negative

matrices Â and Ŝ, such that:

X ≈ ÂŜ , X ∈ R+
L×N , Â ∈ R+

L×M , Ŝ ∈ R+
M×N .

Most NMF algorithms minimize an objective function by

updating the estimated components Â and Ŝ. The objective

function used in our investigation is the Euclidean distance
defined by the following Frobenius norm:

DF =
∥

∥

∥
X − ÂŜ

∥

∥

∥

F
.

This function is minimized using the following Lee and
Seung’s multiplicative update rules [7], [5]:

Ŝ ← Ŝ ⊙ ÂTX

ÂT ÂŜ
and Â← Â⊙ XŜT

ÂŜŜT
,

where A⊙B and A
B

respectively represent element-wise matrix
multiplication and division.
The most important drawback of NMF is the non-uniqueness
of this decomposition. It is well known that the convergence
point of NMF algorithms highly depends on initialization. A
random initialization of unconstrained NMF generally leads
to a spurious solution. To obtain accurate matrix estimates,
several methods make use of additional hypotheses about the
sources and/or the mixing coefficients, particularly sparsity
constraints [5], or of geometric constraints as in the MVC-
NMF method [8]. In the next section, we propose an alternative
approach to provide a suitable initialization of NMF.

IV. MODIFICA-NMF APPROACH

The above discussion shows that the considered problem
cannot be solved using only one of the ICA and NMF
methods. We therefore propose a new approach consisting
of the following 3 stages: (i) standard ICA is first used to
provide approximations of (M − 1) sources and part of the
mixing matrix up to some indeterminacies, (ii) indeterminacies
are removed and approximations of the M th source and the
M th column of the mixing matrix are computed. These first
two stages will be hereafter considered as our modified ICA
(modifICA). (iii) The M estimated sources and the estimate of
the mixing matrix are then used to initialize an NMF method.
Thus, our approach consists in avoiding the non-uniqueness
issue of NMF by initializing it with the result of a non-
conventional extension of ICA.

A. First stage: ICA with (M − 1) components

As explained in Section III, because of the sum-to-one
constraint (4), among all considered M sources, only (M −1)
may be linearly independent. In practice, these (M−1) sources
only have limited statistical dependence in various realistic
scenarios: e.g. consider natural scenes, where (M − 1) classes
of vegetation have moderately dependent spatial distributions,
and the remainder of the scene (M th class) consists of bare
ground. In the first stage of our approach, we therefore use
ICA to extract (M−1) independent components which provide
first approximations of (M − 1) sources, to be refined in the
next stages. More precisely, due to (4), and omitting the pixel
index n, Eq. (1) yields:

xl = al1s1+...+al(M−1)sM−1+alM (1− (

M−1
∑

m=1

sm))

= (al1−alM )s1+...+(al(M−1)−alM )sM−1+alM .(5)

Modeling of linear mixture as in (5) has already been consid-
ered in [9] but the authors do not explain how to reconstruct
the actual sources and mixing matrix from this model.



Let α1, · · · , αM−1 be (M − 1) arbitrary scale factors. Eq. (5)
can then be rewritten as:

xl =
al1−alM

α1
α1s1+· · ·+

al(M−1) − alM

αM−1
αM−1sM−1+alM .

(6)
In the following, we denote the zero-mean versions of xl and
sm by x̄l = xl − µxl

and s̄m = sm−µsm , where µxl
and µsm

represent the means of xl and sm. Eq. (6) yields:

x̄l =
al1−alM

α1
α1s̄1+...+

al(M−1) − alM

αM−1
αM−1s̄M−1. (7)

Due to indeterminacies, when applying ICA to extract (M−1)
components from all x̄l, we ideally get the mixing coefficient
differences ali− alM and the zero-mean sources s̄m up to the
above-defined unknown scale factors, i.e. we ideally obtain
at the output of an ICA algorithm (with arbitrary source
numbering):

A∗=









a11−a1M

α1
· · ·

a1(M−1)−a1M

αM−1

...
...

aL1−aLM

α1
· · ·

aL(M−1)−aLM

αM−1









and S∗=







α1s̄1
...

αM−1s̄M−1






.

(8)

B. Second stage: removing indeterminacies

The physical constraints of our configuration then allow
us to eliminate indeterminacies related to ICA, as follows. We
initially only consider the first (M−1) sources, involved in (8).
The corresponding scale factors αm may be easily estimated
if there exist at least one pure pixel for each of the M pure
materials in the studied data (the procedure proposed below
does not require one to know where the pure pixels are in
the observed images). In this case, in each pure pixel, the
abundance fraction of one of the materials is equal to one while
the abundance fractions of all other materials are equal to zero.
Thus, the actual sources satisfy the following conditions:

min{sm(n)} = 0 , max{sm(n)} = 1 , ∀m = 1, · · · ,M.

Considering (8) and denoting s∗m(n) = αm(sm(n) − µsm),
we study the following two cases, separately for each source
with index m ∈ {1, . . . ,M − 1}.

(1) The scale factor αm is positive. In this case:

max{s∗m(n)} = αm[max{sm(n)} − µsm ] = αm(1− µsm)

min{s∗m(n)} = αm[min{sm(n)} − µsm ] = −αmµsm ,

which yields:

αm = max{s∗m(n)} −min{s∗m(n)} (9)

µsm = −min{s∗m(n)}/αm. (10)

Knowing these values, we can find the mth actual (i.e. without
scale and mean-value indeterminacies) source:

sm(n) =
s∗m(n)

αm

+ µsm =
s∗m(n)−min{s∗m(n)}

max{s∗m(n)} −min{s∗m(n)}
.

(11)

(2) The scale factor αm is negative. In this case:

max{s∗m(n)} = αm[min{sm(n)} − µsm ] = −αmµsm

min{s∗m(n)} = αm[max{sm(n)} − µsm ] = αm(1− µsm),

which yields:

αm = min{s∗m(n)} −max{s∗m(n)} (12)

µsm = −max{s∗m(n)}/αm, (13)

and

sm(n) =
s∗m(n)

αm

+ µsm =
s∗m(n)−max{s∗m(n)}

min{s∗m(n)} −max{s∗m(n)}

= 1−
s∗m(n)−min{s∗m(n)}

max{s∗m(n)} −min{s∗m(n)}
. (14)

In practice, the sign of the scale factor αm for each
source is unknown. Hence, we do not know which of the
equations (11) or (14) (respectively (9) or (12)) must be used
to compute the actual source sm(n) (respectively the scale
factor αm). Comparing Equations (11) and (14), it is clear
that if the wrong equation is used, we obtain the inverted
source: the zero-values in the actual source correspond to the
one-values in the computed inverted source and vice versa.
Let’s denote by s̃m(n) and α̃m the mth reconstructed source
and the corresponding scale factor, computed using one of
the couple of equations (9)-(11) or (12)-(14). If the right
equations are used s̃m(n) = sm(n) and α̃m = αm, otherwise
s̃m(n) = 1− sm(n) and α̃m = −αm.

In the following, we propose two strategies to solve
the above problem, called sign indeterminacy in the BSS
terminology.

First strategy: Each of the (M − 1) reconstructed sources
s̃m(n) may be computed in two possible manners using (11)
or (14). Thus, there are 2M−1 possible combinations for all
(M−1) sources. For each of these combinations and all pixels
with index n, we compute the following criterion:

Q(n) = 1−

M−1
∑

m=1

s̃m(n). (15)

As shown in Appendix A, if all (M − 1) reconstructed
sources are computed using the right equation, this criterion is
non-negative ∀n. Otherwise, i.e. if at least one reconstructed
source is computed using the wrong equation, the criterion
becomes negative (and lower than or equal to -1) for at least
a value of n if M > 2. This property can then be used
to choose the right sources (and the corresponding factors
αm) among all 2M−1 possibilities, when there are at least 3
endmembers in the hyperspectral image1.

Second strategy: In many applications, the number of
pure pixels for each material is much lower than the number
of pixels where that material is not present. Thus, we know
that the number of zeros is higher than the number of ones
for each actual source. If this is not the case after computing
the mth reconstructed source supposing a positive scale factor
and therefore using Eq. (11), we deduce that the actual scale
factor is negative and use Eq. (12) and (14) to compute αm

1Note that if only two endmembers are present in the whole image, ICA
is useless because in this case, due to the sum-to-one constraint, there is only
one independent component.



and sm(n). In the simulations presented in Section V, the
second strategy is used.

Once the first (M−1) actual sources were found using the
above procedure, the M th source may be computed using the
sum-to-one constraint (4) by:

sM (n) = 1− (
M−1
∑

m=1

sm(n)). (16)

Moreover, multiplying the mth column of A∗ by the above-
computed scale factor αm yields:







a11−a1M · · · a1(M−1)−a1M
...

...
aL1−aLM · · · aL(M−1)−aLM






. (17)

Using the mean of (5), we can compute the entries alM of the
M th column of the actual mixing matrix A as follows:

alM = µxl
− (al1 − alM )µs1 − · · · − (al(M−1) − alM )µsM−1

.
(18)

Knowing alM and matrix (17), we can finally deduce the actual
mixing matrix, including the M th column:

A =







a11 a12 · · · a1M
...

...
...

aL1 aL2 · · · aLM






. (19)

C. Third stage: NMF initialization and update

The above method leads to perfect results in ideal con-
ditions. In practice, however, the (M − 1) sources usually
may be moderately statistically dependent. Besides, no ICA
algorithm provides a perfect separation. Finally, the existence
of a pure pixel per material may not be realistic in some
configurations and data may be noisy. In such conditions, the
source and mixing matrix estimates found by our modified
ICA method may be unacceptable but they provide a rough
approximation of the actual sources and mixing matrix. These
approximate data may then be used to initialize an NMF
algorithm subject to the sum-to-one constraint, which should
provide better results.
In order to satisfy the sum-to-one constraint defined by (4) in
the NMF update rule, we add to the observation and spectra
matrices, a row consisting of a positive constant value [10].

V. EXPERIMENTAL RESULTS

In this section, we use the following normalized root mean
square error to compare the estimated and actual abundance
fractions (sources) as well as the estimated and actual spectra
(mixing matrices):

NRMSE =
‖actual − estimated‖

‖actual‖
. (20)

We also use the spectral angle mapper (SAM, in degrees) to
compare the estimated and actual spectra:

SAM = arccos(
〈actual, estimated〉

‖actual‖ · ‖estimated‖
). (21)

In these equations, ‖x‖ and 〈x, y〉 respectively stand for the
2-norm of x and the scalar product of x and y.

In a first experiment, we tested our method in an ideal case
with (M − 1) independent sources. Thus, we first generated
(M − 1) independent random abundance fraction maps,
each one containing 6400 samples, uniformly distributed on
[0, 1

M
]. Then, we created an M th source using the sum-to-one

constraint (4). We added to these data one pure pixel per
source, i.e. a pixel where one of the sources is equal to
one and all the others are zero. Finally, we mixed these
M sources with a real-world mixing matrix containing M
420-point endmember spectra, randomly selected from the
USGS spectral library [11]. We then applied our method for
separating these mixtures.

TABLE I. RESULTS WITH M = 6 ARTIFICIAL SOURCES

modifICA modifICA − NMF

Spectra

NRMSE 0.022 0.012

SAM 0.85 0.50

Abundances

NRMSE 0.030 0.016

Table. 1 shows the average (over all sources) of NRMSE and
SAM obtained using only modifICA or using NMF initialized
by the outputs of modifICA (modifICA-NMF) for M = 6
sources. Our modified ICA provides very good results which
are further improved by NMF. In Fig. 1, we present one of
the spectra and its estimate using modifICA-NMF in this
experiment. Fig. 2 illustrates the performance criteria for
modifICA-NMF as functions of the number of sources M .

Fig. 1. Example of actual and estimated spectra used in the first test

In another experiment, 8 realistic sources (400 × 400-pixel
abundance maps) were created from a real classification of land
cover (see [12] for details). Contrary to the first experiment,
these realistic sources, shown in Fig. 3, are moderately depen-
dent. The observed hyperspectral images were then generated
according to the linear mixing model described in Eq. (2), by
mixing these sources using eight 431-point spectra from the
AGC spectral library [13].

The RGB composition of the observations is shown in
Fig. 4. The estimated abundance fraction maps using only
the modifICA part of our approach and using the entire
modifICA-NMF approach are respectively shown in Fig. 5



Fig. 2. Performance criteria vs. number of sources

Fig. 3. The eight sources used in the second test (the white color represents
the one-values).

Fig. 4. RGB composition of the observed hyperspectral image

Fig. 5. The approximations of the sources derived by ModifICA.

and 6. The results obtained by modifICA are not acceptable
for some of the maps (e.g. the first one in Fig. 5) because the
independence assumption is not totally verified. However, the
entire modifICA-NMF approach provides very good results
which are similar to the actual maps (Fig. 6).

Fig. 6. The eight sources estimated by ModifICA-NMF.

TABLE II. RESULTS WITH REALISTIC SOURCES

NMF MV C − NMF modifICA − NMF

Spectra

NRMSE 0.120 0.103 0.029

SAM 4.83 4.88 1.22

Abundances

NRMSE 0.131 0.098 0.003

Table. 2 shows the results obtained using standard NMF
and MVC-NMF (presented in [8]) methods with a random
initialization and our modifICA-NMF method. These results
confirm the good performance of our algorithm in a realistic
configuration as compared to these classical methods. In Fig.
7, we present one of the actual spectra and its estimate using
modifICA-NMF.

Fig. 7. Example of actual and estimated spectra used in the second test.

Finally, we applied our approach to a (50× 50) subimage
from the Moffett Field (CA, in 1997) acquired by the AVIRIS
spectro-imager. This subimage is mainly composed of three
components: water, soil, and vegetation [14]. In Fig. 8, we
present the 3 abundance maps obtained with our algorithm.
These results are visually similar to those reached by a more
complex Bayesian method presented in [14], but we cannot
compare both of them quantitatively to the lacking ground
truth.



(soil) (water) (vegetation)

Fig. 8. The abundance fraction maps estimated by the proposed approach

It is worth mentioning that all our reported results have
been obtained using the kurtosis-based FastICA algorithm [3],
which relies on the non-Gaussianity of source signals. How-
ever, other tests of the proposed approach were also undertaken
using other ICA methods such as JADE [3] yielding the same
results as with FastICA.

VI. CONCLUSION AND FUTURE WORK

In this paper, a new unsupervised unmixing approach for
hyperspectral images was proposed. It is based on two broad
classes of BSS methods. We first modified standard ICA taking
into account the sum-to-one constraint and then eliminated
some indeterminacies related to ICA using different strategies.
The obtained outputs were then used to initialize an NMF
method which refines them. The efficiency of our approach
was experimentally validated, first in an ideal configuration
involving artificial sources, then using realistic simulated data
and finally using real data (without ground truth). The test
results thus obtained show the attractiveness of using our
modified ICA as a pre-processing stage for NMF, compara-
tively to classical methods. This motivates us to continue this
work by determining the performance of our method for other
abundance fraction maps mixed with other spectra, and for
other real recorded hyperspectral images.

APPENDIX A

Among the first (M−1) sources involved in (8), suppose K
reconstructed sources s̃m(n) (corresponding to a first set D1)
are computed using the wrong formula and the (M − 1−K)
others (represented by a second set D2) are reconstructed by
the right one. There are 3 possible cases:
(1) K = 0, i.e. all the sources are correctly reconstructed. In
this case the criterion (15) yields:

Q(n) = 1−
M−1
∑

m=1

sm(n) = sM (n) (22)

which corresponds to the M th actual abundance fraction
whose value is between 0 and 1.
(2) 1 ≤ K ≤ M − 2, such that D1 and D2 each contain at
least one source. The criterion (15) becomes in this case:

Q(n) = 1−
∑

i∈D1

(1− si(n))−
∑

j∈D2

sj(n)

= 1−K +
∑

i∈D1

si(n)−
∑

j∈D2

sj(n). (23)

In a pure pixel n corresponding to one of the sources in D2,
the value of that source is equal to one while all the other
sources are zero. Thus, from (23), Q(n) = −K ≤ −1 in that
pixel.

(3) K = M − 1, such that all the sources are inverted. In this
case:

Q(n) = 1−
M−1
∑

i=1

(1− si(n)) = 1− (M − 1) +
M−1
∑

i=1

si(n)

= 2−M + (1− sM (n)) = 3−M − sM (n).

In a pure pixel where sM (n) = 1, the criterion becomes
Q(n) = 2−M ≤ −1 if M > 2.
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