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Abstract

We investigate a resource allocation problem in a multi-class server with convex holding
costs and user impatience under the average cost criterion. In general, the optimal policy has a
complex dependency on all the input parameters and state information. Our main contribution
is to derive index policies that can serve as heuristics and are shown to give good performance.
Our index policy attributes to each class an index, which depends on the number of customers
currently present in that class. The index values are obtained by solving a relaxed version of
the optimal stochastic control problem and combining results from restless multi-armed bandits
and queueing theory. They can be expressed as a function of the steady-state distribution
probabilities of a one-dimensional birth-and-death process. For linear holding cost, the index
can be calculated in closed-form and turns out to be independent of the arrival rates and the
number of customers present. In the case of no abandonments and linear holding cost, our
index coincides with the cµ-rule, which is known to be optimal in this simple setting. For
general convex holding cost we derive properties of the index value in limiting regimes: we
consider the behavior of the index (i) as the number of customers in a class grows large, which
allows us to derive the asymptotic structure of the index policies, (ii) as the abandonment rate
vanishes, which allows us to retrieve an index policy proposed for the multi-class M/M/1 queue
with convex holding cost and no abandonments, and (iii) as the arrival rate goes to either 0
or ∞, representing light-traffic and heavy-traffic regimes, respectively. We show that Whittle’s
index policy is asymptotically optimal in both light-traffic and heavy-traffic regimes. To obtain
further insights into the index policy, we consider the fluid version of the relaxed problem and
derive a closed-form expression for the fluid index. The latter is shown to coincide with the index
values for the stochastic model in asymptotic regimes. For arbitrary convex holding cost the
fluid index can be seen as the Gcµ/θ-rule, that is, including abandonments into the generalized
cµ-rule (Gcµ-rule). Numerical experiments for a wide range of parameters have shown that
the Whittle index policy and the fluid index policy perform very well for a broad range of
parameters.

1 Introduction

In this paper our objective is to develop a unifying framework to obtain well performing control
policies in a multi-class single-server queue with convex holding costs and impatient customers.

∗The PhD fellowship of Maialen Larrañaga is funded by a research grant of the Foundation Airbus Group
(http://fondation.airbus-group.com/). A shorter version of this paper was published in the Proceedings of ACM
Sigmetrics 2014 [30].
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The single-server queue is the canonical model to study resource allocation problems and it can
be considered as one of the most classical decision problems. It has been widely studied due to its
applicability to any situation where a single-resource is shared by multiple concurrent customers.
Abandonment or reneging takes place when customers, unsatisfied of their long waiting time, decide
to voluntarily leave the system. It has a huge impact in various real life applications such as the
Internet or call centers, where customers may abandon while waiting in the queue, or even while
being served. In the presence of abandonments and/or convex holding cost, a characterization of
the optimal control is out of reach, due to the curse of dimensionality.

When the holding costs are linear and customers are not impatient, a classical result shows that
the celebrated cµ-rule rule is optimal, that is, to serve the classes in decreasing order of priority
according to the product ckµk, where ck is the holding cost per class-k customer, and µ−1

k is the
mean service requirement of class-k customers, [16, 22]. The cµ-rule is a so-called index policy,
that is, the solution to the stochastic control problem is characterized by an index, ckµk, which
determines which customer is optimal to serve. This simple structure of the optimal policy vanishes
however in the presence of convex costs and/or impatient customers. The optimal policy will in
general be a complex function of all the input parameters function and the number of customers
present in all the classes.

Optimality of index policies has enjoyed a great popularity. The solution to a complex control
problem that, a priori, might depend on the entire state space, turns out to have a strikingly simple
structure. For instance, in the case of the cµ-rule, the solution does not depend on the number of
customers in the various classes. Another classical result that can be seen as an index policy is the
optimality of Shortest-Remaining-Processing-Time (SRPT), where the index of each customer is
given by its remaining service time. Both examples fit the general context of Multi-Armed Bandit
Problems (MABP). A MABP is a particular case of a Markov Decision Process: at every decision
epoch the scheduler needs to select one bandit, and an associated reward is accrued. The state of
this selected bandit evolves stochastically, while the state of all other bandits remain frozen. The
scheduler knows the state of all bandits, the rewards in every state, and the transition probabilities,
and aims at maximizing the total average reward. In a ground-breaking result Gittins showed that
the optimal policy that solves a MABP is an index-rule, nowadays commonly referred to as Gittins’
index [23]. Thus, for each bandit, one calculates an index that depends only on its own current
state and stochastic evolution. The optimal policy activates in each decision epoch the bandit with
highest current index.

Despite its generality, in multiple cases of practical interest the problem cannot be cast as
a MABP. In a seminal work [40], Whittle introduced the so-called Restless Multi-Armed Bandit
Problems (RMABP), a generalization of the standard MABP. In a RMABP all bandits in the
system incur a cost. The scheduler selects a number of bandits to be made active. However,
all bandits might evolve over time according to a stochastic kernel that depends on whether the
bandit is selected for service or not. The objective is to determine a control policy that optimizes
the average performance criterion. RMABP provides a more general modeling framework, but its
solution has in general a complex structure that might depend on the entire state-space description.
Whittle considered a relaxed version of the problem (where the restriction on the number of active
bandits needs to be respected on average only, and not in every decision epoch), and showed that
the solution to the relaxed problem is of index type, referred to as Whittle’s index. Whittle then
defined a heuristic for the original problem where in every decision epoch the bandit with highest
Whittle index is selected. It has been shown that the Whittle index policy performs strikingly well,
see [33] for a discussion, and can be shown to be asymptotically optimal, see [38, 36]. The latter
explains the importance given in the literature to calculate Whittle’s index. In order to calculate
Whittle’s index there are two main difficulties, first one needs to establish a technical property
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known as indexability, and second the calculation of the index might be involved or even infeasible.
In one of the main contributions of the paper, we verify indexability and calculate Whittle’s

index for the average cost criterion of the multi-class queue with abandonments and convex cost.
In fact, our model can be written as a RMABP where each class is represented by a bandit and the
state of a bandit describes the number of customers in that class. The evolution of the number of
customers being birth-and-death, the bandit is of birth-and-death type. An important observation
we make is that the Whittle index we obtain, which is expressed as a function of the steady-state
probabilities, is in fact applicable to any birth-and-death bandit. This is a simple observation
that has far reaching consequences since it allows to derive Whittle’s index for a general class of
control problems, as will be explained in the paper. Note that indexability would be needed to be
established on a case-by-case basis. For the abandonment model with convex holding cost, we prove
indexability by showing that threshold policies are optimal for the relaxed optimization problem
and using properties of the steady-state distributions.

Having characterized Whittle’s index in terms of steady-state distributions, we then apply it
to various cases. In the case of linear holding cost, we show that the Whittle’s index is a constant
that is independent of the number of customers in the system and of the arrival rate. In fact, this
index policy (with linear holding cost) coincides with the index policies as proposed in [9] and [7],
for specific model assumptions, and is asymptotically optimal for a multi-server environment. For
general convex holding cost we derive properties of the index value in limiting regimes: we consider
the behavior of the index (i) as the number of customers in a class grows large, which allows us to
derive the asymptotic structure of the index policies, ii) as the abandonment rate vanishes, which
allows us to retrieve an index policy proposed for the multi-class M/M/1 queue with convex holding
cost and no abandonments, and (iii) as the arrival rate goes to either 0 or ∞, representing light-
and heavy-traffic regimes, respectively.

In another main result we show asymptotic optimality of Whittle’s index policy in both light
traffic and heavy traffic. We do so by establishing that for these two limiting regimes, the solution
to the relaxed version of the optimization problem is a feasible policy for the original optimization
problem.

Our index is expressed as a function of the steady-state probabilities and it can thus efficiently be
calculated, but it does not always allow to obtain qualitative insights. We therefore formulate a fluid
version of the relaxed optimization problem, where the objective is bias optimality, i.e., to determine
the policy that minimizes the cost of bringing the fluid to its equilibrium. We show how to derive
an index for the fluid model, and we compare it with Whittle’s index as obtained for the stochastic
model. The advantage of the fluid approach lies in its relatively simple expressions compared to the
stochastic one. It shows equivalence with the Gcµ/θ-rule, that is, including abandonments into the
generalized cµ-rule (Gcµ-rule) and provides useful insights on the dependence on the parameters.
For linear holding cost the Whittle index and the fluid index are identical. In asymptotic regimes
such as light-traffic, heavy-traffic, and as the value of the state grows large the Whittle index and
the fluid index are equivalent.

Numerical experiments show that our index policies, in addition to being optimal in light traffic
and heavy traffic, perform very well across all traffic loads.

In summary the main contributions of this paper are:

• Obtain Whittle’s index for a multi-class queue with convex holding costs and abandonments
under average cost criterion.
• Establish optimality of threshold policies and indexability for the relaxed optimization prob-

lem.
• For linear holding costs Whittle’s index is independent on the arrival rate and number of
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customers present in a class.
• Establish asymptotic optimality of Whittle’s index policy in a light-traffic and heavy-traffic

regime.
• Development of a fluid-based approach to derive a closed-form index policy for general holding

cost.
• Establish equivalence of the fluid index and Whittle’s index in the light-traffic regime and as

the state of the system grows large.

The paper is organized as follows. In Section 2 we give an overview of related work and in
Section 3 we describe the model. In Section 4 we present the relaxation of the original problem and
show that threshold policies are optimal. We establish indexability and calculate Whittle’s index
under the average cost criterion. In Section 5 we explain a heuristic index policy, based on Whittle’s
index, for the original optimization problem. In Section 6 we calculate Whittle’s index for linear
holding cost and derive properties for general convex holding costs in several limiting regimes. In
Section 7 we calculate the index for an M/M/1 queue without abandonments. Section 8 describes
our asymptotic optimality results. In Section 9 we present the fluid model and derive the fluid
index. Finally, in Section 10 we numerically evaluate the performance of Whittle’s index policy
and the fluid index policy. Most of the proofs are presented in the appendix.

2 Related Work

There are four main literature bodies that are relevant to our work: literature on (i) index policies
for resource allocation problems, (ii) scheduling with convex costs, (iii) scheduling in the presence
of impatient customers, and (iv) fluid-based scheduling. We provide below a brief summary of some
of the main contributions in each of the domains.

(i) The seminal work on the optimality of index policies for MABP is in the book by Gittins
et. al. [23]. The optimality of the cµ-rule in a multi-class single server queue, i.e., strict priority
is given according to the indices cµ, is shown in [16, 22] in the preemptive and non-preemptive
cases. Index policies for RMABP were introduced in the seminal paper [40]. In [33] the author
develops an algorithm that allows to establish whether a problem is indexable, and if yes, to
numerically calculate, in an efficient way, Whittle’s index. Under the assumption that an ODE has
an equilibrium point and that all bandits are symmetric, in [38] it is shown that Whittle’s index
policy is asymptotically optimal as the number of bandits and the number of bandits that can be
made active grow to infinity, while their ratio is kept constant. This result is generalized in [36]
to the case in which there are various classes of bandits, and new bandits can arrive over time.
In addition to resource allocation problems, Whittle’s index has been applied in a wide variety of
cases, including opportunistic spectrum access, website morphing, pharmaceutical trials and many
others, see for example [23, Chapter 6]. The recent survey paper [25] is a good up-to-date reference
on the application of index policies in scheduling.

(ii) A seminal paper on scheduling in the presence of convex costs is [35], where the author
introduced the Generalized-cµ-rule (Gcµ) and showed its optimality in heavy-traffic for convex
delay cost. The Gcµ-rule associates to each class-i customer with experienced delay di the index
C ′i(di)µi, where Ci(·) denotes the class-i delay cost. The optimality of the Gcµ-rule in a heavy-
traffic setting with multiple servers was established in [32]. In [3] the authors calculate Whittle’s
index policy for a multi-class queue with general holding cost functions. In [15], convex holding
costs are considered as well and, taking a stochastic approach, the author obtains an index rule
that consists on first-order differences of the cost function, rather than on its derivatives.
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(iii) The impact of abandonments has attracted considerable interest from the research com-
munity, with a surge in recent years. To illustrate the latter, we can mention the recent Special
Issue in Queueing Systems on queueing systems with abandonments [27] and the survey paper [19]
on abandonments in a many-server setting. Related literature that is more close to our present
work consists of papers that deal with optimal scheduling or control aspects of multi-class queueing
systems in the presence of abandonments, see for instance [24, 4, 6, 20, 7, 9, 5, 28, 29, 13]. Note
that, with the exception of [5], these papers consider linear holding cost. In the case of one server,
the authors of [20, 13] show that (for exponential distributed service requirements and impatience
times) under an additional condition on the ordering of the abandonment rates, an index policy is
optimal for linear holding cost. In the case of no arrivals and non-preemptive service, the authors
of [4] provide partial characterizations of the optimal policy and show that an optimal policy is
typically state dependent. As far as the authors are aware, the above two settings are the only
ones for which structural optimality results have been obtained. State-dependent heuristics for the
multi-class queue are proposed in [4] for two classes and no arrivals and in [24] for an arbitrary
number of classes including new arrivals. In [9] the authors obtain Whittle’s index for a multi-class
abandonment queue without arrivals, that is, each customer is a bandit and the state of a bandit is
either present or departed. In an overload setting the abandonment queue has been studied under
a fluid scaling in [6, 7], where the authors scale the number of servers and the arrival rate and show
that an index rule is asymptotically fluid optimal. In our analysis we will show how the indices
of [9] and [6, 7] coincide with the Whittle’s index rule in the case of linear holding costs and in
the presence of arrivals. In [29] the optimal policy is obtained for two classes of customers for a
fluid approximation of the stochastic model, which allows to propose a heuristic for the stochastic
model for an arbitrary number of classes. We finally mention [5, 28] where the authors derive index
policies by studying the Brownian control problem arising in heavy traffic. In [5] general delay costs
are considered while in [28] the impatience of customers has a general distribution with increasing
failure rate.

(iv) The approach of using the fluid control model to find an approximation for the stochastic
optimization problem finds its roots in the pioneering works by Avram et al. [8] and Weiss [39]. It
is remarkable that in some cases the optimal control for the fluid model coincides with the optimal
solution for the stochastic problem. See for example [8] where this is shown for the cµ-rule in a
multi-class single-server queue and [11] where this is shown for Klimov’s rule in a multi-class queue
with feedback. For other cases, researchers have aimed at establishing that the fluid control is
asymptotically optimal, that is, the fluid-based control is optimal for the stochastic optimization
problem after a suitable scaling, see for example [10, 21, 37]. We conclude by mentioning that
the fluid approach owes its popularity to the groundbreaking result stating that if the fluid model
drains in finite time, the stochastic process is stable, see [18].

3 Model Description

We consider a multi-class single-server queue with K classes of customers. Class-k customers
arrive according to a Poisson process with rate λk and have an exponentially distributed service
requirement with mean 1/µk, k = 1, . . . ,K. We denote by ρk := λk/µk the traffic load of class k,
and by ρ :=

∑K
k=1 ρk the total load to the system. We model abandonments of customers in the

following way:

• Any class-k customer not served abandons after an exponentially distributed amount of time
with mean 1/θk, k = 1, . . . ,K, with θk > 0.

5



• A class-k customer that is being served abandons after an exponentially distributed amount
of time with mean 1/θ′k, k = 1, . . . ,K, with θ′k ≥ 0.

The server has capacity 1 and can serve at most one customer at a time, where the service can be
preemptive. We make the following natural assumption:

µk + θ′k ≥ θk, for all k.

That is, the departure rate of a class-k customer is higher when being served than when not being
served.

At each moment in time, a policy ϕ decides which class is served. Because of the Markov
property, we can focus on policies that only base their decisions on the current number of customers
present in the various classes. For a given policy ϕ, Nϕ

k (t) denotes the number of class-k customers

in the system at time t, (hence, including the one in service), and ~Nϕ(t) = (Nϕ
1 (t), . . . , Nϕ

K(t)). Let
Sϕk (~n) ∈ {0, 1} represent the service capacity devoted to class-k customers at time t under policy

ϕ in state ~N(t) = ~n. The constraint on the service amount devoted to each class is Sϕk (~n) = 0 if
nk = 0 and

K∑
k=1

Sϕk (~n) ≤ 1, (1)

and we denote by U the set of admissible control strategies that satisfy this constraint.
The above describes a birth-and-death process that makes a transitions

~n→ ~n+ ~ek with rate λk, and,

~n→ ~n− ~ek with rate µkS
ϕ
k (~n) + θk(nk − Sϕk (~n)) + θ′kS

ϕ
k (~n),

for nk > 0, with ~ek a K-dimensional vector with all zeros except for the k-th component which is
equal to 1.

Let Ck(n, a) denote the cost per unit of time when there are n class-k customers in the system
and when either class k is not served (if a = 0), or when class k is served (if a = 1). We assume
Ck(·, 0) and Ck(·, 1) are convex and non-decreasing functions and satisfy

Ck(n, 0)− Ck((n− 1)+, 0) ≤ Ck(n+ 1, 1)− Ck(n, 1) ≤ Ck(n+ 1, 0)− Ck(n, 0), (2)

for all n ≥ 0. Observe that if Ck(0, 0) ≥ Ck(0, 1), then (2) implies that, for all n, Ck(n, 0) ≥ Ck(n, 1).
We also note that (2) is always satisfied when (i) Ck(n, a) = Ck(n), or when (ii) Ck(n, a) =
Ck((n − a)+). Case (i) represents holding costs for customers in the system, while (ii) represents
holding costs for customers in the queue.

We further introduce a cost dk for every class-k customer that abandons the system when not
being served and a cost d′k for a class-k customer that abandons the system while being served.

The objective of the optimization is to find the optimal scheduling policy, denoted by OPT ,
under the average-cost criteria, that is, find the policy ϕ that minimizes

Cϕ := lim sup
T→∞

K∑
k=1

1

T
E
(∫ T

0
Ck(N

ϕ
k (t), Sϕk ( ~Nϕ(t))) dt+ dkR

ϕ
k (T ) + d′kR

′ϕ
k (T )

)
, (3)

where Rϕk (T ) and R′ϕk (T ) denote the number of class-k customers that abandoned the queue while
waiting and while being served, respectively, in the interval [0, T ] under policy ϕ. We denote by
COPT = infϕ∈U Cϕ the average cost under the optimal policy.
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We have

E(Rϕk (T )) = θkE
(∫ T

0
(Nϕ

k (t)− Sϕk ( ~Nϕ(t)))dt

)
and

E(R′ϕk (T )) = θ′kE
(∫ T

0
Sϕk ( ~Nϕ(t))dt

)
,

by Dynkin’s formula [2, Chapter 6.5]. We introduce the following notation:

C̃k(nk, a) := Ck(nk, a) + dkθk(nk − a)+ + d′kθ
′
k min(a, nk), a ∈ {0, 1} (4)

so that the objective (3) can be equivalently written as

lim sup
T→∞

K∑
k=1

1

T
E
(∫ T

0
C̃k(N

ϕ
k (t), Sϕk ( ~Nϕ(t))) dt

)
. (5)

The above described stochastic control problems have proved to be very difficult to solve.
Already for the special case of linear holding cost, deriving structural properties of optimal policies
is extremely challenging. For example, in [20] optimal dynamic scheduling is studied for two classes
of customers (K = 2), with dk = d′k, θk = θ′k, µ1 = µ2 = 1, and linear holding cost, Ck(n, a) = ckn.
Define c̃k := ck + dkµk. For the special case where c̃1 ≥ c̃2 and θ1 ≤ θ2, the authors show that
it is optimal to give strict priority to class 1, see [20, Theorem 3.5]. It is intuitively clear that
giving priority to class 1 is the optimal thing to do, since serving class 1 myopically minimizes the
(holding and abandonment) cost and in addition it is advantageous to keep the maximum number
of class-2 customers in the system (without idling), since they have the highest abandonment rate.
In [13] optimal dynamic scheduling is studied for Ck(n, a) = ckn, dk = d′k, and either θk = θ′k
or θ′k = 0. For the special case where the classes can be ordered such that c̃1 ≥ · · · ≥ c̃K ,
c̃1(µ1 + θ′1− θ1) ≥ · · · ≥ c̃K(µK + θK − θ′K), and c̃1(µ1 + θ′1− θ1)/θ1 ≥ . . . ≥ c̃K(µK + θ′K − θK)/θK ,
the authors show that it is optimal to give strict priority according to the ordering 1 > 2 > . . . > k.

Outside these special parameter settings, or for convex holding cost, an optimal policy is ex-
pected to be state dependent, and as far as the authors are aware, no (structural) results exist for
this stochastic optimal control problem.

In order to obtain insights into optimal control for convex holding cost, in this paper we will
solve a relaxed version of the optimization problem. The latter allows us to propose a heuristic for
the original model, which we will prove to be optimal in light and heavy traffic. The details of the
relaxation technique are described in the next section.

4 Relaxation and Indexability

The solution to (5) under constraint (1) cannot be solved in general. Following Whittle [40], we
study the relaxed problem in which the constraint on the service devoted to each class must be
satisfied on average, and not in every decision epoch. The control policy must thus satisfy

lim sup
T→∞

1

T
E

(∫ T

0

K∑
k=1

Sϕk ( ~Nϕ(t))dt

)
≤ 1, (6)

or equivalently lim supT→∞
1
T E
(∫ T

0

∑K
k=1(1− Sϕk ( ~Nϕ(t)))dt

)
≥ K − 1. We denote by UREL the

set of policies that satisfy (6), and we note that U ⊆ UREL.
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The objective of the relaxed problem is hence to determine the policy that solves (5) under con-
straint (6). A standard Lagrangian argument shows that this problem can be solved by considering
the following unconstrained control problem: find a policy ϕ that minimizes

Cϕ(W ) := lim sup
T→∞

1

T
E

(∫ T

0

( K∑
k=1

C̃k(N
ϕ
k (t), Sϕk ( ~Nϕ(t))) −W (1−K +

K∑
k=1

(1− Sϕk ( ~Nϕ(t))))

)
dt

)
, (7)

where W is the Lagrange multiplier. For a given W , let REL(W ) denote a policy that minimizes
(7), and let CREL(W )(W ) := minϕ∈UREL Cϕ(W ) denote the optimal performance of the relaxed

problem. For any value of the multiplier W ≥ 0, it holds that CREL(W )(W ) ≤ COPT . To see this,
note that for a given W ≥ 0 and ϕ ∈ U it holds that

CREL(W )(W ) ≤ Cϕ(W ) ≤ Cϕ.

The first inequality follows by definition of REL(W ), and the second inequality follows from the
fact that 1−K +

∑K
k=1(1− Sϕk ( ~Nϕ(t))) ≥ 0 for a policy ϕ ∈ U .

The key observation made by Whittle is that problem (7) can be decomposed into K subprob-
lems, each corresponding to a different class (or bandit when using terminology from the RMABP
literature). Thus, the solution to (7) is obtained by combining the solution to K separate opti-
mization problems. For the remainder of this section we focus on the optimization problem of one
class and drop the dependency on the class from the notation. For a given W we hence consider
the individual optimization problem for a given class, that is, minimize

gϕ(W ) := lim sup
T→∞

1

T
E
(∫ T

0

(
C̃(Nϕ(t), Sϕ(Nϕ(t))) −W (1− Sϕ(Nϕ(t)))

)
dt

)
, (8)

where now Nϕ(t) is the state of a given class at time t. Under a stationarity assumption, we can
invoke ergodicity to show that (8) is equivalent to minimizing

gϕ(W ) = E(C̃(Nϕ, Sϕ(Nϕ))−WE(1Sϕ(Nϕ)=0), (9)

where Nϕ denotes the steady-state number of customers in a class under policy ϕ. We observe that
the multiplier W can be interpreted as a subsidy for passivity.

In summary, the relaxed optimization problem can be written asK independent one-dimensional
Markov Decision Problems (8). In Section 4.1 we will determine the structure of the optimal control
of the relaxed problem (8). In Section 4.2 and Section 4.3 we derive Whittle’s index and describe
the optimal solution of the relaxed problem.

4.1 Threshold policies

In the following proposition we show that an optimal solution of the relaxed problem (8) is of
threshold type, i.e., when the number of customers is above a certain threshold n, the class is
served, and not served otherwise. We denote by ϕ = n, n = −1, 0, 1, . . . , the threshold policy with
threshold n, that is, Sn(m) = 1 if m > n, and Sn(m) = 0 otherwise.

Proposition 1 There is an n = −1, 0, 1, . . . , such that the policy ϕ = n is an optimal solution of
the relaxed problem (8).
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Proof. The value function V (n) satisfies the Bellman optimality equation for average cost models
[34], that is,

(µ+ θ′ +mθ + λ)V (m) + g = λV (m+ 1) + θ(m− 1)V ((m− 1)+)

+ min{C̃(m, 0)−W + (µ+ θ′)V (m) + θV ((m− 1)+), C̃(m, 1) + (µ+ θ′)V ((m− 1)+) + θV (m)},
(10)

where g is the average cost incurred under an optimal policy. Proving optimality of a threshold
policy is hence equivalent to showing that if it is optimal in (10) for state m + 1, m ≥ 0 to be
passive, then it is also optimal in (10) for state m to be passive, i.e., C̃(m + 1, 0) − W + (µ +
θ′ − θ)V (m + 1) ≤ C̃(m + 1, 1) + (µ + θ′ − θ)V (m), implies C̃(m, 0) −W + (µ + θ′ − θ)V (m) ≤
C̃(m, 1) + (µ + θ′ − θ)V ((m − 1)+). A sufficient condition for the above to be true is (2) together
with the inequality V (m+ 1) + V ((m− 1)+) ≥ 2V (m), for m ≥ 0. The latter condition, convexity
of the value function, will be proved below, which concludes the proof.

In case of bounded transition rates, one can uniformize the system and use value iteration in
order to prove convexity. However, our transition rates are unbounded. We therefore consider the
truncated space, truncated by L > 1, and smooth the arrival transition rates from m to m + 1 as
follows:

qϕ,L(m,m+ 1) := λ
(

1− m

L

)+
= λmax

(
0, 1− m

L

)
,

m = 0, . . . , L. Denote by V L(m) the value function of the L-truncated system. After verifying
two conditions, (as done in Appendix A.1), we have by [14, Theorem 3.1] that V L(m)→ V (m) as
L→∞. Hence, convexity of the function V is implied by convexity of V L for all L, and we are left
with proving the latter. The latter is uniformizable, hence we can use the value iteration technique
in order to prove convexity of V L. This proof is available in Appendix A.2. �

Below we write the steady-state distribution of threshold policy ϕ = n. We denote the steady-
state probability of being in state i under policy ϕ = n by πn(i). We have

πn(i) =

i∏
m=1

qn(m− 1,m)

qn(m,m− 1)
πn(0), i = 1, 2, . . . , (11)

where πn(0) =

(
1 +

∑∞
i=1

∏i
m=1

qn(m− 1,m)

qn(m,m− 1)

)−1

and

qn(m,m− 1) :=

{
θm for all m ≤ n,
µ+ θ′ + θ(m− 1) for all m > n,

qn(m,m+ 1) := λ, for all m. (12)

Remark 1 In Proposition 1 we established optimality of threshold policies for problem (8) in the
case µ+ θ′ ≥ θ and when (2) is satisfied.If instead µ+ θ′ < θ, and in addition C̃(m, 1) > C̃(m, 0)
for all m (but without requiring (2) to hold), then (for W ≥ 0) the optimal policy is to be passive
in all states m. This can be easily seen from Equation (10), since being always passive is optimal
if for all m

C̃(m, 0)−W + (µ+ θ′ − θ)V (m) ≤ C̃(m, 1) + (µ+ θ′ − θ)V ((m− 1)+).

The latter follows from the above assumptions and the fact that the value function V is non-
decreasing. The proof of V being a non-decreasing function follows as in Appendix A.2.

In other cases, we have numerically observed that threshold policies are optimal, but we have
not established this formally.
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4.2 Indexability and Whittle’s index

Indexability is the property that allows to develop a heuristic for the original problem. This property
requires to establish that as the subsidy for passivity, W , increases, the collection of states in which
the optimal action is passive increases. It was first introduced by Whittle [40] and we formalize it
in the following definition.

Definition 1 A class is indexable if the set of states in which passive is an optimal action (denoted
by D(w)) increases in W , that is, W ′ < W ⇒ D(W ′) ⊆ D(W ).

Note that an optimal solution of problem (8) is a threshold policy, or more specifically, if it is
optimal to be passive in state m, m ≥ 1, then it is also optimal to be passive in state m−1, see the
proof of Proposition 1. We can therefore equivalently write the following definition for indexability.

Definition 2 Let n(W ) denote the largest value of n such that the threshold policy n minimizes
(8). A class is indexable if n(W ) is non-decreasing in W , that is, W ′ < W ⇒ n(W ′) ≤ n(W ).

Provided we can establish indexability, the Whittle index in a state m is defined as the smallest
value for the subsidy such that it is optimal to be passive in state m. Formally:

Definition 3 When a class is indexable, the Whittle index in state m is defined by W (m) :=
inf {W : m ≤ n(W )} .

The solution to the relaxed control problem (7), i.e., REL(W ), will then be to activate all
classes k that are in a state nk such that their Whittle’s index exceeds the subsidy for passivity,
i.e., Wk(nk) > W . A standard Lagrangian argument shows that there exists a value of W (possibly
negative) for which the constraint (6) is binding, i.e., the optimal policy ϕ that solves Problem (7)
will on average activate one class.

Obviously, the solution to the relaxed optimization problem is not feasible for the original
problem. Following Whittle, we use Whittle’s index to construct the following heuristic for the
original problem (5) under the constraint (1): select in every decision epoch the class with largest
Whittle index. We will formally describe this in Section 5.

To conclude this subsection we show that for the model under consideration, the classes are
indexable.

Proposition 2 All classes are indexable.

Proof. Since an optimal policy for (8) is of threshold type, for a given subsidy W the optimal
average cost is given by g(W ) := minn{g(n)(W )}, where

g(n)(W ) :=

∞∑
m=0

C̃(m,Sn(m))πn(m)−W
n∑

m=0

πn(m), (13)

is the average cost under threshold policy n. The function g(W ) is a lower envelope of affine
non-increasing functions in W (see Figure 1, where we depict the lower-envelope for the case of
quadratic cost). It thus follows that g(W ) is a concave non-increasing function.

It follows directly that the right-derivative of g(W ) in W is given by −
∑n(W )

m=0 π
n(W )(m). More-

over, we will prove below that
∑n

m=0 π
n(m) is strictly increasing in n. Since g(W ) is concave in

W , its first derivative −
∑n(W )

m=0 π
n(W )(m) is non-increasing in W . It hence follows that n(W ) is

non-decreasing in W , that is, this class is indexable (see Definition 2).
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Figure 1: Lower envelop g = minn{g(n)} when C̃(n, a) = (1 + 2θ)n + 3n2, for a = 0, 1, and
θ = 6, λ = 23, µ = 10.

We now prove that
∑n

i=0 π
n(i) is strictly increasing in n, or equivalently, that 1−

∑∞
i=n+1 π

n(i)
is strictly decreasing in n. Using (11), the latter is equivalent to verifying that∑∞

m=n+1

∏m
i=1

qn(i−1,i)
qn(i,i−1)∑∞

m=n

∏m
i=1

qn−1(i−1,i)
qn−1(i,i−1)

<
1 +

∑∞
m=1

∏m
i=1

qn(i−1,i)
qn(i,i−1)

1 +
∑∞

m=1

∏m
i=1

qn−1(i−1,i)
qn−1(i,i−1)

, (14)

holds for all n, where qn(·, ·) are defined in (12). Note that qn(m− 1,m) = qn−1(m− 1,m) for all
m and qn(m,m − 1) = qn−1(m,m − 1) for all m 6= n. From the assumption µ + θ′ ≥ θ we have
qn(n, n − 1) ≤ qn−1(n, n − 1). Hence, the left-hand-side of (14) is strictly less than 1, while the
right-hand-side is larger than or equal to 1. This proves (14). �

4.3 Derivation of Whittle’s index

We are now in position of deriving Whittle’s index. An optimal policy is fully characterized by a
threshold n such that the passive action is prescribed for states m ≤ n, and the active action for
states m > n. Our key observation to derive Whittle’s index is that it is not necessary to solve the
optimality equation (10), but that it suffices to determine the average cost for threshold policies. In
turn, the average reward g can be expressed as a function of the steady-state probabilities, which
in the case of birth-and-death processes has a well-known solution.

We can now state one of the main results of the paper, which describes the steps to obtain
Whittle’s index. The proof of Theorem 1 can be found in Appendix B.

Theorem 1 Whittle’s index values are computed by the following steps:

• Step 0 Compute

W0 = inf
n∈N∪{0}

E(C̃(Nn, Sn(Nn)))− E(C̃(N−1, S−1(N−1)))∑n
m=0 π

n(m)
,

and name by n0 the largest minimizer. Then, define W (n) := W0 for all n ≤ n0. If n0 =∞
define W (n) := W0 for all n > n0, otherwise go to Step 1.
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• Step j Compute

Wj = inf
n∈N\{0,...,nj−1}

E(C̃(Nn, Sn(Nn)))− E(C̃(Nnj−1 , Snj−1(Nnj−1)))∑n
m=0 π

n(m)−
∑nj−1

m=0 π
nj−1(m)

, j ≥ 1,

and name by nj the largest minimizer. Then, define W (n) := Wj for all nj−1 < n ≤ nj. If
nj =∞ then W (n) = Wj for all n > nj, otherwise go to step j + 1.

In the next corollary we characterize the Whittle index in the particular case in which ni = i for
all i ∈ N ∪ {0}, with ni as defined in Theorem 1.

Corollary 1 If
E(C̃(Nn, Sn(Nn)))− E(C̃(Nn−1, Sn−1(Nn−1)))∑n

m=0 π
n(m)−

∑n−1
m=0 π

n−1(m)
, (15)

is non-decreasing in n, then Whittle’s index W (n) is given by (15). In particular, W (0) = C̃(0, 0)−
C̃(0, 1).

Proof. Let W̃ (n) be the value for the subsidy such that the average cost under threshold policy n is
equal to that under policy n− 1. Hence, using (9), we have that for all n ≥ 1, E(C̃(Nn, Sn(Nn))−
W̃ (n)E(1Sn(Nn)=0) is equal to E(C̃(Nn−1, Sn−1(Nn−1)) − W̃ (n)E(1Sn−1(Nn−1)=0). For threshold

policy n we have E(1Sn(Nn)=0) =
∑n

m=0 π
n(m), hence W̃ (n) is given by (15).

A direct consequence of Theorem 1 is that W̃ (n) being non-decreasing, implies that g(W̃ (n)) =
g(n)(W̃ (n)) = g(n−1)(W̃ (n)). We therefore have g(W ) = g(n−1)(W ) for W̃ (n − 1) ≤ W ≤ W̃ (n).
This implies that Whittle’s index is given by W (n) = W̃ (n).

To show that W (0) = C̃(0, 0)− C̃(0, 1), observe that π0(m) = π−1(m) for all m. Hence,

W (0) =
E(C̃(N0, S0(N0)))− E(C̃(N−1, S−1(N−1)))

π0(m)
=
C̃(0, 0)π0(0)− C̃(0, 1)π−1(0)

π0(0)

= C̃(0, 0)− C̃(0, 1),

where the first equality holds due to W (n) being non-decreasing. �

Whittle’s index as defined in Theorem 1 and Equation (15) can be numerically computed, since
the cost function and the steady-state probabilities are known. In Section 6 closed-form expressions
and limiting properties for Whittle’s index will be derived for special cases.

We could not prove that Whittle’s index W (n) as given in (15) is non-decreasing in n. However,
in many particular cases this property can be established. For instance,

• In the case µ+ θ′ = θ, we have πn(m) = πn−1(m) for all m. Hence (15) can be written as

C̃(n, 0)πn(n)− C̃(n, 1)πn−1(n)

πn(n)
= C̃(n, 0)− C̃(n, 1). (16)

By condition (2) we have that C̃(n, 0) − C̃(n, 1) ≤ C̃(n + 1, 0) − C̃(n + 1, 1), hence (15) is
non-decreasing in n. This implies that Whittle’s index is given by (16).

• In Proposition 3 it will be proved that when C(n, a) is linear in n, (15) is a constant and
therefore non-decreasing in n. Hence, Whittle’s index is given by (15).
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A few comments are in order. The first concerns the form of (15). The numerator in (15) can
be interpreted as the increase in cost by deciding to become passive in state n and keeping all
other actions unchanged, and similarly, the denominator can be understood as the corresponding
increase of passivity rate for the process, measured by the additional probability in which a subsidy
is received. Thus, W (n) can be interpreted as a measure of increased cost per unit of increased
passivity, a term coined as Marginal Productivity Index by Niño-Mora [33].

The second comment regards the applicability of Whittle’s index (15) in other contexts. Indeed
we can outline a general recipe to develop Whittle’s indices for bandits whose evolution can be
described by general birth-and-death processes:

(i) Establish optimality of monotone policies (as in Proposition 1).
(ii) Establish indexability (as in Proposition 2).

(iii) If (i) and (ii) can be established, then Whittle’s index is given by Proposition 1, where the
steady-state probabilities are as in (11).

Steps (i) and (ii) are model dependent. Step (iii) is immediate and the index will always be given
by Proposition 1.

To the best of our knowledge, it has not been reported previously that for bandits whose evolu-
tion can be described by a birth-and-death process, one can get an explicit closed-form expression
for Whittle’s index. Perhaps a reason for this lies in the difficulty to solve the optimality equation
(10), which has two unknowns g and V (m), This has led researchers to circumvent this difficulty
by considering the discounted cost first, equating the total discounted costs as done in Theorem 1
for average cost and then taking the limit in order to retrieve an index for the average cost case.
This is for instance the approach taken in [3] to derive an index for convex costs without aban-
donments or in [23, Section 6.5] for bi-directional bandits in which the active and passive actions
push the process in opposite directions. In [26] the authors develop an algorithm to calculate an
index in a multi-class queue with admission control. All these models have in common that after
the relaxation, the bandits are birth-and-death, and the obtained Whittle’s index is thus equal to
(15). We will explain in Section 7 how to derive the index of [3] using the approach as taken in our
paper. Regarding the bi-directional bandit it can be directly checked that index (15) is equivalent
to the index of [23, Theorem 6.4]. Finally, we note that by adapting the cost structure we obtain
that index (15) is equivalent to that of [26, Theorem 2].

Having made this remark on the applicability of (15) in a wider context, in the remainder of the
paper we will discuss the properties of Whittle’s index (15) in the context of a queue with convex
costs and abandonments.

5 Whittle’s index policy

In this section we describe how the solution to the relaxed optimization problem is used to obtain
a heuristic for the original stochastic model. The optimal control for the relaxed problem is not
feasible for the original stochastic model, since in the latter at most one class can be served at a
time. Whittle [40] therefore proposed the following heuristic, which is nowadays known as Whittle’s
index policy:

Definition 4 (Whittle’s index policy) Assume at time t we are in state ~N(t) = ~n. Whittle’s
index policy prescribes to serve the class k having currently the highest non-negative Whittle’s index
Wk(nk), as defined in Proposition 1 (after adding subscript k). We refer to this policy as WI.

Note that in case all classes have a negative index, we define that Whittle’s index policy will keep
the server idle (until there is a class having a positive value for its index). This follows, since, when
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the Whittle’s index is negative, in the relaxed problem you will keep the class passive even though
a negative subsidy is given. A formal explanation is given in [36] by the introduction of dummy
bandits.

When C̃k(mk, 0) ≥ C̃k(mk, 1) for all mk, the Whittle index Wk(nk) will always be positive. This
can be seen as follows. Recall that Wk(nk) refers to the value of W such that a threshold policy nk
is an optimal solution of the relaxed problem. Hence, for all mk ≤ nk, it is optimal to keep the class
passive, that is, C̃k(mk, 0)−Wk(nk) + (µk + θ′k− θk)V (mk) ≤ C̃k(mk, 1) + (µk + θ′k− θk)V (mk− 1),
as we saw in the proof of Proposition 1. Since C̃k(mk, 0) ≥ C̃k(mk, 1), µk + θ′k ≥ θk, and V (·) is
non-decreasing (see proof of Proposition 1), it follows that Wk(nk) ≥ 0.

Instead, when C̃(mk, 0) < C̃(mk, 1) for an mk, Wk(nk) can be negative for certain states nk.
For example, when θ′k = θk and d′k � dk. Then, even though the total departure rate of class-k
customers is highest when serving class k (µk + θ′k ≥ θk), for certain states nk it might be better
not to serve class k. The latter follows since having a class-k customer abandon while being served,
will incur a much higher cost than when it abandons while waiting. Hence, a negative subsidy, that
is, a cost, is needed in order for it to be optimal to serve class k.

From the practical point of view, the interest of Whittle’s index Wk(nk) as defined in Theorem 1
(after adding subscript k) lies in the fact that the index of class k does not depend on the number
of customers present in the other classes j, j 6= k. Hence, it provides a systematic way to derive
implementable policies which we will show perform very well, see Section 10, and are asymptotically
optimal in certain settings, see Section 8.

6 Case studies

In this section we further investigate properties of the obtained Whittle’s index in Theorem 1. In
Section 6.1 we obtain that the index is state-independent for linear holding cost. In Section 6.2 we
derive asymptotic properties of the index for general convex holding cost functions.

6.1 Linear holding cost

We consider here linear holding cost, that is, Ck(nk, a) = ck(nk−a)+ + c′k min(nk, a). Hence, under
this function, any class-k customer in the queue contributes with ck to the cost, and a class-k
customer in service contributes with c′k to the cost. In particular, if c′k = ck, then Ck represents
the linear holding cost of customers in the system and if c′k = 0 then Ck represents the linear
holding cost of customers in the queue. These two holding cost functions have been considered in
the literature in the context of abandonments, for example [9] considers the former, while [6] takes
the latter. From our formula (15) we will be able to obtain a full characterization of Whittle’s
index. Interestingly, we show that the Whittle’s index becomes state-independent and does not
depend on the arrival rate λk.

It will be convenient to define c̃k := ck + dkθk, k = 1, . . . ,K, which can be interpreted as the
total cost per unit of time incurred by a class-k customer in the queue. Similarly, c̃′k := c̃′k + d′kθ

′
k

denotes the total cost per unit of time incurred by a class-k customer in service.
We now present the Whittle index for linear holding cost. The proof can be found in Appendix C.

Proposition 3 Assume linear holding cost Ck(nk, a) = ck(nk − a)+ + c′k min(nk, a). Then, the
Whittle index for class k is

Wk(nk) =
c̃k(µk + θ′k)

θk
− c̃′k, for all nk. (17)
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Wk(nk) θ′k = θk, d
′
k = dk θ′k = 0

c′k = ck
c̃kµk
θk

c̃kµk
θk
− ck

c′k = 0 c̃kµk
θk

+ ck
c̃kµk
θk

Table 1: Wk(nk) for linear holding cost as in Proposition 3

An interesting feature of (17) is that it is independent of the arrival rate λk and of the number
of class-k customers present, nk. In Section 6.2 we will show that this observation only holds for
linear holding costs.

The index (17) allows for the following interpretation. Consider there is only one class-k cus-
tomer in the system and no future arrivals, we then have C̃k(1, 1) = c̃′k, C̃(1, 0) = c̃k, q

1
k(1, 0) = θk,

q0
k(1, 0) = µk +θ′k. Index (17) can equivalently be written as (µk +θ′k)

(
c̃k
θk
− c̃′k

µk+θ′k

)
, which is equal

to q0
k(1, 0)

(
C̃(1,0)
q1
k(1,0)

− C̃k(1,1)
q0
k(1,0)

)
. Hence, the index can be interpreted as the reduction in cost when

making a class-k bandit active instead of keeping him passive (the term within the brackets) during
a time lag equal to the departure time in the active phase.

We now consider some particular cases that have been studied in the literature, see also Table 1.
For example, let us consider first the case in which all customers can abandon the system, i.e.,
θ′k = θk, for k = 1, . . . ,K, and that the cost for abandonment is the same for both active and
passive, so dk = d′k. We first assume that all customers in the system incur a holding cost. This

implies that ck = c′k, and thus c̃k = c̃′k. Substituting into (17) we get Wk(nk) = c̃kµk
θk

. In the case

where only customers in the queue incur a holding cost, i.e. c′k = 0, we have c̃k − c̃′k = ck, and

upon substitution in (17) we get the index Wk(nk) = c̃kµk
θk

+ ck.
We now assume that only customers in the queue can abandon, that is, the customer in service

will not abandon, hence θ′k = 0, for k = 1, . . . ,K. This is the model assumption of [9] and [6].
We first assume that all customers in the system incur a holding cost, that is, ck = c′k, and we

thus get c̃′k = ck. From (17) we get Wk(nk) = c̃kµk
θk
− ck. We can similarly calculate the index

in the case in which only customers in the queue incur a holding cost, i.e., c′k = 0, to obtain the

index Wk(nk) = c̃kµk
θk

. These two last indices have been derived in [9] and [6], respectively. More

specifically, [9] derives the index c̃kµk
θk
− ck when studying one customer and no future arrivals.

Interestingly, we observe that the index remains the same in the presence of random arrivals as
considered in this paper. When the customer in service does not contribute to the holding cost, our
model coincides with that analyzed in [6], where it is shown that the index rule c̃kµk

θk
is asymptotically

fluid optimal in a multi-server queue in overload (ρ > 1). We therefore conclude that the Whittle’s
index, we have derived, retrieves index policies that had been proposed in the literature when
studying the system in special parameter regimes.

To finish this subsection we now provide an intuition to understand the result of Proposition 3
in the case θ′k = θk and ck = c′k. In this setting, at any moment in time, all customers in the
system incur a holding cost ck and can abandon at rate θk. Substituting E(C̃k(N

nk
k , Snkk (Nnk

k ))) =

c̃kE(Nnk
k ) and Wk(nk) = c̃kµk

θk
in (15), we get the relation

θk(E(Nnk−1
k )− E(Nnk

k )) = µk

 ∞∑
m=nk

πnk−1
k (m)−

∞∑
m=nk+1

πnkk (m)

 ,

which can be seen as a rate conservation. Indeed, the term on the left-hand-side represents the
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difference in the average number of customers that abandons the system per time unit when com-
paring both policies nk and nk − 1. The right-hand-side represents the difference in the average
number of customers that is served per time unit when comparing both policies nk and nk−1. The
left-hand-side being equal to the right-hand-side is exactly the rate conservation.

6.2 Convex holding cost

In this section we characterize Whittle’s index, assuming that Wk(n) is given by Equation (15),
for general convex non-decreasing holding cost functions. We note that the cost associated to
abandonments of customers are linear functions. We can thus use the result of Proposition 3 to
rewrite Whittle’s index as

Wk(nk) = dk(µk + θ′k)− d′kθ′k +W c
k(nk), (18)

where

W c
k(nk) :=

E(Ck(N
nk
k , Snk(Nnk

k )))− E(Ck(N
nk−1
k , Snk−1(Nnk−1

k )))∑nk
m=0 π

nk
k (m)−

∑nk−1
m=0 π

nk−1
k (m)

is the term corresponding to the holding cost. In the remainder of this section, we will focus on
W c
k(nk).

In Section 6.2.1 we characterize Whittle’s index for large state values. In Section 6.2.2 and
Section 6.2.3 we obtain Whittle’s index as λk ↓ 0 and λk ↑ ∞, representing a light-traffic and
heavy-traffic regime, respectively. For all cases, we will observe that for non-linear holding cost
Whittle’s index is dependent on nk, that is, is state-dependent.

6.2.1 Whittle’s index for large states

In this section we assume that the holding costs Ck(nk, 1) and Ck(nk, 0) are upper bounded by
polynomials of finite degrees Pk <∞ and Qk <∞, respectively. Hence, we can write Ck(nk, a) =

Ek(nk, a) + o(1), for large values of nk, where Ek(nk, 1) =
∑Pk

i=0C
(Pk,i)
k nik, with

C
(Pk,i)
k := lim

nk→∞

Ck(nk, 1)−
∑Pk

j=i+1C
(Pk,j)
k njk

nik
,

and Ek(nk, 0) =
∑Qk

i=0E
(Qk,i)
k nik, with

E
(Qk,i)
k := lim

nk→∞

Ck(nk, 0)−
∑Qk

j=i+1E
(Qk,j)
k njk

nik
.

We assume w.l.o.g. that Pk is such that C
(Pk,Pk)
k > 0 and Qk is such that E

(Qk,Qk)
k > 0.

In the following proposition we give the expression for Whittle’s index for large states. The
proof can be found in Appendix D.

Proposition 4 Assume Whittle’s index is given as in (15). Let Ck(nk, 1) and Ck(nk, 0) be upper
bounded by a polynomial of degree Pk and Qk respectively. Then, we have Wk(nk) = W∞k (nk)+o(1),
as nk →∞, where W∞k (nk) := dk(µk + θ′k)− d′kθ′k + W̃ c

k(nk) and

W̃ c
k(nk) :=(Ek(nk, 0)− Ek(nk, 1)) + (µk + θ′k − θk)/θk

·

 Qk∑
i=1

E
(Qk,i)
k ni−1

k +

Pk∑
i=2

C
(Pk,i)
k

i−2∑
j=0

ni−2−j
k

(
λk
θk

)j+1
 . (19)

The index W∞k (nk) is a non-decreasing function.
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Assume Ck(nk, a) = Ck(nk) or Ck(nk, a) = Ck((nk − a)+) with Pk ≥ 2. In that case, Pk = Qk

and C
(Pk,Pk)
k = E

(Qk,Qk)
k . For states that are large enough, the value of W∞k (nk) is determined by

the highest polynomial, which is given by(
E

(Pk,Pk−1)
k − C(Pk,Pk−1)

k +
µk + θ′k − θk

θk
E

(Pk,Pk)
k

)
nPk−1
k . (20)

The latter is independent of the arrival rate λk, and hence, so is W∞k for large enough states. This
robust index (20) can serve as an approximation for Whittle’s index policy when there are a large
number of customers in the system. In Section 10 we numerically assess the performance under
this index policy W∞(·).

6.2.2 Light-traffic indices

We present in the following proposition the expression for Whittle’s index as λk ↓ 0, also referred
to as the light-traffic regime. The proof can be found in Appendix E. Under the light-traffic
assumption, the index can be given in closed form. In Section 8 we will use this expression to show
that Whittle’s index is asymptotically optimal in light traffic.

Proposition 5 Assume Whittle’s index Wk(nk) is as given in (15). Then, Wk(nk) = dk(µk+θ′k)−
d′kθ
′
k +W c

k(nk), where

lim
λk↓0

W c
k(nk) = Ck(nk, 0)− Ck(nk, 1) + (Ck(nk, 0)− Ck(0, 0))

(µk + θ′k − θk)
θknk

.

Assuming Ck(0, 0) = 0, the above index can be rewritten as follows:

lim
λk↓0

W c
k(nk) = (µk + θ′k + θk(nk − 1))

(
Ck(nk, 0)

θknk
− Ck(nk, 1)

µk + θ′k + θk(nk − 1)

)
.

This allows us for the following interpretation in light traffic. Given that there are nk class-k
customers, and there are no future arrivals, the index measures the reduction in cost when making
a class-k bandit active instead of keeping him passive (the term within the brackets) during a time
lag equal to the departure time in the active phase.

6.2.3 Heavy-traffic indices

We present in the following proposition the expression for Whittle’s index as λk ↑ ∞, also referred
to as the heavy-traffic regime. The proof can be found in Appendix F. Under the heavy-traffic
assumption, the index can be given in closed form.

Proposition 6 Assume Whittle’s index Wk(nk) is as given in (15). Define

WHT
k (n) := Ck(n, 0)− Ck(n, 1) +

µk + θ′k − θk
θk

E(Ck(N
n−1
k , 1))

λk/θk
,

where Nn−1
k denotes the steady-state number of class-k customers under threshold policy n−1, and

is defined by the transition rates given in (12). If there exists z ≥ 1 such that
E(Ck(Nn−1

k ,1))

λzk
→ 0,

as λk →∞, then Wk(n) = dk(µk + θ′k)− d′kθ′k +WHT
k (n) + o(1) as λk →∞.
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7 M/M/1 multi-class queue

The multi-class M/M/1 queue without abandonments has received lot of attention from the research
community. In the case of linear holding cost, the cµ-index rule has been proved to be optimal in
two main settings: (i) with exponential distributed service times and preemptive scheduling [16],
and (ii) general service time distributions and non-preemptive scheduling [22]. A brief explanation
of the optimality of an index rule is that having a linear holding cost ck for a class-k customer
per unit of time is equivalent to a problem where a reward ck is received upon service completion
(and no holding cost) [23, Section 4.9]. The latter can be seen as a MABP, for which an index
rule (in this case cµ) is optimal1. However, this equivalence holds only for linear holding costs,
which explains why for general cost functions the structure of the optimal scheduling policy is no
longer of index type. In that context, a fruitful approach has been to derive scheduling policies
with near-optimal performance or asymptotically optimal performance in a limiting regime, see the
references as stated in Section 2.

In this section, we derive an index policy for the multi-class M/M/1 system by considering
the limit of our Whittle index as the abandonment rate tends to 0. Note that the Whittle’s index
Wk(nk) goes to∞ as θk → 0, and it turns out that when scaling the index by θk we get a non-trivial
limit. The proof of the next proposition may be found in Appendix G.

Proposition 7 Assume Ck(nk, a) = Ck(nk), a = 0, 1, θ′k = θk, and dk = d′k = 0. Then,

lim
θk→0

θkWk(nk) =
µk(1− ρk)

ρk
·
[ ∞∑
m=0

ρmk (1− ρk)Ck(nk − 1 +m)− Ck(nk − 1)

]
. (21)

Observe that convexity of the function C(·) implies that (21) is a non-decreasing function.
A heuristic for the M/M/1 queue with as objective to minimize the holding cost can now be

derived as follows. Set θk = θ′k for all k and consider the index multiplied by θk as θk → 0. A
heuristic is then to give priority according to the index as given in (21).

In case of linear holding costs Ck(nk) = cknk, the index (21) coincides with the ckµk-rule.
For general holding cost the index in (21) was also obtained in Glazebrook et al. [3] (see also
Section [23, Section 6.5]) by carrying out a model-dependent analysis, which consists in considering
first the total discounted holding cost criterion, calculating the corresponding Whittle’s index, and
afterwards taking the limit in the discounting factor. In that case too, indexability needs to be
established.

As pointed out in [23, Section 6.5] applying directly the average cost criteria to the M/M/1
queue without abandonments gives no meaningful index. Consider a single server queue with
threshold policy n, where the taken action is passive for all states below and equal to n, and active
for all states above n. This system is equivalent to the classical M/M/1 queue where state m
corresponds to m−n. A classical result shows that in the absence of abandonments the probability
that the stationary process is in state 0 in an M/M/1 queue is 1−ρ, and therefore in a single server
queue under policy n the probability of being in state n will be 1− ρ, i.e., independently of where
the threshold is set. Hence, the subsidy obtained is W (1 − ρ), which is independent of the policy
n, and therefore, the subsidy does not allow us to “calibrate” the states. In our approach this is
circumvented by obtaining an index for the, well-defined, case with abandonments and then letting
θk → 0, while in [23, Section 6.5] this is circumvented by looking at the discounted problem and
scaling the immediate cost.

1This is known as the tax formulation of a MABP, see [23, Section 4.9].
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ρ 0.11 0.21 0.31 0.41

(21) 4.25e-06 1.51e-05 6.07e-06 5.02e-07

C ′(n)µ 0.0072 0.0636 0.1002 0.1320

ρ 0.51 0.61 0.71 0.81

(21) 0.008 0.0291 0.0919 1.7129

C ′(n)µ 0.1689 0.3616 1.8280 4.9539

Table 2: Suboptimality gap

For large values of nk, the index (21) is approximately equal to C ′k(nk)µk, which we refer to
as the Gcµ-rule. This rule was introduced in [35] for convex delay cost. The equivalence with the
Gcµ rule can be seen as follows. We have for nk large,

∞∑
m=0

ρmk (1− ρk)Ck(nk − 1 +m)− Ck(nk − 1)

∞∑
m=0

ρmk (1− ρk)

= (1− ρk)
∞∑
m=0

ρmk (C(nk − 1 +m)− C(nk − 1))

≈ (1− ρk)
∞∑
m=0

mρmk C
′(nk − 1) = C ′(nk)

ρk
(1− ρk)

,

where we used that for nk large with respect to m, we have C(nk−1+m)−C(nk−1)
m ≈ C ′(nk) and that

large values of m have a negligible weight on the summation. Hence, it follows from (21) that
limθk→0 θkWk(nk) ≈ C ′k(nk)µk.
Numerical example. In Table 2 we compare the suboptimality of the C ′(n)µ-rule and index-rule
(21) in an M/M/1 queue without abandonments. Note that when θk = 0, for all k, we need to
assume

∑K
k=1 ρk < 1 in order to assure stability of the system. Consider 4 classes of customers with

the following parameters: µ1 = 16, µ2 = 27, µ3 = 12 and µ4 = 21, ρ1 = 3ρ/9, ρ2 = ρ/9, ρ3 = 5ρ/9
and ρ4 = ρ/9. The holding cost of each class are cubic, Ck(nk) := αk + βknk + γkn

2
k + δkn

3
k, for

which (21) simplifies to: βkµk+γkµk

(
3ρk − 1

1− ρk
+2nk

)
+δkµk

(
3n2

k+3

(
2ρk − 1

1− ρk

)
nk+

4ρ2
k + ρk + 1

(1− ρk)2

)
.

We take the particular example: C1(n1) = 6n1 + 2n2
1 + 2n3

1, C2(n2) = 2n2 + 2n2
2 + 2n3

2, C3(n3) =
n3 + n2

3 + 3n3
3 and C4(n4) = 8n4 + 2n3

4. We observe that for this example the C ′(n)µ-rule is
outperformed by the index-rule (21), but both policies give nearly optimal performance.

8 Asymptotic optimality

In this section we will discuss various notions of asymptotic optimality of Whittle’s index pol-
icy. Section 8.1 deals with the optimality of Whittle’s index policy in a multi-server setting, and
Section 8.2 proves Whittle’s index policy to be optimal in light-traffic and heavy-traffic regimes.

8.1 Multi-server setting

For linear holding cost, asymptotic optimality in a multi-server setting can be directly derived
from [36]. Assume there are M servers and the arrival rate of class-k customers is Mλk. Let
Wk be the state-independent index as given in (17). In [36, Proposition 6.2] it is shown that the
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Whittle index policy (WI), where at each moment in time a server serves a customers having
highest non-negative index Wk, is asymptotically optimal in the following sense: for any policy ϕ,

lim
M→∞

CWI(M) ≤ lim inf
M→∞

Cϕ(M),

where CWI(M) denotes the average cost incurred by Whittle’s index, and Cϕ(M) denotes the
average cost incurred by policy ϕ when there are M servers in the system.

For general holding cost, we can not derive asymptotic optimality. We do expect however that
under certain conditions one would have the following. Assume there are M servers and xkM
queues where class-k customers arrive with rate λk, k = 1, . . . ,K2. A queue can be served by at
most one server. In bandit terminology this represents having xkM class-k bandits whose state
(that is, the number of customers in the queue) has values in S := {0, 1, . . .}, and the scheduler
needs to decide which M bandits to make active (so which M queues to serve). In case the state
space S would have been finite, the result in [38, 36] implies (under certain conditions) asymptotic
optimality of Whittle’s index policy as M → ∞. However, for infinite state space, as is the case
for our model, no result is known so far.

8.2 Light-traffic and heavy-traffic regimes

Light traffic and heavy traffic refer to the situations in which the total arrival rate goes to 0 and∞,
respectively. Note that due to abandonments, our model is stable for any value of the arrival rate.
In this section we will show that Whittle index policy is optimal in these two limiting regimes. In
order to take the limits we will modify the total arrival rate while keeping constant the proportion
of traffic of each class. To do so, we assume that λk = γkλ, where λ denotes the total arrival rate,
and

∑K
k=1 γk = 1.

We recall that U and UREL refer to the set of admissible policies in the original and relaxed
problem, respectively, and that U ⊆ UREL. As we argued in Section 4, for any value of the
multiplier W ≥ 0, CREL(W )(W ) ≤ COPT , where CREL(W )(W ) and COPT are the minimum cost
in the relaxed and original problems, respectively. We also recall that CREL(W )(W ) is achieved
by a policy that serves all the classes with current Whittle’s index larger than W . We denote by
CWI the performance in the original problem under the admissible Whittle index policy and we set
C∗ = supW CREL(W )(W ). It then trivially holds that

CREL(W )(W ) ≤ C∗ ≤ COPT ≤ CWI . (22)

We now argue that if either

(i) REL(0) ∈ U , or,

(ii) REL(W ) ∈ U and the constraint (6) is satisfied with equality,

then it holds that, for that choice of W , CREL(W )(W ) = C∗ = COPT = CWI , and hence in those cases
Whittle’s index policy is optimal for the original policy. This can be seen as follows. First we observe
that if REL(W ) ∈ U , then REL(W ) coincides with Whittle’s index policy. Hence, for W = 0 we
have CREL(0)(0) = CREL(0) = CWI , where the first equality holds by definition since W = 0. Now
assume W > 0, then since (6) holds with equality, we have again CREL(W )(W ) = CREL(W ) = CWI .
In both cases, we use (22) to conclude that CREL(W )(W ) = C∗ = COPT = CWI . We note that the
same approach is described in [23, Chapter 6] and [26, Section 5].

2This can represent for example a setting where there are xkM class-k flows having newly arriving packets
(represented by customers).
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We can now use the above in order to show Whittle’s index to be asymptotically optimal in
both light traffic and heavy traffic. In the light-traffic regime, we will consider the case (i), and in
the heavy-traffic regime we will consider case (ii). In light traffic, most of the time the system is
empty or at most there is one customer in the system. This implies that as λ→ 0, REL(0) becomes
admissible for the original problem, that is, REL(0) ∈ U . Hence, we are in case (i), which will allow
us to conclude for asymptotic optimality of Whittle’s index policy. In heavy traffic, we will prove
that for the correct choice of W , under the Whittle index policy, constraint (6) is satisfied with
equality, and REL(W ) ∈ U . Hence, we are in case (ii) and we deduce that asymptotic optimality
holds in heavy-traffic regime.

We present the asymptotic optimality result for the light-traffic regime in Theorem 2 and in
Theorem 3 for the heavy-traffic regime. The proofs can be found in Appendix H and Appendix I.

Theorem 2 Assume Whittle’s index Wk(n) is as given in (15). Assume Ck(0, 0) ≥ Ck(0, 1), ∀k.
The Whittle index policy (WI) is asymptotically optimal in light traffic, that is,

lim
λ↓0

CWI − COPT

COPT
= 0,

with λk = λγk,
∑K

k=1 γk = 1.

Theorem 3 Assume Whittle’s index Wk(n) is as given in (15). Assume there exists a k̄ ∈
{1, . . . ,K} such that

lim
λ↑∞

Wk̄(λγk̄/θk̄)

Wk(λγk/θk)
> 1,

for all k 6= k̄. Then, the Whittle index policy (WI) is asymptotically optimal in heavy traffic, that
is,

lim
λ→∞

(CWI − COPT ) = 0,

with λk = λγk,
∑K

k=1 γk = 1.

Whittle’s index policy gives strict priority to class k̄. In fact, we can see from the proof of
Theorem 3 that any policy that gives strict priority to class k̄ will be optimal as λ ↑ ∞.

9 Fluid index

In Section 4 we derived the optimal policy of the relaxed optimization problem (8), which was
described by the index value as given in Proposition 1 and Corollary 1. Unfortunately, for non-
linear holding cost the index could not be written in closed-form. In this section we will therefore
solve the fluid version of the relaxed optimization problem (8), that is, we only take into account
the average behavior of the system. This will allow us to obtain a closed-form expression for the
fluid index. In Section 9.1 we describe the fluid control problem we need to solve and in Section 9.2
we obtain the solution and the fluid index. In addition, in Section 9.3 we compare the fluid index
with the index for the stochastic model.
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9.1 Fluid model description

We approximate the stochastic model as presented in Section 3 by a deterministic fluid model,
where only the mean dynamics are taken into account. Let mk(t) ≥ 0 be the amount of class-k
fluid and let sk(t) ∈ {0, 1} be the control parameter. Let u denote a fluid control that determines

suk(t). The fluid dynamics under control u is given by
dmu

k(t)

dt
= λk − θkmu

k(t) if the chosen action

is passive, that is, su(t) = 0, and is given by
dmu

k(t)

dt
= λk − µk − θ′k − θk(mu

k(t)− 1), if the chosen

action is active, that is, su(t) = 1. Hence, the dynamics can be written as

dmu
k(t)

dt
=λk − suk(t)(µk + θ′k + θk(m

u
k(t)− 1))− (1− suk(t))θkm

u
k(t)

=λk − (µk + θ′k − θk)suk(t)− θkmu
k(t),

where the control u is such that mu
k(t) ≥ 0 for all t.

At time t, the cost for the fluid model under the relaxed problem is written as

(1− sk(t))C̃k(mk(t), 0) + sk(t)C̃k(mk(t), 1)−W (1− sk(t)).

The cost functions Ck(m, 0) and Ck(m, 1) are assumed to be continuous in m. Note that we have
used the same notation as in the stochastic model where the cost functions were discrete in m
(slight abuse of notation). Assume

dCk(m, 1)

dm
≤ dCk(m, 0)

dm
, (23)

which is the continuous equivalence of the RHS of (2).

An equilibrium point (m̄k, s̄k) of mk(t) is such that dmk(t)
dt = 0, that is,

0 = λk − (µk + θ′k − θk)s̄k − θkm̄k,

with s̄k ∈ [0,min{1, λk/(µk + θ′k − θk)}] and m̄k ∈ [max(0, (λk − (µk + θ′k − θk))/θk), λk/θk].
In the stochastic model the aim is to minimize (8), that is, to minimize the time-average cost

minus the subsidy obtained. In equilibrium, s̄k is the average amount of time the system is active,
hence, the fluid version of (8) will be to find the equilibrium point that minimizes the cost in
equilibrium, that is, to minimize

EC(s̄k,W ) := (1− s̄k)C̃k(m̄k, 0) + s̄kC̃k(m̄k, 1)−W (1− s̄k).

We denote by (m∗k, s
∗
k) an optimal equilibrium point and define the optimal equilibrium cost under

subsidy W by

EC∗k(W ) := min
s̄k∈[0,min{1,λk/(µk+θ′k−θk)}]

ECk(s̄k,W ) (24)

= (1− s∗k)C̃k(m∗k, 0) + s∗kC̃k(m
∗
k, 1)−W (1− s∗k). (25)

Since the time-average criteria might be attained by several controls, in the next section we will
study controls that are bias-optimal. That is, among all controls that reach the optimal equilibrium
point, a bias-optimal control is the one that minimizes the cost to get to this equilibrium point.
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9.2 Fluid index for bias optimality

Having characterized the optimal equilibrium point in the previous section, the question is which
control minimizes the cost to get to this equilibrium, referred to as bias-optimality. Hence, our aim
is to find the control u that minimizes∫ ∞

0

(
C̃k(m

u
k(t), suk(t))−W (1− suk(t))− EC∗k(W )

)
dt. (26)

That is, minimize the total cost over time minus the optimal cost in equilibrium.
The optimal solution to the fluid bias optimal problem is stated below.

Theorem 4 An optimal control for the relaxed fluid problem (26) is s∗k(t) = 1 if wk(mk(t)) > W
and s∗k(t) = 0 otherwise, with

wk(mk) := Ck(mk, 0)− Ck(mk, 1) + dk(µk + θ′k)− d′kθ′k

+


w

(1)
k (mk) if 0 ≤ mk < max

(
0,

λk−(µk+θ′k−θk)
θk

)
,

w
(2)
k (mk) if max

(
0,

λk−(µk+θ′k−θk)
θk

)
≤ mk ≤ λk

θk
,

w
(3)
k (mk) if mk >

λk
θk
,

where

w
(1)
k (mk) =

(µk + θ′k − θk)
θk

(
C
(
λk−(µk+θ′k−θk)

θk
, 1
)
− C(mk, 1)

)
(λk − (µk + θ′k − θk))/θk −mk

,

w
(2)
k (mk) =

(λk − θkmk)
d

dmk
Ck(mk, 1) + (θkmk + µk + θ′k − θk − λk)

d
dmk

Ck(mk, 0)

θk
,

w
(3)
k (mk) =

(µk + θ′k − θk)
θk

(
Ck(mk, 0)− Ck

(
λk
θk
, 0
))

mk − λk/θk
.

The fluid index wk(mk) is non-decreasing and continuous.

The proof of Theorem 4 can be found in Appendix K.
Having solved the fluid version of the relaxed problem, we propose the following heuristic for

the stochastic model.

Definition 5 (Fluid index policy) Assume at time t we are in state ~N(t) = ~n. The fluid index
policy prescribes to serve the class k having currently the highest non-negative fluid index wk(nk).

We directly observe that for linear holding cost, the fluid index is state-independent and co-
incides with that of the stochastic model as stated in Proposition 3. Now assume Ck(mk, ak) =
Ck(mk), that is, holding cost for customers in the system. In that case, the fluid index simplifies
as follows:

w
(2)
k (mk) =

(µk + θ′k − θk)
θk

d

dmk
Ck(mk),

which corresponds to the C ′(m)µ/θ-rule when θ′k = θk. We refer to this rule as the Generalized

cµ/θ-rule (Gcµ/θ). The terms w
(1)
k (mk) and w

(3)
k (mk) reduce to

w
(1)
k (mk) =

(µk + θ′k − θk)
θk

(Ck((λk − (µk + θ′k − θk))/θk)− Ck(mk))

(λk − (µk + θ′k − θk))/θk −mk
,

w
(3)
k (mk) =

(µk + θ′k − θk)
θk

(Ck(mk)− Ck(λk/θk))
mk − λk/θk

.
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We refer to [15] where index policies based on first-order difference have also been proposed and
are shown to empty the system with the lowest cost possible in a single server multi-class queue
without abandonments and no future arrivals.

9.3 Asymptotic equivalence of stochastic index and fluid index

In this section we discuss the relation between the Whittle index as obtained for the original
stochastic problem and the fluid index. As mentioned in the previous section, for linear holding
cost both indices coincide. Here we consider general holding cost and we study the equivalence of
both indices in asymptotic regimes.

We first consider the light-traffic scenario, that is, λk ↓ 0.

Proposition 8 Let Wk(·) be given as in (15). Then as λk ↓ 0,

Wk(nk) = wk(nk) + o(1).

Proof. The fluid index as λk ↓ 0 reduces to

lim
λk↓0

wk(mk) = Ck(mk, 0)− Ck(mk, 1) + dk(µk + θ′k)− d′kθ′k +
µk + θ′k − θk

θk

(Ck(mk, 0)− Ck(0, 0))

mk
.

The latter coincides with the Whittle index as given in Proposition 5. �

We now focus on the indices for large values of the state. In the next proposition we show that
the fluid index wk(nk) coincides with Whittle’s index as given in (15), when the cost functions are
upper bounded by polynomial functions.

Proposition 9 Assume that Ck(nk, 1) and Ck(nk, 0) are upper bounded by a polynomial of degree
Pk and Qk, respectively, with Qk > Pk. Then,

lim
nk→∞

Wk(nk)

wk(nk)
= 1. (27)

If we further assume Pk = Qk and C
(Pk,i)
k = E

(Pk,i)
k for all i ∈ {2, . . . , Pk}, then as nk →∞,

Wk(nk) = wk(nk) + o(1). (28)

As an example we consider Ck(nk, a) = Ck(nk) or Ck(nk, a) = Ck((nk − a)+). Then Qk = Pk,
and hence (27) holds. In case, Ck(nk, a) = Ck(nk), then in addition (28) holds.

10 Numerical Results

The objective of the present section is to show in which regimes the Whittle index policy W (n)
(Equation (15)) performs well. We will focus on holding cost functions of the shape Ck(nk, a) =
Ck(nk) or Ck(nk, a) = Ck((nk−a)+), that is, the holding cost is a function of the number of class-k
customers in the system or queue respectively. Hence, C̃k(nk, a) reduces to Ck(nk) + dkθknk or
Ck((nk − a)+) + dkθk(nk − a)+ + d′kθ

′
k min(a, nk), respectively.

In Section 10.1 we compare the structure of Whittle’s index policy with the structure of the
optimal policy, numerically. In Section 10.2 we then numerically compare the performance of the
index policies with that of the optimal policy.
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10.1 Structure of different policies

We compare the structure of the different index policies and the optimal policy for linear and convex
holding cost.

10.1.1 Linear holding cost

By value iteration [34] we observed that for a wide range of parameters the optimal policy, under
linear holding cost, is of the following structure: when (N1, . . . , NK) is close enough to the origin
(and Ni denotes the number of class-i customers in the system), it is optimal to prioritize classes
according to the c̃µ-rule, otherwise to prioritize classes according to the c̃µ/θ-rule, where c̃k :=
ck+dkθk, see Figure 2 (left) with ε = 0 as described in the next section. Hence, the Whittle’s index
(which corresponds to the c̃µ/θ-rule in the linear case) captures the optimal action for states that
are not too close to the origin.

10.1.2 General holding cost

To discuss the structure of index policies for general holding cost, we focus on two classes of
customers (K = 2). In a state (N1, N2), the action taken by Whittle’s index rule is to serve the
class having highest value Wk(Nk). Since Wk(Nk) is an non-decreasing function, this implies that
there is an increasing switching curve (SC) such that when (N1, N2) is below the SC, Whittle’s
index policy serves class 1 and for any state (N1, N2) above the curve the policy serves class 2.
Note that for linear holding cost this switching curve collapses either to the vertical or horizontal
axis.

By value iteration we observed that an optimal policy is as well of switching curve type. For
example, in Figure 2 (left) we plot the switching curve of the optimal policy with the following
holding cost: C1(n) = n + εn2 and C2(n) = n (parameters θ = θ′ and λ = [9, 10], µ = [14, 16], θ =
[2, 0.05], d = [4, 0.3]). When ε = 0, we obtain a decreasing switching curve, which describes the
behavior of the optimal policy for linear cost as explained in Section 10.1.1. As ε becomes positive,
the switching curve becomes increasing. In addition, ε becomes larger, and hence the quadratic
cost of class 1 increases, and therefore, class 1 gets priority in a larger region.

We now compare the actions taken under Whittle’s index policy and the optimal policy. We
consider an example with quadratic costs C1(n) = (c11 +d1θ1)n+c21n

2 and C2(n) = (c12 +d2θ2)n+
c22n

2, and set the following parameters θ = θ′ and µ = [15, 18]; θ = [4, 7]; c1 = [1, 4]; c2 = [2, 1]; d =
[8, 6.5]. In Figures 2 (middle and right) we plot the optimal actions (obtained by value iteration)
for load ρ = 0.8 and ρ = 2.5, respectively, and compare it to the actions taken under Whittle’s
index policy. We observe that the optimal policy can be described by a switching curve. In addition
the optimal policy coincides with that of Whittle’s index W (n) in almost all the state space as the
workload increases. We also plot the switching curve corresponding to the fluid index w(n) and
observe a very good fit.

10.2 Performance evaluation

In this section we evaluate numerically the performance of the index policies. This is carried out
by computing the relative sub optimality gap between the average cost of the optimal solution and
an index policy. In order to compute this we use the Value Iteration algorithm [34].

We saw in Section 7 that the index policy with index (21) performs very well in an M/M/1
multi-class systems (when there are no abandonments). We considered cubic costs and 4 classes
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Figure 2: (Left:) Switching curves of the optimal policy for varying holding cost (from linear to
quadratic). (Middle and right:) Actions under the optimal policy, the index policy W (n), and the
fluid index policy for quadratic holding cost. Area with “+”: W (n) serves class 1 while it is optimal
to serve class 2, Area with “*”: W (n) serves class 2, which is also optimal, and in the white area
W (n) serve class 1, which is also optimal.

of customers and compared the Generalized index rule (Gcµ) and the index-rule of (21) and we
observed there that the latter performs slightly better than the Gcµ-rule.

In this section we will consider scenarios allowing abandonments. We will evaluate the following
indices: (i) the Whittle index W (n) (Equation (15)), (ii) the Whittle index for large states W∞(n)
and (iii) the fluid index w(n). We compare these to the two index policies proposed for a multi-class
queue without abandonments: the Gcµ-rule, and the index-rule corresponding to (21) which is an
approximation of W (n) for θ close to zero. We will analyze two different scenarios: (1) varying the
workload ρ, and (2) varying the abandonment rates θk.

10.2.1 Varying Workload

In this section we aim at observing the behavior of index policies for varying workload.
Example with linear holding cost (θ = θ′): We set Ck(n, a) = ckn, µ = [15, 25], θ′ =

θ = [4, 2], c = [1, 1], d = [5, 3.2], and let ρ =
∑2

k=1 λk/µk vary in the interval [0, 2.6], with
λ1/µ1 = λ2/µ2. For linear holding costs, the indices W (n),W∞(n) and w(n) reduce to the c̃µ/θ-
rule and the indices Gcµ and (21) reduce to the c̃µ-rule, with c̃k = ck + dkθk.

Example with linear holding cost (θ 6= θ′): We set Ck(n, a) = ck(n − a)+, µ = [15, 25],
θ = [4, 2], θ′ = [3, 2], c′ = c = [1, 1], d = [5, 3.2], d′ = [2, 1], and let ρ =

∑2
k=1 λk/µk vary in the

interval [0, 2.6], with 2λ1/µ1 = λ2/µ2. For linear holding costs and θ 6= θ′, the indices W (n),W∞(n)
and w(n) reduce to the c̃(µ + θ′)/θ − c̃′-rule and the indices Gcµ and (21) reduce to the c̃µ-rule,
with c̃k = ck + dkθk.

In Figure 3 we observe for both cases that the c̃µ-rule is optimal in underload, while the
performance of the index W (n) is nearly optimal in overload, as expected from Theorem 3. As
discussed in Section 10.1.1, in a state far from the origin, the optimal action is to serve according
to c̃µ/θ, which is the region in which the process will live in overload, explaining why the c̃µ/θ-rule
and the c̃(µ+ θ′)/θ− c̃′-rule perform well in this case. In underload, the effect of abandonments is
not that important and the c̃µ-rule performs very well.

Example with quadratic holding cost (θ = θ′): Consider the following parameters: µ =
[15, 18], θ′ = θ = [4, 7], c1 = [1, 4], c2 = [2, 1], d = [8, 6.5], and we let λ vary, but keeping λ1/µ1 =
λ2/µ2. We assume quadratic costs C1(n) = (c11 +d1θ1)n+c21n

2 and C2(n) = (c12 +d2θ2)n+c22n
2.

See Figure 4 (left) for the sub-optimality gap and Table 3 for the absolute errors.
We observe that for low load the Gcµ-rule and the index-rule (21) behave very well. However,
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Figure 3: Left: sub optimality for linear holding cost, as ρ increases when θ = θ′. Right: sub
optimality for linear holding cost, as ρ increases when θ 6= θ′.
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Figure 4: Left: sub-optimality for linear holding cost, as ρ increases. Middle: sub optimality
for quadratic holding cost as ρ increases. Right: sub optimality for quadratic holding cost as p
(θi = pεi, i ∈ {1, 2}) varies.

as the load grows larger, the sub-optimality gap of these θ-independent policies grows large, while
our Whittle index policy W (n), the Whittle index policy for large states W∞(n) and the fluid index
policy w(n) become near optimal. In Table 3 we observe that the convergence towards optimality
is reached very fast as the absolute error (CWI − COPT ) of the W (n),W∞(n) and w(n) indices is
of order 10−4 when ρ = 5.25. On the other hand, both (21) and the Gcµ-rule perform very bad
in overload. Hence, our index policies are very suitable for the overload setting, which are from a
practical point of view of main importance.

Note that the jump around ρ = 2 for the index-rule (21) is a result of undefined values around
λk = µk.

Workload 1 1.5 2 2.5 3 3.5 5.25

W (n) 1.3089 1.4608 0.8055 0.1094 0.0185 0.0065 0.00017

W∞(n) 1.4028 1.5596 0.8902 0.1732 0.0614 0.0329 0.0007

w(n) 1.3823 1.2885 0.5534 0.0026 0.0771 0.0904 0.0004

(21) 0.0409 0.7327 0.8010 11.2134 20.5851 28.3926 50.0996

Gcµ 0.0409 0.7483 3.9951 10.4111 18.7237 25.0454 42.5645

Table 3: Absolute error CWI − COPT that corresponds to the example in Figure 4 (left).
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Workload 1 1.5 2.5 3 3.5 5.25 7.25 10 16

W (n) 0.1332 0.0664 0.0098 0.1260 0.2874 0.2448 0.1404 0.0486 0.0061

W∞(n) 1.4817 1.9167 1.4429 1.1485 1.4243 1.7296 1.4784 0.7977 0.1012

w(n) 1.4817 1.4157 0.3397 0.0382 0.1288 0.5125 04383 0.1542 0.0093

(21) 0.0720 - - - 19.3226 35.5180 48.5766 66.1024 91.4859

Gcµ 0.0720 0.7896 7.7697 12.8528 17.6942 31.1417 43.3748 59.7161 99.4344

Table 4: Absolute error CWI − COPT that corresponds to the example in Figure 4 (middle).

Example with quadratic holding cost (θ 6= θ′): Consider the following parameters: µ =
[15, 18], θ = [4, 7], θ′ = [3, 4], c1 = [1, 4], c2 = [2, 1], d = [8, 6.5], d′ = [7, 7] and we let λ vary, but
keeping 2λ1/µ1 = λ2/µ2. We assume quadratic costs C̃1(n, a) = c11(n − a)+ + c21((n − a)+)2 +
d1θ1(n − a)+ + d′1θ

′
1a and C̃2(n, a) = c12(n − a)+ + c22((n − a)+)2 + d2θ2(n − a)+ + d′2θ2a. See

Figure 3 for the sub-optimality gap and Table 4 for the absolute errors.
We observe that for low loads the Gcµ-rule and the index-rule (21) behave very well. In this

example, also the Whittle index policy performs close to optimal for low loads, while W∞(n) and
w(n) do not. As the load grows larger, Whittle’s index policy W (n), and the fluid index policy w(n)
become near optimal. However, in this example the convergence towards optimality in absolute
terms is much slower than for the previous example. The absolute error CWI − COPT is of order
10−3 for the indices W (n) and w(n) and of order 10−1 for W∞(n) when ρ = 16. This phenomena is
explained by the fact that the process lives around an area where the optimal policy prescribes to
serve class-2 customers and the index policies prescribe to serve class-1 customers. As the workload
increases this phenomena disappears.

The jump around the interval ρ = [1.5, 3] for the index-rule (21) is a result of undefined values
around λk = µk.

10.2.2 Varying abandonment rates

In this section we evaluate the performance of the index policies for varying abandonment rates.
Linear holding cost: In this case, the five index policies mentioned above reduce to the

c̃µ/θ-rule and the c̃µ-rule, as explained in Section 10.2.1. As θk → 0, we observed in the numerical
experiments that the c̃µ-rule performs optimal, while the c̃µ/θ-rule might perform very bad when
the abandonment rates are negligibly small. It is known that for the non-reneging case, the c̃µ-
rule is optimal in underload (the celebrated cµ-rule for a multi-class M/M/1 queue). The c̃µ/θ =
(c + dθ)µ/θ index might however give an opposite priority rule when θ’s are very small, which
explains the non-optimality of the c̃µ/θ-rule when θk’s are very small.

Quadratic holding cost: Consider a system with two classes of customers. We assume
quadratic holding costs C1(n) = c̃11n+ c21n

2 where, c̃11 = (c11 + d1θ1), and C2(n) = c̃21n+ c22n
2,

where c̃21 = (c21 + d2θ2) and fix the following parameters: λ = [4, 5], µ = [15, 17], c1 = [1, 4],
c2 = [5, 1], d = [2, 3], θ1 = ε1p and θ2 = ε2p, where ε1 = 0.05 and ε2 = 0.01, and let p vary. Hence,
ρ =

∑
k ρk < 1 so that the stability of the system is assured as θk → 0.

In Figures 4 (right) we plot the sub-optimality gap as p varies from 0 to 200, hence θ1 and θ2

range from [0, 10] and [0, 2], respectively. We observe for the θ-dependent indices a sub-optimality
gap of 25% around p = 0. As θ grows large, this gap disappears however very fast. Note that the
θ-independent indices work well, as we are in an underload scenario.
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Figure 5: Sub-optimality gap of Whittles index policy, for randomly generated parameters. The
edges of the box represent the 25th and 75th percentile, the line inside the box the mean value
corresponding to all values in that box and the “+”s are the outliers.

10.2.3 Example with random samples

In this section we assume two classes of customers and quadratic holding costs of type C̃1(n, a) =
c11(n− a)+ + c21((n− a)+)2 + d1θ1(n− a)+ + d′1θ

′
1a and C̃2(n, a) = c12(n− a)+ + c22((n− a)+)2 +

d2θ2(n − a)+ + d′2θ2a. We consider 360 samples with randomly generated values (in the interval
[0, 1]) for λk, µk, θ

′
k, θk and ck = [ck1, ck2] for k = 1, 2. We compute the relative sub-optimality gap

of Whittle’s index policy, see Figure 5. We group the results in workload intervals of length 0.5,
where for each interval we computed the sub optimality gap of 60 samples. In Figure 5 we plot
for each interval the 25th and 75th percentiles, the average value with an horizontal line, and the
outliers with “+”. We observe that the average performance of Whittle’s index policy is nearly
optimal for high workloads, whereas the sub-optimality gap is largest for values of the workload in
the interval (0.5, 1].

11 Conclusions

In one of the main contributions of the paper we have derived a closed-form expression for Whittle’s
index for a multi-class queue with abandonments and convex holding cost. We have observed that
in particular instances we can obtain simple expressions that enable to understand how the Whittle
index policy depends on the input parameters. This was the case for linear holding cost, for convex
holding cost as θ → 0 and also for convex holding cost for large values of the state. In the second
main contribution we have established that in light-traffic and heavy-traffic regimes the Whittle
index policy is asymptotically optimal. Finally, we have developed a fluid-based index policy,
which is easy to implement and is equivalent to the Whittle index in limiting regimes. Numerical
experiments for a wide range of parameters have shown that the Whittle index policy and the fluid
index policy perform very well for a broad range of parameters.

This study opens several interesting research directions. The model considered in this paper
could be generalized by considering a multi-server setting. All the results up to Section 5 can easily
be adapted to the case with M > 1 servers. As explained in Section 8.1, in the linear holding cost
case, the Whittle index policy, i.e., the policy that serves the M users with highest Whittle’s index,
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is asymptotically optimal. For the general holding cost case, one would need to define how to use
the state-dependent Whittle indices in a multi-server setting, and study the asymptotic behavior
accordingly. Another interesting problem would be to develop the fluid index approach in a general
setting. Preliminary results for birth-and-death processes can be found in [31]. This can be a
fruitful approach to derive well performing index policies.

12 Aknowledgments

The authors would like to thank O.J. Boxma and A.J.E.M. Janssen for the proof of Lemma 1.
The authors are grateful to the two anonymous referees for their valuable comments which helped
improve the readability and focus of the paper.

References

[1] M. Abramowitz and A.I. Stegun. Handbook of Mathematical Functions, with Formulas, Graphs
and Mathematical Tables. Dover Publications, Inc., New York, 1965.

[2] D.F. Anderson. Introduction to Stochastic Processes with Applications
in the Biosciences. University of Wisconsin at Madison, Available at
www.math.wisc.edu/∼anderson/605F13/Notes/StochBio.pdf, 2013.

[3] P. S. Ansell, K. D. Glazebrook, J. Niño-Mora, and M. O’Keeffe. Whittle’s index policy for a
multi-class queueing system with convex holding costs. Mathematical Methods of Operations
Research, 57(1):21–39, 2003.

[4] N.T. Argon, S. Ziya, and R. Righter. Scheduling impatient jobs in a clearing system with
insights on patient triage in mass-casualty incidents. Prob. Eng. Inf. Sci., 22(3):301–332,
2010.

[5] B. Ata and M.H. Tongarlak. On scheduling a multiclass queue with abandonments under
general delay costs. Queueing Systems, 74:65–104, 2013.

[6] R. Atar, C. Giat, and N. Shimkin. The cµ/θ rule for many-server queues with abandonment.
Operation Research, 58(5):1427–1439, 2010.

[7] R. Atar, C. Giat, and N. Shimkin. On the asymptotic optimality of the cµ/θ rule under ergodic
cost. Queueing Systems, 67:127–144, 2011.

[8] F. Avram, D. Bertsimas, and M. Richard. Optimization of multiclass queuing networks: a
linear control approach. Stochastic Networks, eds. F.P. Kelly and R.J. Williams, pages 199–
234, 1995.

[9] U. Ayesta, P. Jacko, and V. Novak. A nearly-optimal index rule for scheduling of users with
abandonment. In IEEE Infocom, 2011.
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Appendix

A Proof of Proposition 1

In Proposition 1 we aim at proving that threshold policy ϕ = n is an optimal solution of the
relaxed problem (8). In order to do so, we are left to prove the convexity of the value function V .
We will therefore prove that the value function that corresponds to the truncated system V L(m)
(truncated by L > 1) is convex. Having done this, due to the result in [14, Th. 3.1] we have that
V L(m) → V (m) as L → ∞ and hence, the convexity of V L for all L will imply convexity of the
function V . In order to apply [14, Th. 3.1] we need to make sure that the conditions required
are satisfied. We therefore check the conditions required by [14, Th. 3.1] in A.1, and prove the
convexity of V L in A.2.

A.1 Conditions to be checked for [14, Th. 3.1]

Let us first present the following definition:

Definition 6 A function f : E −→ R+ is a moment function if there exists an increasing sequence
of finite sets Er ↑ E, r → ∞, such that inf{f(m) : m /∈ Er} → ∞ as r → ∞. (Where E is the
state space).

Let us define qϕ,L(m,m−1) = µSϕ(m) + θ′Sϕ(m)− θ(m−Sϕ(m)), and recall that qϕ,L(m,m+
1) = λ

(
1− m

L

)
. The conditions to be checked in [14, Th. 3.1] are the following:

1. There exists a moment function f : N∪{0} −→ R+, constants α, β > 0 and M > 0 such that

∞∑
m̃=0

qϕ,L(m, m̃)f(m̃) ≤ −αf(m) + β1{m<M}(m), for all ϕ,L,

where ϕ defines the policy followed, L is the truncating parameter and qϕ,L(m, m̃) the tran-
sition rate from m to m̃ under ϕ and L.

2. (Sϕ(m), L) 7→ qϕ,L(m, m̃) and (Sϕ(m), L) 7→
∑

m̃ q
ϕ,L(m, m̃)f(m̃) are continuous functions

in Sϕ(m) and L for all m and m̃.

We define f(m) := eεm, where ε > 0. We can construct Er = {0, . . . , r} such that Er is finite,
Er ↑ N ∪ {0} as r → ∞ and inf{f(m) : m /∈ Er} → ∞. The objective is then to see, that there
exists ε > 0, an M > 0 and a constant α > 0, such that

∞∑
m̃=0

qϕ,L(m, m̃)f(m̃) ≤ −αf(m), for all m ≥M,

that is,

λ
(

1− m

L

)
eε(m+1) +

(
(µ+ θ′)Sϕ(m) + θ(m− Sϕ(m))

)
eε(m−1)

−
((

1− m

L

)
+ (µ+ θ′)Sϕ(m) + θ(m− Sϕ(m))

)
eεm ≤ −αeεm, for all m ≥M.
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After some algebra we get

λ
(

1− m

L

)
(eε − 1) +

(
(µ+ θ′ − θ)Sϕ(m) + θm

)
(e−ε − 1) ≤ −α, for all m ≥M.

Note that λ(1−m/L)(e−ε−1) can be upper bounded by a constant, κ1, and (µ+θ′−θ)Sϕ(m)(eε−1)
can be upper bounded by κ2. Besides, θm(e−ε − 1) < 0. Hence, we can find M large enough so
that −θm(e−ε − 1) ≥ κ1 + κ2 for all m ≥M . This proves that condition (1) is satisfied.

Condition (2), i.e., the continuity of the functions (Sϕ(m), L) 7→ qϕ,L(m, m̃) and (Sϕ(m), L) 7→∑
m̃ q

ϕ,L(m, m̃)f(m̃) in L and Sϕ(m) is satisfied by definition of transition rates.

A.2 Convexity of V L

For the ease of clarity we define ω := µ + θ′ − θ throughout this proof. W.l.o.g. assume λ + µ +
θ′ + θL = 1. For n ∈ {0, 1, . . . , L} we define V L

t (n) by V L
0 (n) = 0 and

V L
t+1(n) =λ

(
1− n

L

)
V L
t (min{n+ 1, L})

+ min{−W + C̃(n, 0) + ωV L
t (n), C̃(n, 1) + ωV L

t ((n− 1)+)}

+ θnV L
t ((n− 1)+) + λ

n

L
V L
t (n) + (L− n+ 1)θV L

t (n).

We will prove that V L
t is a convex function for n ≤ L− 1, that is,

2V L
t (n) ≤ V L

t ((n− 1)+) + V L
t (n+ 1), for n ≤ L− 1. (29)

The function V L
t being convex, for any t, implies convexity of V L and concludes the proof.

In order to prove convexity of V L
t we first prove that V L

t (·) is a non-decreasing function. The
proof follows by induction: V L

0 (n) = 0 is non-decreasing for t = 0, then we assume V L
t (n) is

non-decreasing and we prove that

V L
t+1(n+ 1)− V L

t+1(n) ≥ 0 for all n ≤ L− 1. (30)

Let us first consider the terms multiplied by λ in V L
t+1(n+ 1)− V L

t+1(n), that is,

λ

(
1− n+ 1

L

)
V L
t (min{n+ 2, L}) + λ

n+ 1

L
V L
t (min{n+ 1, L})

− λ
(

1− n

L

)
V L
t (min{n+ 1, L})− λn

L
V L
t (n)

≥ λ
(

1− n+ 1

L

)
(V L
t (min{n+ 2, L})− V L

t (min{n+ 1, L}))

+ λ
n

L
(V L
t (min{n+ 1, L} − V L

t (n))) ≥ 0,

where the last inequality holds due to the non-decreasingness of V L
t (n). Let us now consider the

terms multiplied by θ in V L
t+1(n+ 1)− V L

t+1(n), namely,

θ(n+ 1)V L
t (n) + (L− n− 1)θV L

t (min{n+ 1, L})− θnV L
t ((n− 1)+)− (L− n)θV L

t (n)

≥ θn(V L
t (n)− V L

t ((n− 1)+)) + (L− n− 1)(V L
t (min{n+ 1, L})− V L

t (n)) ≥ 0,
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where, again, the last inequality holds due to V L
t (n) being non-decreasing for all n ≤ L−1. Finally,

let us consider the min-terms in V L
t+1(n+ 1)− V L

t+1(n). It is straightforward that

min{−W + C̃(min{n+ 1, L}, 0) + (µ+ θ′)V L
t (min{n+ 1, L}),

C̃(min{n+ 1, L}, 1) + (µ+ θ′)V L
t (n)}

−min{−W + C̃(n, 0) + (µ+ θ′)V L
t (n),

C̃(n, 1) + (µ+ θ′)V L
t ((n− 1)+)} ≥ 0,

due to C̃ and V L
t being non-decreasing. This proves (30) and hence we showed that V L

t (n) is
non-decreasing.

Equation (29) for n = 0 follows directly from V L
t (·) being non-decreasing. In the remainder of

the proof we therefore prove Equation (29) for n ≥ 1.
We will prove convexity (29) by induction on t. Since V L

0 (n) = 0, it holds for t = 0. Now
assume V L

t is convex. For 1 ≤ n ≤ L− 1 we have

2V L
t+1(n) = 2λ

(
1− n

L

)
V L
t (n+ 1) + 2λ

n

L
V L
t (n) + 2θnV L

t (n− 1) + 2(L− n+ 1)θV L
t (n)

+ 2 min{−W + C̃(n, 0) + ωV L
t (n), C̃(n, 1) + ωV L

t (n− 1)}. (31)

We need to show that this is less than or equal to V L
t+1(n− 1) + V L

t+1(n+ 1), which is given by

λ

(
1− n− 1

L

)
V L
t (n) + λ

(
1− n+ 1

L

)
V L
t (n+ 2) + λ

n− 1

L
V L
t (n− 1) + λ

n+ 1

L
V L
t (n+ 1)

+ θ(n− 1)V L
t ((n− 2)+) + θ(n+ 1)V L

t (n) + (L− n+ 2)θV L
t (n− 1) + (L− n)θV L

t (n+ 1)

+ min{−W + C̃(n− 1, 0) + ωV L
t (n− 1), C̃(n− 1, 1) + ωV L

t ((n− 2)+)}
+ min{−W + C̃(n+ 1, 0) + ωV L

t (n+ 1), C̃(n+ 1, 1) + ωV L
t (n)}. (32)

We first consider the two terms multiplied by λ in (31) and show that they are smaller than or
equal to

λ

(
1− n− 1

L

)
V L
t (n) + λ

(
1− n+ 1

L

)
V L
t (n+ 2) + λ

n− 1

L
V L
t (n− 1) + λ

n+ 1

L
V L
t (n+ 1). (33)

When 1 ≤ n < L− 1, then for the terms multiplied by λ in (31) we can write

2
(

1− n

L

)
V L
t (n+ 1) + 2

n

L
V L
t (n) = 2

(
1− n+ 1

L

)
V L
t (n+ 1) + 2

n

L
V L
t (n) +

2

L
V L
t (n+ 1)

≤
(

1− n− 1

L

)
V L
t (n)− 2

L
V L
t (n) +

(
1− n+ 1

L

)
V L
t (n+ 2) + 2

n

L
V L
t (n) +

2

L
V L
t (n+ 1), (34)

by convexity of V L
t . Since by convexity 2n−1

L V L
t (n) ≤ n−1

L (V L
t (n − 1) + V L

t (n + 1)), we obtain
that (34) is smaller than or equal to (33). When n = L−1, it reduces to verifying 2(1−2/L)V L

t (L−
1) ≤ (1− 2/L)(V L

t (L− 2) + V L
t (L)), which follows from convexity of V L

t .
For the terms multiplied by θ, we need to show for 1 ≤ n ≤ L− 1 that

2nV L
t (n− 1) + 2V L

t (n) + 2(L− n)V L
t (n)

≤ (n− 1)V L
t ((n− 2)+) + (n+ 1)V L

t (n) + 2V L
t (n− 1) + (L− n)(V L

t (n− 1) + V L
t (n+ 1)).
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We apply the inequality 2V L
t (n− 1) ≤ V L

t ((n− 2)+) +V L
t (n) on the right hand side and the whole

initial inequality reduces to

2nV L
t (n− 1) + 2(L− n)V L

t (n) ≤ n(V L
t ((n− 2)+) + V L

t (n)) + (L− n)(V L
t (n− 1) + V L

t (n+ 1)),

which holds by convexity of V L
t .

We now consider the min-terms. We will condition on the possible optimal actions in states
n − 1 and n + 1. Since at time t we have that V L

t is convex, the optimal actions satisfy the
monotonicity property. Denote by a∗n ∈ {0, 1} the optimal action in state n, with action 0 (1) being
passive (active). Then, by monotonicity there are the following three possibilities: (a∗n−1, a

∗
n+1)

equals (0, 0), (0, 1) or (1, 1). First assume a∗ = (0, 1). Then, we obtain for 1 ≤ n ≤ L− 1 that

2 min{−W + C̃(n, 0) + ωV L
t (n), C̃(n, 1) + ωV L

t (n− 1)}
≤ −W + C̃(n, 0) + ωV L

t (n) + C̃(n, 1) + ωV L
t (n− 1)

≤ −W + C̃(n− 1, 0) + ωV L
t (n) + C̃(n+ 1, 1) + ωV L

t (n− 1)

= min{−W + C̃(n− 1, 0) + ωV L
t (n− 1), C̃(n− 1, 1) + ωV L

t ((n− 2)+)},
+ min{−W + C̃(n+ 1, 0) + ωV L

t (n+ 1), C̃(n+ 1, 1) + ωV L
t (n)}, (35)

where in the second inequality we used that C and hence C̃ satisfies (2). In the case a∗ = (1, 1) we
obtain for 1 ≤ n ≤ L− 1 that

2 min{−W + C̃(n, 0) + ωV L
t (n), C̃(n, 1) + ωV L

t (n− 1)}
≤ 2C̃(n, 1) + 2ωV L

t (n− 1)

≤ C̃(n− 1, 1) + C̃(n+ 1, 1) + ω(V L
t ((n− 2)+) + V L

t (n))

= min{−W + C̃(n− 1, 0) + ωV L
t (n− 1), C̃(n− 1, 1) + ωV L

t ((n− 2)+)},
+ min{−W + C̃(n+ 1, 0) + ωV L

t (n+ 1), C̃(n+ 1, 1) + ωV L
t (n)}. (36)

In the second inequality we used the convexity of C (and hence of C̃) and the convexity of V L
t .

When a∗ = (0, 0) we obtain for 1 ≤ n ≤ L− 1 that

2 min{−W + C̃(n, 0) + ωV L
t (n), C̃(n, 1) + ωV L

t (n− 1)}
≤ −2W + 2C̃(n, 0) + 2ωV L

t (n)

≤ −2W + C̃(n− 1, 0) + C̃(n+ 1, 0) + ωV L
t (n− 1) + ωV L

t (n+ 1)

= min{−W + C̃(n− 1, 0) + ωV L
t (n− 1), C̃(n− 1, 1) + ωV L

t ((n− 2)+)},
+ min{−W + C̃(n+ 1, 0) + ωV L

t (n+ 1), C̃(n+ 1, 1) + ωV L
t (n)}. (37)

In the second inequality we used the convexity of C (and hence of C̃) and the convexity of V L
t .

Hence, we have that (31) is less than or equal to V L
t+1(n − 1) + V L

t+1(n + 1), hence V L
t+1 is

convex. This concludes the proof for convexity of V L
t (·). Since V L

t → V L as t → ∞ [34, Chap.
9.4], convexity of V L

t (·) implies convexity of V L(·).

B Proof of Theorem 1

In this section we prove that the steps described in Theorem 1 indeed defines Whittle’s index
correctly. To do so let us assume that the steps stop at iteration J ∈ N ∪ {∞}, and hence
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nJ =∞. We further set Wi := WJ and ni =∞ for all i ∈ {J + 1, . . .} ∪ {∞}. We will prove that
W0 < W1 < W2 < . . ., and note that by construction ni for i ∈ N∪{0,∞} is an increasing sequence.
Let us prove Wi < Wi+1 for all i ∈ {0, 1, 2, . . . } ∪ {∞}. We have from the characterization of Wi

that

E(C̃(Nni+1 , Sni+1(Nni+1)))− E(C̃(Nni−1 , Sni−1(Nni−1)))∑ni+1

m=0 π
ni+1(m)−

∑ni−1

m=0 π
ni−1(m)

>
E(C̃(Nni , Sni(Nni)))− E(C̃(Nni−1 , Sni−1(Nni−1)))∑ni

m=0 π
ni(m)−

∑ni−1

m=0 π
ni−1(m)

=⇒
(
E(C̃(Nni+1 , Sni+1(Nni+1)))− E(C̃(Nni−1 , Sni−1(Nni−1)))

)( ni∑
m=0

πni(m)−
ni−1∑
m=0

πni−1(m)

)

>
(
E(C̃(Nni , Sni(Nni)))− E(C̃(Nni−1 , Sni−1(Nni−1)))

)(ni+1∑
m=0

πni+1(m)−
ni−1∑
m=0

πni−1(m)

)
,

and adding E(C̃(Nni , Sni(Nni))(
∑ni−1

m=0 π
ni−1(m) −

∑ni
m=0 π

ni(m)) on both sides of the inequality,
after some algebra we obtain

Wi+1 =
E(C̃(Nni+1 , Sni+1(Nni+1)))− E(C̃(Nni , Sni(Nni)))∑ni+1

m=0 π
ni+1(m)−

∑ni
m=0 π

ni(m)

>
E(C̃(Nni , Sni(Nni)))− E(C̃(Nni−1 , Sni−1(Nni−1)))∑ni

m=0 π
ni(m)−

∑ni−1

m=0 π
ni−1(m)

= Wi.

To prove that the steps given in Theorem 1 indeed define the Whittle index we have to show that,

1. the threshold policy −1 is optimal for problem (8) for all W such that W < W0.

2. The threshold policy ni <∞ is optimal for problem (8) for all W such that Wi < W < Wi+1.

3. And finally that the policy ∞, is optimal for problem (8) for all W such that ∞ > W > WJ

and J <∞.

To show 1., note that for all W < W0

W
n∑

m=0

πn(m) < E(C̃(Nn, Sn(Nn)))− E(C̃(N−1, S−1(N−1))),

=⇒ E(C̃(N−1, S−1(N−1))) < E(C̃(Nn, Sn(Nn)))−W
n∑

m=0

πn(m),∀n,

that is, g(−1)(W ) < g(n)(W ) for all n ∈ N0, and hence g(W ) = g(−1)(W ). Policy −1 is therefore
optimal for problem (8) for W < W0.

We will prove 2. by induction, observe from the definition of n0 that for all n ≥ 0

E(C̃(Nn0 , Sn0(Nn0)))−W0

n0∑
m=0

πn0(m) ≤ E(C̃(Nn, Sn(Nn)))−W0

n∑
m=0

πn(m),

that is, g(n0)(W0) ≤ g(n)(W0), for all n ≥ 0. Besides, we trivially have that g(n0)(W0) ≤ g(−1)(W0).
We have proven in the proof of Proposition 2 that

∑n
m=0 π

n(m) is strictly increasing in n, and
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therefore for all n ≤ n0 and W0 < W

E(C̃(Nn0 , Sn0(Nn0)))−W
n0∑
m=0

πn0(m) ≤ E(C̃(Nn, Sn(Nn)))−W
n∑

m=0

πn(m)

=⇒ g(n0)(W ) ≤ g(n)(W ).

In particular, g(n0)(W ) ≤ g(n)(W ) is satisfied for all W0 < W < W1 and n ≤ n0. Similarly,
from the definition of W1 we have that g(n0)(W1) ≤ g(n)(W1) for all n ≥ n0 + 1, and again using
that

∑n
m=0 π

n(m) is strictly increasing we obtain g(n0)(W ) ≤ g(n)(W ) for all W0 < W < W1 and
n ≥ n0 + 1.

We have therefore proven that g(n0)(W ) ≤ g(n)(W ) for all n and W0 < W < W1, that is, policy
n0 is optimal for all W such that W0 < W < W1. This establishes the first step of the induction
i = 0. Let us now assume that it holds for step i − 1 ≥ 0, that is, ni is an optimal policy for
problem (8), given W such that Wi−1 < W < Wi. And let us assume ni <∞. The definition of Wi

together with the fact that ni−1 is optimal for the choice of W such that Wi−1 < W < Wi, imply

g(ni−1)(Wi) = g(ni)(Wi) ≤ g(n)(Wi), n ≥ 0.

Recall that
∑n

m=0 π
n(m) is strictly increasing in n and therefore

g(ni)(W ) ≤ g(n)(W ), n ≤ ni,Wi < W < Wi+1.

Besides, from the definition of Wi+1 we have

g(ni)(W ) ≤ g(n)(W ), n ≥ ni + 1,Wi < W < Wi+1.

We therefore have obtained that threshold policy ni is optimal for problem (8) given W such that
Wi < W < Wi+1.

Finally, we prove 3. for J <∞, note that from the induction followed in the previous point we
have that

g(nJ−1)(WJ) = g(nJ )(WJ) ≤ g(n)(WJ), n ≥ 0,

and the fact that
∑n

m=0 π
n(m) is increasing in n gives that

g(nJ )(W ) < g(n)(W ), n ≤ nJ =∞,WJ < W.

Which concludes the proof of the theorem.

C Proof of Proposition 3

For ease of notation we omit subscript k from the notation in the proof. To calculate Whittle’s
index as in Theorem 1 we need to consider the monotone policies n and n− 1 in which the server
is active in states m ≥ n+ 1 and m ≥ n, respectively.

Let us consider the policy n first. Let fn(ab) and fn(ser) denote the fraction of customers
that end up abandoning and being served, respectively. A rate conservation argument implies that
all arriving users either abandon or are served, thus λ = λfn(ab) + λfn(ser). Conditioning on
the state, the rate of abandonment from the system can be written as

∑∞
m=0 θmπ

n(m) + (θ′ −
θ)
∑∞

m=n+1 π
n(m), and equating the rates we get the relation

θE(Nn) + (θ′ − θ)
∞∑

m=n+1

πn(m) = λfn(ab) = λ(1− fn(ser)). (38)
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Conditioning on the state, the rate of service is given by
∑∞

m=n+1 µπ
n(m), and we get the relation

λf(ser) = µ

∞∑
m=n+1

πn(m),

and substituting in (38) we get

E(Nn) =
λ

θ
+
θ − θ′ − µ

θ

∞∑
m=n+1

πn(m),

where Nn denotes the stationary number of class-k customers in the system under the threshold
policy n. We calculate now the average holding cost. Plugging the holding cost Ck(nk, a) =
ck(nk − a)+ + c′ka in the total cost relation (4) we get C̃(n, a) = c̃n+ a(c̃′− c̃), where the constants
c̃ and c̃′ are defined in the statement. The average cost then becomes

E(C̃(Nn, Sn(Nn))) = c̃E(Nn) + (c̃′ − c̃)
∞∑

m=n+1

πn(m)

= c̃
λ

θ
+

(
c̃(θ − θ′ − µ)

θ
+ c̃′ − c̃

) ∞∑
m=n+1

πn(m) = c̃
λ

θ
+

(
c̃′ − c̃(θ′ + µ)

θ

) ∞∑
m=n+1

πn(m).

We substitute now all the terms in (15) to get

W (n) =
c̃(µ+ θ′)

θ
− c̃′, (39)

which concludes the proof.

D Proof of Proposition 4

For ease of notation we drop the dependency on k throughout the proof.
The index in the case µ + θ′ = θ was obtained in (16), therefore we assume µ + θ′ > θ

throughout the proof. First of all recall that the steady-state probabilities πn(i) for policy n and
state i are given by (11). To compute Whittle’s index for large values of n, we need to compute
πn(i)− πn−1(i),∀i ≥ 0. Let us start by i = 0, that is,

πn(0)− πn−1(0) =

(
πn−1(0)

)−1 − (πn(0))−1

(πn(0)πn−1(0))−1

=

( ∞∑
i=1

i∏
m=1

qn−1(m− 1,m)

qn−1(m,m− 1)
−
∞∑
i=1

i∏
m=1

qn(m− 1,m)

qn(m,m− 1)

)
πn(0)πn−1(0).

The following observations on the transition rates will be used throughout the proof:

qn(m,m− 1) = qn−1(m,m− 1), ∀m 6= n,m ≥ 1, (40)

qn(m− 1,m) = qn−1(m− 1,m), ∀m ≥ 1. (41)
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Taking these relations into account together with the fact that qn(n, n−1)−qn−1(n, n−1) = θ−µ−θ′,
we get after some calculations

πn(0)− πn−1(0) = πn(0)πn−1(0)

∞∑
i=n

i∏
m=1
m6=n

qn(m− 1,m)

qn(m,m− 1)

(
1

qn−1(n, n− 1)
− 1

qn(n, n− 1)

)

=πn(0)πn−1(0)
θ − µ− θ′

qn−1(n, n− 1)

∞∑
i=n

i∏
m=1

qn(m− 1,m)

qn(m,m− 1)
.

Since qn(m−1,m) = λ for all m ≥ 1, qn(m,m−1) = θm for all 1 ≤ m ≤ n−1 and qn(m,m−1) =
µ+ θ′ + θ(m− 1) for all m ≥ n, together with πn(0) given as in (11), we observe that

πn(0)πn−1(0)

qn−1(n, n− 1)
∈ O

(
1

n

)
and

∞∑
i=n

i∏
m=1

qn(m− 1,m)

qn(m,m− 1)
∈ O

(
1

n!

)
.

We then get that

πn(0)− πn−1(0) ∈ O
(

1

nn!

)
. (42)

We can now compute πn(i)− πn−1(i), for all 0 < i ≤ n− 1. Using (41), we obtain for i ≤ n− 1,

πn(i)− πn−1(i) =
i∏

m=1

qn(m− 1,m)

qn(m,m− 1)
(πn(0)− πn−1(0)).

Due to (42) and since qn(m,m− 1) = θm, and qn(m− 1,m) = λ for all m ≤ n− 1, we obtain for
i ≤ n− 1

πn(i)− πn−1(i) =
λi

i!θi
(πn(0)− πn−1(0)) ∈ O

(
1

nn!

)
, (43)

For states i ≥ n, with n sufficiently large, we have the following:

πn(i)− πn−1(i) =
i∏

m=1

qn(m− 1,m)

qn(m,m− 1)
πn(0)−

i∏
m=1

qn−1(m− 1,m)

qn−1(m,m− 1)

(
πn(0)− πn(0) + πn−1(0)

)
.

From observation (42), together with
∏i
m=1

qn−1(m− 1,m)

qn−1(m,m− 1)
∈ O

(
1
i!

)
, we obtain

πn(i)− πn−1(i) =O
(

1

i!n!n

)
+

i∏
m=1

qn(m− 1,m)

qn(m,m− 1)
πn(0)−

i∏
m=1

qn−1(m− 1,m)

qn−1(m,m− 1)
πn(0).

After some calculations and by observations (40) and (41) we obtain

πn(i)− πn−1(i) =

(
1

qn(n, n− 1)
− 1

qn−1(n, n− 1)

) i∏
m=1
m 6=n

qn(m− 1,m)

qn(m,m− 1)
+O

(
1

i!n!n

)

=
µ+ θ′ − θ

qn−1(n, n− 1)
πn(i) +O

(
1

i!n!n

)
, (44)

40



for i ≥ n. Recall from (18) that Whittle’s index can be written as d(µ+ θ′)− d′θ′ +W c(n), where
W c(n) corresponds to the holding costs only. W c(n) can be written as follows

W c(n) =
ξ1(n) + ξ2(n) + ξ3(n)

πn(n) +
∑n−1

m=0(πn(m)− πn−1(m))
=
ξ1(n) + ξ2(n) + ξ3(n)

πn(n) +O(1/n!n)
, (45)

with

ξ1(n) :=
n−1∑
i=1

C(i, 0)(πn(i)− πn−1(i)),

ξ2(n) := C(n, 0)πn(n)− C(n, 1)πn−1(n),

ξ3(n) :=

∞∑
i=n+1

C(i, 1)(πn(i)− πn−1(i)). (46)

Recall now the assumption that the holding costs C(n, 1) and C(n, 0) are upper bounded by poly-
nomials of finite degrees P <∞ and Q <∞, respectively. Hence, we can write C(n, a) = E(n, a)+

o(1), for large values of n, where E(n, 1) =
∑P

i=0C
(P,i)ni, with C(P,i) := limn→∞

C(n,1)−
∑P
j=i+1 C

(P,j)nj

ni
,

and E(n, 0) =
∑Q

i=0E
(Q,i)ni, with E(Q,i) := limn→∞

C(n,0)−
∑Q
j=i+1 E

(Q,j)nj

ni
. We assume w.l.o.g. that

P is such that C(P,P ) > 0 and Q such that E(Q,Q) > 0. We then have

ξ1(n) =
n−1∑
i=1

E(i, 0)(πn(i)− πn−1(i)) + o(1),

ξ2(n) = E(n, 0)πn(n)− E(n, 1)πn−1(n) + o(1),

ξ3(n) =
∞∑

i=n+1

E(i, 1)(πn(i)− πn−1(i)) + o(1).

We now define ξ̂1 :=
∑n−1

i=1 E(i, 0)(πn(i)−πn−1(i)), and with the result obtained in Equation (43) we

have that for large values of n ξ̂1(n) ∈ O
(
nQ−1

n!

)
⊂ o(1). Hence, for large values of n, ξ1(n) ∈ o(1).

Let us now define ξ̂2(n) := E(n, 0)πn(n)−E(n, 1)πn−1(n). Using (40) and (41) we have after some
calculations,

ξ̂2(n) =

∏n
m=1 q

n(m− 1,m)∏n−1
m=1 q

n(m,m− 1)

(
E(n, 0)πn(0)

qn(n, n− 1)
− E(n, 1)πn−1(0)

qn−1(n, n− 1)

)
.

We recall that qn−1(n, n− 1) = µ+ θ′ + θ(n− 1) and qn(n, n− 1) = θn, which together with (42)
give, after some calculations,

ξ̂2(n) =
n∏

m=1

qn(m− 1,m)

qn(m,m− 1)

θn

qn−1(n, n− 1)

(
(E(n, 0)− E(n, 1))πn(0) +O

(
nP−1

n!

))
+ πn(n)(µ+ θ′ − θ) E(n, 0)

qn−1(n, n− 1)
.

Since for large values of n

n∏
m=1

qn(m− 1,m)

qn(m,m− 1)

θn

qn−1(n, n− 1)
· O
(
nP−1

n!

)
⊂ O

(
nP−1

(n!)2

)
⊂ o(1),
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we conclude that

ξ2(n) =
πn(n)

qn−1(n, n− 1)

(
θn(E(n, 0)− E(n, 1)) + (µ+ θ′ − θ)E(n, 0)

)
+ o(1). (47)

Finally, we compute ξ̂3(n) :=
∑∞

i=n+1E(i, 1)(πn(i)− πn−1(i)). From (44) we see that

ξ̂3(n) =
µ+ θ′ − θ

qn−1(n, n− 1)

∞∑
i=n+1

E(i, 1)πn(i) +
∞∑

i=n+1

E(i, 1) · O
(

1

i!n!n

)
.

Since for large values of n
∑∞

i=n+1E(i, 1) · O
(

1
i!n!n

)
⊂ O

(
nP−1

i!n!

)
⊂ o(1), we obtain

ξ3(n) =
µ+ θ′ − θ

qn−1(n, n− 1)

∞∑
i=n+1

E(i, 1)πn(i) + o(1). (48)

Now using ξ1 ∈ o(1), the expression of ξ2(n) in (47) and (48) and letting n be large, we see that
ξ1(n)
πn(n) ∈ o(1), and,

ξ2(n)

πn(n)
=
θn(E(n, 0)− E(n, 1))

µ+ θ′ + θ(n− 1)
+

(µ+ θ′ − θ)E(n, 0)

µ+ θ′ + θ(n− 1)
+ o(1)

= E(n, 0)− E(n, 1) +
(µ+ θ′ − θ)

θn
E(n, 0) + o(1)

= E(n, 0)− E(n, 1) +
(µ+ θ′ − θ)

θ

Q∑
j=1

E(P,j)nj−1 + o(1),

and

ξ3(n)

πn(n)
=

µ+ θ′ − θ
µ+ θ′ + θ(n− 1)

·
∞∑

i=n+1

E(i, 1)
i∏

m=n+1

λ

µ+ θ′ + θ(m− 1)
+ o(1)

=
µ+ θ′ − θ

θn

∞∑
i=n+1

P∑
j=0

C(P,j)ij
(
λ

θm

)i−n
+ o(1).

Define W̃ c(n) asW c(n) for large values of n. Substituting the expressions for ξ1(n)/πn(n), ξ2(n)/πn(n)
and ξ3(n)/πn(n) in Equation (45), we obtain

W̃ c(n) = (E(n, 0)− E(n, 1)) + (µ+ θ′ − θ)/θ

×

 Q∑
j=1

E(Q,j)nj−1 +
P∑
i=2

C(P,i)
i−2∑
j=0

ni−2−j
(
λ

θ

)j+1
+ o(1),

as n → ∞, that is, the expression in Equation (19). E(n, a) being non-decreasing together with
Condition 2 implies that W̃ c is non-decreasing, and hence W∞ as well, which concludes the proof.

E Proof of Propostion 5

For ease of notation we drop the dependency on k throughout the proof.
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The index in the case µ+θ′ = θ was obtained in (16), therefore we assume µ+θ′ > θ throughout
the proof. Recall from (18) that Whittle’s index can be written as d(µ+ θ′)− d′θ′ +W c(n), where
W c(n) corresponds to the holding costs only. Recall from (45) that W c(n) can be written as

W c(n) =
ξ1(n) + ξ2(n) + ξ3(n)

πn(n) +
∑n−1

m=0(πn(m)− πn−1(m))
(49)

with ξi(n) for i ∈ {1, 2, 3} as given in Equation (46).
Let us first compute limλ→0 π

n−1(0)/πn(0), since this result will be used later in the proof.
Recall the expression of the steady-state probabilities as defined in (11). Using this together
with (40) and (41) we obtain

lim
λ→0

πn−1(0)

πn(0)
= lim

λ→0

∑∞
m=0

λm∏m
i=1 q

n(i,i−1)∑∞
m=0

λm∏m
i=1 q

n−1(i,i−1)

= 1 + lim
λ→0

∑∞
m=n

λm∏m
i=1 q

n(i,i−1)
−
∑∞

m=n
λm∏m

i=1 q
n−1(i,i−1)∑∞

m=0
λm∏m

i=1 q
n−1(i,i−1)

= 1 + lim
λ→0

∑∞
m=n

(
λm(µ+θ′+θ(n−1))
θn

∏m
i=1 q

n−1(i,i−1)
− λmθn

θn
∏m
i=1 q

n−1(i,i−1)

)
∑∞

m=0
λm∏m

i=1 q
n−1(i,i−1)

= 1 +
(µ+ θ′ − θ)

θn
· lim
λ→0

O(λn)

1 +O(λ)
= 1.

(50)

From this last result we observe the following

lim
λ→0

λn/(θnn!)

1− πn−1(0)/πn(0)
= lim

λ→0

λn/(θnn!)

− (µ+θ′−θ)
θn

(
λn

(µ+θ′+θ(n−1))θn−1(n−1)!
+O(λn+1)

1+O(λ)

)
= lim

λ→0
−µ+ θ′ + θ(n− 1)

µ+ θ′ − θ
+ o(1) = −µ+ θ′ + θ(n− 1)

µ+ θ′ − θ
. (51)

Let us now consider the first term in (49), that is,∑n−1
m=0C(m, 0)(πn(m)− πn−1(m))∑n
m=0 π

n(m)−
∑n−1

m=0 π
n−1(m)

=

∑n−1
m=0C(m, 0)

∏m
i=1

qn(i−1,i)
qn(i,i−1)(πn(0)− πn−1(0))

πn(n) +
∑n−1

m=0

∏m
i=1

qn(i−1,i)
qn(i,i−1)(πn(0)− πn−1(0))

=

∑n−1
m=0C(m, 0)

∏m
i=1

qn(i−1,i)
qn(i,i−1)

πn(n)
πn(0)−πn−1(0)

+
∑n−1

m=0

∏m
i=1

qn(i−1,i)
qn(i,i−1)

=

∑n−1
m=0C(m, 0) λm∏m

i=1 q
n(i,i−1)

λn/(θnn!)
1−πn−1(0)/πn(0)

+
∑n−1

m=0

∏m
i=1

qn(i−1,i)
qn(i,i−1)

. (52)

where in the first inequality we used the conditions (40) and (41). In order to obtain the limit
of (52) as λ→ 0 we substitute the result obtained in (51), and we obtain the following

lim
λ→0

ξ1(n)∑n
m=0 π

n(m)−
∑n−1

m=0 π
n−1(m)

= lim
λ→0

∑n−1
m=0C(m, 0) λm∏m

i=1 q
n(i,i−1)

λn/(θnn!)
1−πn−1(0)/πn(0)

+
∑n−1

m=0

∏m
i=1

qn(i−1,i)
qn(i,i−1)

= lim
λ→0

C(0, 0) +O(λ)

−µ+θ′+θ(n−1)
µ+θ′−θ + 1 +O(λ)

= −C(0, 0)
(µ+ θ′ − θ)

θn
. (53)

Let us now consider the second term in (49), that is,

C(n, 0)πn(n)− C(n, 1)πn−1(n)

πn(n) +
∑n−1

m=0 π
n(n)−

∑n−1
m=0 π

n(n− 1)
=

C(n, 0)− C(n, 1)π
n−1(n)
πn(n)

1 + 1
πn(n)(πn(0)− πn−1(0))

∑n−1
m=0

λm

θmm!

=
C(n, 0)− C(n, 1) θnπn−1(0)

(µ+θ′+θ(n−1))πn(0)

1 + θnn!
λn (1− πn−1(0)/πn(0))

∑n−1
m=0

λm

θmm!

. (54)
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Substituting the results obtained in (50) and (51) in the expression of Equation (54) we obtain

lim
λ→0

ξ2(n)∑n
m=0 π

n(n)−
∑n−1

m=0 π
n−1(m)

= lim
λ→0

C(n, 0)− C(n, 1)
(

θn
µ+θ′+θ(n−1)

)
(1 +O(λn))

1− µ+θ′−θ
µ+θ′+θ(n−1)(1 +O(λ))

= lim
λ→0

C(n, 0)(µ+ θ′ + θ(n− 1))− C(n, 1)θn+O(λn)

θn(1 +O(λ))

= C(n, 0)− C(n, 1) + C(n, 0)
(µ+ θ′ − θ)

θn
+O(λ). (55)

To conclude the proof we need to analyze the third term in (49), that is,∑∞
m=n+1C(m, 1)πn(m)−

∑∞
m=n+1C(m, 1)πn−1(m)

πn(n) +
∑n−1

m=0 π
n(m)−

∑n−1
m=0 π

n−1(m)

=
λn
∑∞

m=n+1
λm−n∏n−1

i=1 qn(i,i−1)
∏m
i=n+1 q

n(i,i−1)

(
πn(0)

qn(n,n−1) −
πn−1(0)

qn−1(n,n−1)

)
λn
(
πn(0)
θnn! + 1

λn (πn(0)− πn−1(0))
∑n−1

m=0
λm

m!θm

)
=

∑∞
m=n+1

λm−n∏m
i=n+1 q

n(i,i−1)

(
1− θnπn−1(0)

(µ+θ′+θ(n−1))πn(0)

)
(

1 + θnn!
λn

(
1− πn−1(0)

πn(0)

)∑n−1
m=0

λm

m!θm

) .

In the last expression we substitute the results obtained in (50) and (51), and we show that

lim
λ→0

ξ3(n)∑n
m=0 π

n(n)−
∑n−1

m=0 π
n−1(m)

= lim
λ→0

∑∞
m=n+1

λm−n∏m
i=n+1 q

n(i,i−1)

(
1− θnπn−1(0)

(µ+θ′+θ(n−1))πn(0)

)
(

1 + θnn!
λn

(
1− πn−1(0)

πn(0)

)∑n−1
m=0

λm

m!θm

)
= lim

λ→0

∑∞
m=n+1

λm−n∏m
i=n+1 q

n(i,i−1)

(
1− θn

µ+θ′+θ(n−1) (1 +O(λn))
)

(
1−

(
µ+θ′−θ

µ+θ′+θ(n−1) +O(λ)
)∑n−1

m=0
λm

m!θm

) = lim
λ→0

O(λ)
θn

µ+θ′+θ(n−1) +O(λ)
= 0.

(56)

We now substitute the results obtained in Equations (53), (55) and (56) in limλ→0W
c(n), and we

obtain

lim
λ→0

W c(n) = C(n, 0)− C(n, 1) +
(µ+ θ′ − θ)

θn
(C(n, 0)− C(0, 0)).

F Proof of Proposition 6

For ease of notation we drop the dependency on k throughout the proof.
The index in the case µ+θ′ = θ was obtained in (16), therefore we assume µ+θ′ > θ throughout

the proof. Recall from (18) that Whittle’s index can be written as d(µ+ θ′)− d′θ′ +W c(n), where
W c(n) corresponds to the holding costs only. Recall from (45) that W c(n) can be written as

W c(n) =
ξ1(n) + ξ2(n) + ξ3(n)

πn(n) +
∑n−1

m=0(πn(m)− πn−1(m))
(57)

with ξi(n) for i ∈ 1, 2, 3 as given by Equation (46)
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We first compute πn−1(0)/πn(0), which will be used later in the proof;

πn−1(0)

πn(0)
=

∑∞
m=0

λm∏m
i=1 q

n(i,i−1)∑∞
m=0

λm∏m
i=1 q

n−1(i,i−1)

=

(
1 +

∑∞
m=n

λm∏m
i=1 q

n(i,i−1)
−
∑∞

m=n
λm∏m

i=1 q
n−1(i,i−1)∑∞

m=0
λm∏m

i=1 q
n−1(i,i−1)

)

= 1 +
(µ+ θ′ − θ)

θn
·

∑∞
m=n

λm∏m
i=1 q

n−1(i,i−1)∑∞
m=0

λm∏m
i=1 q

n−1(i,i−1)

(58)

= 1 +
µ+ θ′ − θ

θn
(1 + o(1)). (59)

We now proceed to compute (57) as λ→∞. Let us begin by computing the term that corresponds
to ξ1(n). We have after some algebra

ξ1(n)

πn(n) +
∑n−1

m=0(πn(m)− πn−1(m))
=

∑n−1
m=0C(m, 0)(πn(m)− πn−1(m))∑n
m=0 π

n(m)−
∑n−1

m=0 π
n−1(m)

=

∑n−1
m=0C(m, 0) λm

θmm!
λn/(θnn!)

1−πn−1(0)/πn(0)
+
∑n−1

m=0
λm

θmm!

, (60)

which after substitution of (59) reduces to

ξ1(n)

πn(n) +
∑n−1

m=0(πn(m)− πn−1(m))
= O

(
1

λ

)
, (61)

as λ ↑ ∞, for all n. We are now interested in computing the second term in (57) as λ → ∞.
Using (59) we obtain

lim
λ→∞

ξ2(n)∑n
m=0 π

n(n)−
∑n−1

m=0 π
n−1(m)

= lim
λ→∞

C(n, 0)− C(n, 1)π
n−1(n)
πn(n)

1 + πn(0)−πn−1(0)
πn(n)

∑n−1
m=0

λm

m!θm

= lim
λ→∞

C(n, 0)− C(n, 1) θn
µ+θ′+θ(n−1)

πn−1(0)
πn(0)

1 + 1−πn−1(0)/πn(0)
λn/(θnn!)

∑n−1
m=0

λm

m!θm

= C(n, 0)− C(n, 1), (62)

for all n. We are left with the third term in (57), that is,

ξ3(n)∑n
m=0 π

n(m)−
∑n−1

m=0 π
n−1(m)

=

∑∞
m=n+1C(m, 1) λm∏n−1

i=1 qn(i,i−1)
∏m
i=n+1 q

n(i,i−1)

(
πn(0)
θn −

πn−1(0)
µ+θ′+θ(n−1)

)
πn(n) + (πn(0)− πn−1(0))

∑n−1
m=0

λm

m!θm

=

∑∞
m=n+1C(m, 1) λm∏m

i=1 q
n(i,i−1)

(
θn

µ+θ′+θ(n−1)

(
1− πn−1(0)

πn(0)

)
+ µ+θ′−θ

µ+θ′+θ(n−1)

)
λn/(θnn!) + (1− πn−1(0)/πn(0))

∑n−1
m=0

λm

m!θm

, (63)

where in the second step we used that
∏n−1
i=1 q

n(i, i− 1)
∏m
i=n+1 q

n(i, i− 1) =
∏m
i=1 q

n(i, i− 1)/θn.
After substituting (58) in the latter equation and some algebra, we obtain that (63) can be written
as

µ+ θ′ − θ
θn

∑∞
m=n+1C(m, 1) λm∏m

i=1 q
n−1(i,i−1)

λ
θn

∑∞
m=0

λm∏m
i=1 q

n−1(i,i−1)
(1 + o(1))

.
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Hence the third term as λ→∞ simplifies to

µ+ θ′ − θ
θ

∑∞
m=n+1C(m, 1) λm∏m

i=1 q
n−1(i,i−1)

λ
θ

∑∞
m=0

λm∏m
i=1 q

n−1(i,i−1)

+ o(1) =
µ+ θ′ − θ

θ

∑∞
m=n+1C(m, 1)πn−1(m)

λ/θ
+ o(1).

(64)

The latter equality follows due to πn−1(0) = (
∑∞

m=0
λm∏m

j=1 q
n−1(j,j−1)

)−1. We now write (64) as

follows

µ+ θ′ − θ
θ

(∑∞
m=0C(m, 1)πn−1(m)

λ/θ
−
∑n

m=0C(m, 1)πn−1(m)

λ/θ

)

=
µ+ θ′ − θ

θ

E(C(Nn−1, 1))

λ/θ

1−

∑n
m=0C(m, 1) λm∏m

j=1 q
n−1(j,j−1)

O(λn) +
∑∞

m=n+1
λm∏m

j=1 q
n−1(j,j−1)

 , (65)

where

E(C(Nn−1, 1)) =

∑∞
m=0C(m, 1) λm∏m

j=1 q
n−1(j,j−1)∑∞

m=0
λm∏m

j=1 q
n−1(j,j−1)

.

We then have that if there exists z ≥ 1 such that E(C(Nn−1,1))
λz → 0, as λ→∞, then (65) reduces to

µ+ θ′ − θ
θ

E(C(Nn−1, 1))

λ/θ
+ o(1),

Hence, together with Equations (57), (61) and (62) we obtain that

W c(n) = C(n, 0)− C(n, 1) +
µ+ θ′ − θ

θ

E(C(Nn−1, 1))

λ/θ
+ o(1),

as λ→∞. This concludes the proof.

G Proof of Proposition 7

For ease of notation, we omit the class index k in the proof.
Since θ′ = θ we have µ + θ′ > θ. Since d′ = d = 0, θ′ = θ and C(n, a) = C(n), we can write

C̃(n, a) = C(n). Hence, we are interested in the following limit

lim
θ→0

θW (n) = lim
θ→0

θ
∑∞

m=0C(m)
(
πn(m)− πn−1(m)

)∑n−1
m=1 (πn(m)− πn−1(m)) + πn(n)

= ε1(n)ε2(n),

with

ε1(n) = lim
θ→0

θ∑n−1
m=1 (πn(m)− πn−1(m)) + πn(n)

,

and

ε2(n) = lim
θ→0

∞∑
m=0

C(m)
(
πn(m)− πn−1(m)

)
.
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Consider ε2(n). We have

πn(0)− πn−1(0)
θ→0−−−→ 0.

hence
πn(m)− πn−1(m)

θ→0−−−→ 0, ∀m < n− 1,

πn(n− 1)− πn−1(n− 1)
θ→0−−−→ (ρ− 1),

and
πn(m)− πn−1(m)

θ→0−−−→ ρm−n(1− ρ)2, ∀m ≥ n.

This gives,

ε2(n) = −C(n− 1)(1− ρ) +
(1− ρ)

ρ

∞∑
m=n

C(m)(1− ρ)ρm−n+1

=
(1− ρ)

ρ
(−C(n− 1) +

∞∑
m=0

C(m+ n− 1)(1− ρ)ρm).

After some algebra and using that πn(n)
θ→0−−−→ (1−ρ)−1 (as pointed out in Section 7), we obtain

ε1(n) = 1/µ. This concludes the proof.

H Proof of Theorem 2

We first assume there exists a k such that Ck(0, 1) > 0. Let us consider that W = 0, and from (22)
we know that necessarily CREL(0) ≤ COPT . We also consider the policy ū ∈ U that takes active
action when the total number of customers in the system is 0, and is passive otherwise. Note that
policy ū does not take any scheduling decision. Since µk + θ′k ≥ θk, for all k, the queue length
under policy ū stochastically upper bounds any policy u ∈ U . Note that under the assumption
Ck(0, 0) ≥ Ck(0, 1), ∀k, it holds from (2) that, for all n, Ck(n, 0) ≥ Ck(n, 1), which implies that
Wk(n) is always positive, see Section 5. Hence, it follows CWI ≤ Cū. We will now show that
Cū−CREL(0)
COPT → 0 as λ→ 0, which in view of (22) implies the optimality of Whittle’s index policy.
We have Wk(0) = Ck(0, 0) − Ck(0, 1) ≥ 0, for all k. Setting W = 0, it follows that for every

class REL(0) is the threshold policy with threshold −1, that is, class-k always activates for any
state nk > −1. Hence, under policy REL(0) the steady-state probabilities for class-k are given by
(11) with threshold n = −1. It then follows that

CREL(0)(0) =
K∑
k=1

∞∑
m=0

Ck(m, 1)π−1
k (m)

=
K∑
k=1

Ck(0, 1)π−1
k (0) +

K∑
k=1

Ck(1, 1)
λγk

µk + θ′k
π−1
k (0) +O(λ2), (66)

as λ ↓ 0. We have π−1
k (0) = (1 +O(λ))−1, hence CREL(0)(0) =

∑K
k=1Ck(0, 1) +O(λ).

Under policy ū ∈ U , every class k behaves as an M/M/∞ queue with arrival rate λγk and depar-

ture rate θknk. We then have Cū =
∑K

k=1Ck(0, 1)e−λγk/θk +
∑K

k=1

∑∞
m=1Ck(m, 0) (λγk)m

θmk m! e−λγk/θk =∑K
k=1Ck(0, 1) +O(λ).
Hence,

Cū − CREL(0)(0) = O(λ). (67)
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We now note that in the limit λ→ 0, COPT ≥ CREL(0)(0) = O(1). Together with (22) and (67),
we thus conclude that

lim
λ↓0

CWI − COPT

COPT
≤ lim

λ↓0

Cū − CREL(0)(0)

COPT
= 0.

In case Ck(0, 1) = 0, then Ck(0, 0) ≥ Ck(0, 1) for all k and Wk(0) = Ck(0, 0)−Ck(0, 1) ≥ 0, for
all k. Setting W = 0, it follows that REL(0) is the policy that activates class-k for any nk ≥ 0.
We consider ū to be the policy that takes active action when the total number of customers in the
system is 0 or 1, and is passive otherwise. Then

Cū =

K∑
k=1

Ck(1, 1)
λγk

µk + θ′k
πūk (0) +

K∑
k=1

∞∑
m=2

Ck(m, 0)
(λγk)

m

(µk + θ′k)θ
m−1m!

πūk (0),

and πūk (0) =
(

1 + λγk
µk+θ′k

+ (λγk)2

(µk+θ′k)2θk
+O(λ3)

)−1
as λ→ 0. We have that π−1

k (0) = πūk (0) +O(λ2)

as λ→ 0. Then the term that corresponds to C(1, 1) in Cū and CREL(0)(0) as given in (66) coincide
up to a O(λ2) term. Hence, Cū − CREL(0)(0) = O(λ2) and COPT ≥ CREL(0)(0) = O(λ), which lead

to the desired result limλ↓0
CWI−COPT
COPT = 0.

I Proof of Theorem 3

Let us assume for the sake of clarity that there are only 2 classes of customers. It extends trivially
to the general case of k classes. We further assume w.l.o.g. k̄ = 2, hence

lim
λ→∞

W2(λγ2/θ2)

W1(λγ1/θ1)
> 1.

We prove Theorem 3 as follows:

• Step 1: We assume that Whittle’s index is either constant (linear holding cost case), or
strictly increasing, the general case follows similarly. We prove that there exists W̄ (λ) such
that limλ→∞ CREL(W̄ (λ))(W̄ (λ)) − CREL(W̄ (λ)) = 0, i.e., the optimal solution of the relaxed
problem is feasible for the original problem.

• Step 2: From Step 1 we deduce that in the limit, REL(W̄ (λ)) will only serve class k̄ with
probability 1, it becomes feasible for the original problem, i.e., REL(W̄ (λ)) ∈ U as λ → ∞,
and hence equivalent to Whittle’s index policy. Therefore limλ→∞ CREL(W̄ (λ)) − CWI = 0.

• Step 3: Applying the result in Equation (22) we obtain limλ→∞ CWI − COPT = 0.

Let us first assume that Wk(nk) is constant for k = 1, 2, that is the case for linear holding cost.
Later on we solve the case in which Wk(nk) in strictly increasing, following the steps above. If
Wk(nk) is constant for k = 1, 2, from the assumption in the statement, we can find W̄ constant
such that W1(n1) ≤ W̄ ≤W2(n2). It then follows trivially that the relaxed policy becomes feasible
for the original problem taking W = W̄ and equivalent to the Whittle index policy. In view of (22)
this in particular implies limλ→∞ CWI − COPT = 0.

We now assume Wk(nk) is strictly increasing for k = 1, 2. We will denote by bk = γk/θk for
k = 1, 2.
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Step 1. From the assumption limλ→∞W2(λb2)/W1(λb1) > 1, where Wk(λbk) is a continuous
non-decreasing function in λbk. It then follows that there exists W̄ (λ) a continuous non-decreasing
function in λ, such that

lim
λ↑∞

W1(λb1)

W̄ (λ)
< 1, lim

λ↑∞

W2(λb2)

W̄ (λ)
> 1.

We have assumed Wk(λbk) to be increasing, and hence it is invertible. We then obtain

lim
λ↑∞

λb1
(W1)−1(W̄ (λ))

< 1 (68)

lim
λ↑∞

λb2
(W2)−1(W̄ (λ))

< 1. (69)

The optimal policy of the relaxed problem is to serve all customers whose index is greater than
W̄ (λ). Together with (68) and (69) we will now prove that the optimal policy for the relaxed
problem becomes feasible for the original problem taking W = W̄ (λ) as λ→∞. Hence,

lim
λ↑∞
CREL(W̄ (λ))(W̄ (λ))− CREL(W̄ (λ)) = 0.

From (7) we have

CREL(W̄ )(W̄ (λ))

=
2∑

k=1

E(C̃(N
W̄ (λ)
k , SW̄ (λ))(N

W̄ (λ)
k ))− W̄ (λ)

(
1− 2 +

2∑
k=1

(
1− E

(
1
SW̄ (λ)(N

W̄ (λ)
k )=1

)))
. (70)

Due to the independence of the classes of customers in the relaxed problem (note that in the
relaxed problem serving one of the classes does not mean we can not serve the other) we can write

lim
λ↑∞

2∑
k=1

(
1− E

(
1
SW̄ (λ)(N

W̄ (λ)
k )=1

))
= 2−

(
lim
λ↑∞

P(W1(N1) > W̄ (λ)) + P(W2(N2) > W̄ (λ))

)
= 2−

(
lim
λ↑∞

P(N1 > (W1)−1(W̄ (λ))) + P(N2 > (W2)−1(W̄ (λ)))

)
. (71)

Let us then compute limλ↑∞ P(Nk > (Wk)
−1(W̄ (λ))) = limλ↑∞ P(Nk > b(Wk)

−1(W̄ (λ))c). To do
so we first note that for a given f(λ)

P(Nk > f(λ)) =

∞∑
m=f(λ)

(λγk)
m

θf(λ)f(λ)!
∏m
j=f(λ)+1(µk + θ′k + θk(j − 1))

· 1∑f(λ)
r=0

(λγk)r

θrkr!
+
∑∞

r=f(λ)+1
(λγk)r

θ
f(λ)
k f(λ)!

∏r
j=f(λ)+1(µk+θ′k+θk(j−1))

.
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Assume f(λ) is a positive non-decreasing function in λ. Then, in the limit as λ→∞ we have

lim
λ↑∞

P(Nk > f(λ)) = lim
λ↑∞

∞∑
m=f(λ)

(λγk)
m

θmk m! +O(θm−1
k (m− 1)!)

1∑f(λ)
j=0

(λγk)j

θjkj!
+
∑∞

j=f(λ)+1
(λγk)j

θjkj!+O(θj−1
k (j−1)!)

= lim
λ↑∞

∞∑
m=f(λ)

(λbk)
m

m!

1∑∞
j=0

(λbk)j

j!

= lim
λ↑∞

∑∞
m=0

(λbk)m

m! −
∑f(λ)−1

m=0
(λbk)m

m!∑∞
j=0 (λbk)

j 1
j!

= 1− lim
λ↑∞

e−λbk
f(λ)−1∑
m=0

(λbk)
m

m!
= 1− lim

λ↑∞
e−λbk

f(λ)∑
m=0

(λbk)
m

m!
= P (f(λ), λbk)

=

{
0, if limλ↑∞

λbk
f(λ) < 1,

1, if limλ↑∞
λbk
f(λ) > 1.

(72)

The last equality follows from the auxiliary Lemma 1 (see Appendix J). We now take fk(λ) =
b(Wk)

−1(W̄ (λ))c, for k = 1, 2. Then from (72) together with (68) and (69) we obtain that P(N1 >
f1(λ)) = 0, and P(N2 > f2(λ)) = 1. Hence, (71)=1, which implies

1− 2 +

2∑
k=1

(
1− E

(
1
SW̄ (λ)(N

W̄ (λ)
k )=1

))
= 0. (73)

From (70) we then obtain

lim
λ→∞

CREL(W̄ (λ))(W̄ (λ)) = lim
λ→∞

2∑
k=1

E(C̃(N
W̄ (λ)
k , SW̄ (λ)(N

W̄ (λ)
k ))) = lim

λ→∞
CREL(W̄ (λ)).

Step 2. Since REL(W̄ (λ)) will only serve class 2 with probability 1, it becomes feasible for the
original problem, i.e., REL(W̄ (λ)) ∈ U as λ→∞, and hence equivalent to Whittle’s index policy,
that is,

lim
λ→∞

CREL(W̄ (λ)) = lim
λ→∞

CWI .

Step 3. In view of Equation (22) and the result in Step 2 we obtain

lim
λ→∞

CWI − COPT = 0.

Which concludes the proof.

J Auxiliary Lemma 1

Lemma 1 Let f(λ) be a positive continuous non-decreasing function in λ, and let b > 0 be some

constant. We further define P (y, λ̃) := 1− e−λ̃
∑y

m=0
λ̃m

m! . Then

lim
λ→∞

P (f(λ), λb) =

{
0, if limλ→∞

λb
f(λ) < 1,

1, if limλ→∞
λb
f(λ) > 1.
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Proof. Let us first note that P (f(λ), λ) = 1
f(λ)!

∫ λb
0 e−ttf(λ)dt, see [1]. That is,

P (f(λ), λ) =
e−f(λ)

f(λ)!

∫ λb

0
ef(λ)−ttf(λ)dt =

f(λ)f(λ)+1e−f(λ)

f(λ)!

∫ λb

0

(
e

1− t
f(λ)

t

f(λ)

)f(λ)

d

(
t

f(λ)

)
=
f(λ)f(λ)+1e−f(λ)

f(λ)!

∫ λb/f(λ)

0
(e1−uu)f(λ)du. (74)

We recall Stirling’s formula f(λ)! =
√

2πf(λ)f(λ)+1/2e−f(λ)(1 +O( 1
f(λ))), from where we obtain

f(λ)f(λ)+1e−f(λ)

f(λ)!
=

√
f(λ)
2π

1 +O( 1
f(λ))

=

√
f(λ)

2π

(
1 +O

(
1

f(λ)

))
. (75)

Let us first analyze the case limλ→∞(λb)/f(λ) < 1. Then there exists ε > 0 such that 0 ≤
(λb)/f(λ) ≤ 1− ε for large enough λ. Hence, 0 ≤ e1−uu ≤ eε(1− ε) < 1 for all 0 ≤ u ≤ (λb)/f(λ),
and therefore from Equation (74) and (75) we obtain

P (f(λ), λ) ≤
√
f(λ)

2π

(
1 +O

(
1

f(λ)

))
· λb

f(λ)
(eε(1− ε))f(λ) = O

(
1√
f(λ)

(eε(1− ε))f(λ)

)
, (76)

for λ large enough. Since, eε(1 − ε) < 1, we have limλ→∞O
(

1√
f(λ)

(eε(1− ε))κλ
)

= 0. Hence,

from (76) we obtain P (f(λ), λ) = 0.
We now analyze the case limλ→∞(λb)/f(λ) > 1. Then there exists ε > 0 such that 0 ≤

(λb)/f(λ) ≥ 1 + ε for λ large enough. The function e1−uu can also be written as

e1−uu = e1−u−log(1−(1−u)) = e−
∑∞
i=2

1
i
(1−u)i .

From the latter and the saddle point method [17, p. 174] we have that for λ large enough∫ λb/f(λ)

0
(e1−uu)f(λ)du =

∫ ∞
−∞

e−
1
2
f(λ)(1−u)2

du+O
(

1

f(λ)

)
=

√
2π

f(λ)
+O

(
1

f(λ)

)
.

From Equation (74) together with Equation (75), we then obtain

P (f(λ), λ) =

√
f(λ)

2π

(
1 +O

(
1

f(λ)

))(√
2π

f(λ)
+O

(
1

f(λ)

))
= 1 +O

(
1√
f(λ)

)
,

for λ large enough. From the latter we obtain, limλ→∞ P (f(λ), λ) = 1, if limλ→∞ λb/f(λ) > 1. �

K Proof of Theorem 4

Throughout the proof we drop the dependency on k.
We first prove that w(1), w(2) and w(3) are non-decreasing and continuous functions. For that

recall that the function C(m, a) is convex, which implies

tC(m, a) + (1− t)C(m′, a) ≥ C(tm+ (1− t)m′), ∀t ∈ [0, 1],

=⇒ C(m, a)− C(m′, a) ≥ C(tm+ (1− t)m′)− C(m′, a)

t

=⇒ C(m, a)− C(m′, a) ≥ lim
t→0

C(tm+ (1− t)m′)− C(m′, a)

t
= (m−m′)dC(m′, a)

dm′
.
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From the latter we deduce

C(m, a)− C(m′, a)

m−m′
≥ dC(m′, a)

dm′
≥ C(m′, a)− C(m′′, a)

m′ −m′′
,

for all m′′ ≤ m′ ≤ m. Then (C(m, a)−C(m, a))(m′−m′′) ≥ (C(m′, a)−C(m′, a))(m−m′). Adding
and subtracting C(m′′, a)(m′−m′′) in the LHS of the inequality and after some algebra, we obtain

C(m, a)− C(m′′, a)

m−m′′
≥ C(m′, a)− C(m′′, a)

m′ −m′′
.

Hence, C(m,a)−C(m′′,a)
m−m′′ is non-decreasing in m. Similarly in m′′. The latter directly implies that

functions w(1) and w(3) under the assumption µ+ θ′ ≥ θ are non-decreasing. To prove that w(2) is
also non-decreasing, let us prove that dw(2)(m)/dm > 0 for all max(0, λ/(µ+ θ′ − θ)) ≤ m ≤ λ/θ.
We write

dw(2)(m)

dm
=2

(
dC(m, 0)

dm
− dC(m, 1)

dm

)
+

(λ− θm)

θ

d2C(m, 1)

dm2
+

(θm+ µ+ θ′ − θ − λ)

θ

d2C(m, 0)

dm2
.

The first term is positive because of Equation (23). Convexity of C(·, ·) implies that the second
and the third terms are positive in the interval [max(0, λ/(µ+ θ′ − θ)), λ/θ]. This implies that the
function w(2) is also non-decreasing in m. Continuity of w(1), w(2) and w(3) follows from the fact
that

lim
m↑(λ−(µ+θ′−θ))/θ

C
(
λ−(µ+θ′−θ)

θ , 1
)
− C(m, 1)

(λ− (µ+ θ′ − θ))/θ −m
=

dC(m, 1)

dm
,

hence limm↑(λ−(µ+θ′−θ))/θ w
(1)(m) = w(2)((λ− (µ+ θ′ − θ))/θ), and

lim
m↓λ/θ

C(m, 0)− C(λ/θ, 0)

m− λ/θ
=

dC(m, 0)

dm
,

hence limm↓λ/θ w
(3)(m) = w(2)(λ/θ).

Having proved that w(·) is non-decreasing and continuous, we are left to prove that the optimal
control for problem (26) is s∗(t) = 1 when W < w(m(t)) and s∗(t) = 0 when W ≥ w(m(t)). In
order to do so, we start by characterizing the optimal equilibrium point. Recall that an equilibrium
point (m̄, s̄) of dm(t)

dt is such that

0 = λ− (µ+ θ′ − θ)s̄− θm̄,

with s̄ ∈ [0,min{1, λ
µ+θ′−θ}] and m̄ = (λ − s̄(µ + θ′ − θ))/θ, hence m̄ ∈ [max(0, (λ − (µ + θ′ −

θ))/θ), λ/θ]. The optimal equilibrium point (m∗, s∗) minimizes EC(s̄,W ). We first prove that

EC(s̄,W ) is a convex function in s̄ ∈ [0,min{1, λ
µ+θ′−θ}], by checking that d

ds̄

(
dEC(s̄,W )

ds̄

)
> 0.

After some algebra, we obtain that

d

ds̄

(
dEC(s̄,W )

ds̄

)
=

(µ+ θ′ − θ)
θ

(
dC̃(m̄, 0)

dm̄
− dC̃(m̄, 1)

dm̄

)

+
(µ+ θ′ − θ)

θ

(
d2C̃(m̄, 0)

dm2

(−λ+ (µ+ θ′ − θ) + θm̄)

θ
+

d2C̃(m̄, 1)

dm2

(λ− θm̄)

θ

)
> 0.
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The inequality follows from m̄ ∈ [(λ− (µ+ θ′ − θ))/θ, λ/θ], µ+ θ′ ≥ θ and convexity of C(·, ·).
Let us assume from now on that min{1, λ/(µ+ θ′− θ)} = 1. The proof when min{1, λ/(µ+ θ′−

θ)} = λ/(µ + θ′ − θ) follows similarly. Having proved convexity of EC(s̄,W ), we can distinguish
the following three cases:

(1) Case 1: dEC(s̄,W )
ds̄ ≤ 0 for all s̄ ∈ [0, 1], hence the optimal equilibrium point satisfies s∗ = 1,

m∗ = λ/(µ+ θ′ − θ).

(2) Case 2: dEC(s∗,W )
ds∗ = 0, hence the optimal equilibrium point satisfies s∗ ∈ [0, 1], m∗ ∈

[ λ
µ+θ′−θ ,

λ
θ ].

(3) Case 3: dEC(s̄,W )
ds̄ ≥ 0 for all s̄ ∈ [0, 1], hence the optimal equilibrium point satisfies s∗ = 0,

m∗ = λ/θ.

In the case min{1, λ/(µ+ θ′ − θ)} = λ/(µ+ θ′ − θ), only Case 2 and 3 hold.
Now note that

dEC(s̄,W )

ds̄
≥ 0⇔W ≥C̃(m̄, 0) + C̃(m̄, 1)

+ (1− s̄)dm̄

ds̄

dC̃(m̄, 0)

dm̄
+ s̄

dm̄

ds̄

dC̃(m̄, 1)

dm̄
, (77)

which after substitution of s̄ = λ−θm̄
µ+θ′−θ and the expression for dm̄/ds̄ = −µ+θ′−θ

θ , gives that (77) is
equivalent to

W ≥ C̃(m̄, 0)− C̃(m̄, 1) +
(λ− θm̄)dC̃(m̄,1)

dm̄ − (λ− (µ+ θ′ − θ)− θm̄)dC̃(m̄,0)
dm̄ )

θ
,

that is,

W ≥ C̃(m̄, 0)− C̃(m̄, 1) + w(2)(m̄).

Hence, in Case 3 the W is such that W ≥ C̃(m̄, 0)− C̃(m̄, 1) +w(2)(m̄) for all m̄ ∈ [ λ
µ+θ′−θ ,

λ
θ ], and

in particular W ≥ w(λ/θ).
Similarly, being in Case 1 implies W ≤ w(λ/(µ+ θ′ − θ)).
In Case 2, from dEC(s∗,W )/ds∗ = 0 we obtain, W = C̃(m∗, 0)−C̃(m∗, 1)+w(2)(m∗) = w(m∗),

for m∗ ∈ [ λ
µ+θ′−θ ,

λ
θ ], since EC∗(W ) = (1− s∗)(C̃(m∗, 0)−W ) + s∗C̃(m∗, 1), s∗ = (λ− θm∗)/(µ+

θ′ − θ) and dm∗/ds∗ = −(µ + θ′ − θ)/θ. The function w(m) being non-decreasing in particular
implies that in Case 2, W is such that w(λ/(µ+ θ′ − θ)) ≤W ≤ w(λ/θ).

The objective is to find the control u that minimizes the total bias cost, that is, the cost and
subsidy obtained over time minus the optimal cost in equilibrium, denoted as

Ju(m(0),W ) :=

∫ ∞
0

(
C̃(m(t), su(t))−W (1− su(t))− EC∗(W )

)
dt. (78)

We define J(m(0),W ) = minu J
u(m(0),W ). The theory of optimal control shows that a sufficient

condition in order for a control to be bias optimal is that it solves the Hamilton-Jacobi-Bellman
(HJB) equation, [34]:

0 = min{J0(m,W ),J1(m,W )}, for all m, (79)

53



where

J0(m,W ) = C̃(m, 0)−W − EC∗(W ) + (λ− θm)
∂J(m,W )

∂m
, (80)

J1(m,W ) = C̃(m, 1)− EC∗(W ) + (λ− (µ+ θ′ − θ)− θm)
∂J(m,W )

∂m
, (81)

and the function J(m,W ) is continuous and differentiable. The reader is referred to [12] for a
derivation of the HJB. For a given W , we consider the policy that prescribes to be passive, s(t) = 0,
in all states m for which W ≥ w(m), and active, s(t) = 1, in all states m for which W < w(m).
Observe that due to w(m) being non-decreasing, this will be a threshold policy. That is, there
exists n(W ) ∈ Z+ for which W > w(m) for all m ≤ n(W ) and W ≤ w(m) if m ≥ n(W ). We refer
to this policy as threshold policy n(W ). We want to prove that the policy n(W ) satisfies the HJB.
To do so let us define Jn(W )(m,W ) for a given W as the cost under policy n(W ), starting at state
m and up to equilibrium, that is,

Jn(W )(m,W ) =

∫ t0

0
C̃(mn(W )(t), s0)−W (1− s0)− EC∗(W )dt

+

∫ ∞
t0

C̃(mn(W )(t), s1)−W (1− s1)− EC∗(W )dt, (82)

where s0 = s(0), s1 = 1− s0, and t0 ≥ 0, the time at which threshold n(W ) is reached. Note that
s0 = 0 if m(0) = m ≤ n(W ) and s0 = 1 otherwise. The function Jn(W )(m,W ) can be written as
the sum of two terms, the first term corresponding to the phase from the starting point m up to
the time the threshold is reached, t0. In this phase the control equals s0. Once the threshold is
reached, a switch in the control happens and therefore the second term corresponds to the phase
from the switch time t0 until the equilibrium in reached. In this phase the control equals s1. This
is due to threshold policies having at most one switch in the control.

Let us assume m(0) = m ≤ n(W ), which implies s0 = 0 and s1 = 1, then from (82)

dJn(W )(m,W )

dm
=

dt0
dm

(
C̃(n(W ), 0)−W − EC∗(W )− C̃(n(W ), 1) + EC∗(W )

)
+

∫ t0

0

dC̃(mn(W )(t), 0)

dt

dt

dm
dt+

∫ ∞
t0

dC̃(mn(W )(t), 1)

dt

dt

dm
dt. (83)

Policy n(W ) implies dmn(W )(t)/dt = λ− θmn(W )(t) for all t ∈ [0, t0]. Then,

dmn(W )(t)

dt
= λ− θmn(W )(t)⇒ mn(W )(t) =

(
m− λ

θ

)
e−θt +

λ

θ

⇒ t0 = −1

θ
log

(
n(W )− λ/θ
m− λ/θ

)
⇒ dt0

dm
=

1

θm− λ
,

and dt/dm = 1/f0(m). Substituting the latter in Equation (83), we obtain for all m ≤ n(W )

∂Jn(W )(m,W )

∂m
=
C̃(m, 0)−W − EC∗(W )

θm− λ
,

and similarly for all m > n(W )

∂Jn(W )(m,W )

∂m
=
C̃(m, 1)− EC∗(W )

µ+ θ′ − θ + θm− λ
.
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For all m ≤ n(W ), the action under policy n(W ) is to keep the bandit passive. In addition,

when substituting ∂Jn(W )(m,W )
∂m in (80), we obtain J0(m,W ) = 0. In order for the threshold policy

n(W ) to satisfy the HJB in (79), we therefore need to prove that J1(m,W ) ≥ 0. Substituting
∂Jn(W )(m,W )

∂m in (81) we obtain that this is equivalent to

J1(m,W ) ≥ 0

⇔W ≥ C̃(m, 0)− C̃(m, 1) +
−(µ+ θ′ − θ)

λ− µ− θ′ + θ − θm
(C̃(m, 1)− EC∗(W )), (84)

for all m /∈ [ λ
µ+θ′−θ ,

λ
θ ] with m ≤ n(W ), and

J1(m,W ) ≥ 0

⇔W ≤ C̃(m, 0)− C̃(m, 1) +
−(µ+ θ′ − θ))

λ− µ− θ′ + θ − θm
(C̃(m, 1)− EC∗(W )), (85)

for all m ∈ [ λ
µ+θ′−θ ,

λ
θ ] with m ≤ n(W ). If (84) is satisfied for m /∈ [ λ

µ+θ′−θ ,
λ
θ ] and (85) for

m ∈ [ λ
µ+θ′−θ ,

λ
θ ] then, the action under policy n(W ) is to keep the bandit passive.

Assume now m > n(W ). Hence, action under policy n(W ) is to keep the bandit active. Sub-

stituting ∂Jn(W )(m,W )
∂m = EC∗(W )−C̃(m,1)

λ−µ−θ′+θ−θm in (81) we then obtain J1(m,W ) = 0. In order for the
threshold policy n(W ) to satisfy the HJB in (79), we need therefore to prove that J0(m,W ) ≥ 0.

Substituting ∂Jn(W )(m,W )
∂m = EC∗(W )−C̃(m,1)

λ−µ−θ′+θ−θm in (80), this is equivalent to

J0(m,W ) ≥ 0

⇔W ≤ C̃(m, 0)− C̃(m, 1) +
−(µ+ θ′ − θ)

λ− µ− θ′ + θ − θm
(C̃(m, 1)− EC∗(W )), (86)

for all m > n(W ). If (86) is satisfied in m > n(W ) then action under policy n(W ) is to keep the
bandit active.

Hence, if conditions (84)−(86) are satisfied, then threshold policy n(W ) is optimal. It remains
to be proved that conditions (84)−(86) are satisfied. This will be done in the remainder of the
proof for the three different cases.

Let us first assume that m∗ = λ/(µ + θ′ − θ) and W ≤ w(λ/(µ + θ′ − θ)), that is, Case 1,
then EC∗(W ) = C̃( λ

µ+θ′−θ , 1). Recall that threshold policy n(W ) implies that W ≥ w(m) for all

m ≤ n(W ) and W ≤ w(m) if m ≥ n(W ). Hence, W ≤ w(λ/(µ + θ′ − θ)) and w(m) being non-
decreasing imply that n(W ) ≤ λ/(µ+ θ′ − θ). Conditions (84)−(86) reduce then to the following:
the HJB is satisfied if and only if W ≥ (≤)C̃(m, 0) − C̃(m, 1) + w(1)(m) for all m ≤ (≥)n(W ).
This is equivalent to W ≥ (≤)w(m) for all m ≤ (≥)n(W ), since w(1)(m) is non-decreasing and
W ≤ w(λ/(µ+ θ′− θ)). Hence, in Case 1 the threshold policy n(W ) satisfies the HJB and is hence
optimal.

Similarly, if m∗ = λ/θ and W ≥ w(λ/θ), that is, Case 3, then EC∗(W ) = C̃(λ/θ, 0) − W .
Since under threshold policy n(W ), W ≥ w(m) for all m ≤ n(W ) and W ≤ w(m) if m ≥ n(W ),
w(m) being non-decreasing implies n(W ) ≥ λ/θ. Using EC∗(W ) = C̃(λ/θ, 0)−W , we obtain that
conditions (84)−(86) simplify to W ≥ (≤)C̃(m, 0)− C̃(m, 1) +w(3)(m), for all m ≤ (≥)n(W ). This
is equivalent to W ≥ (≤)w(m) for all m ≤ (≥)n(W ), due to w(3)(m) being non-decreasing and
W ≥ w(λ/θ). Hence, in Case 3, threshold policy n(W ) satisfies the HJB and is hence optimal.

We are left with Case 2 in which W is such that dE(s∗,W )
ds∗ = 0, and s∗ ∈ [0, 1], that is, w(λ/(µ+

θ′ − θ)) ≤ W ≤ w(λ/θ). In addition W = w(m∗), hence n(W ) = m∗, by definition of n(W ). In

55



this setting we have that

EC∗(W ) = (1− s∗)(C̃(m∗, 0)−W ) + s∗C̃(m∗, 1).

Substituting the latter in Conditions (84) and (86) the conditions simplify to

W ≥ (≤)C̃(m, 0)− C̃(m, 1)

+
−(µ+ θ′ − θ)

λ− µ− θ′ + θ − θm

(
C̃(m, 1)− (1− s∗)(C̃(m∗, 0)−W )− s∗C̃(m∗, 1)

)
, (87)

for all m ≤ λ/(µ+ θ′ − θ)( m ≥ λ/θ).
Condition (85) and (86) reduce to

W ≤ C̃(m, 0)− C̃(m, 1)

+
−(µ+ θ′ − θ)

λ− µ− θ′ + θ − θm

(
C̃(m, 1)− (1− s∗)(C̃(m∗, 0)−W )− s∗C̃(m∗, 1)

)
, (88)

for all m ∈ [ λ
µ+θ′−θ ,m

∗] and

W ≤ C̃(m, 0)− C̃(m, 1)

+
−(µ+ θ′ − θ)

λ− µ− θ′ + θ − θm

(
C̃(m, 1)− (1− s∗)(C̃(m∗, 0)−W )− s∗C̃(m∗, 1)

)
, (89)

for all m ∈ [m∗, λ/θ].
Taking into account that λ−µ−θ′+θ−θm ≥ 0, for all m < λ/(µ+θ′−θ), and λ−µ−θ′+θ−θm ≤

0, otherwise, and that λ− s∗(µ+ θ′− θ)− θm ≥ 0, for all m ≤ m∗, and λ− s∗(µ+ θ′− θ)− θm ≤ 0,
otherwise, Conditions (87)–(89) reduce to the following:

W ≥ (≤)

(
C̃(m, 0)− C̃(m, 1) +

−(µ+ θ′ − θ)
λ− µ− θ′ + θ + θm

·
(
C̃(m, 1)− (1− s∗)C̃(m∗, 0)− s∗C̃(m∗, 1)

))
· λ− µ− θ′ + θ − θm
λ− s∗(µ+ θ′ − θ)− θm

, (90)

for all m ≤ m∗(m ≥ m∗). After some algebra, the latter gives

W ≥ (≤)C̃(m, 0)− C̃(m, 1) +
(λ− θm∗)

θ

(C̃(m, 1)− C̃(m∗, 1))

m−m∗

+
(µ+ θ′ + θ(m∗ − 1)− λ)

θ

(C̃(m∗, 0)− C̃(m, 0))

m∗ −m
, (91)

for all m ≤ (≥)m∗. Since w(2)(·) and w(·) are non-decreasing, in order to prove (90) it therefore

suffices to prove that the RHS in (91) is a non-decreasing function and that RHS in (91)
m→m∗−−−−→

C(m∗, 0)−C(m∗, 1) +w(2)(m∗). Let us denote the RHS in (91) by W̃ (m). Convexity of C̃(·, ·) and
C̃(·, ·) being non-decreasing imply W̃ (m) to be non-decreasing. Now note that

lim
m→m∗

W̃ (m)

= C(m∗, 0)− C(m∗, 1) + d(µ+ θ′)− d′θ′ +
(µ+ θ′ − θ(m∗ − 1)− λ)dC(m∗,0)

dm∗

θ

(λ− θm∗)dC(m∗,1)
dm∗

θ

= C(m∗, 0)− C(m∗, 1) + d(µ+ θ′)− d′θ′ + w(2)(m∗) = W. (92)

Hence, for all m ≤ (≥)m∗, we have W̃ (m) ≤ (≥)C(m∗, 0)−C(m∗, 1) + d(µ+ θ′)− d′θ′+w(2)(m∗).
In other words,threshold policy n(W ) = m∗ satisfies the HJB and is hence optimal.
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L Proof of Proposition 9

We drop the dependency on k throughout the proof.
As n→∞, then the fluid index is given by w(n) = C(n, 0)−C(n, 1)+d(µ+θ′)−d′θ′+w(3)(n).

We have assumed that C(n, a), a = 0, 1, are upper bounded by a polynomial of degree P . Therefore,
we can write C(n, a) = E(n, a) + o(1), for large values of n, where E(n, 1) =

∑P
i=0C

(P,i)ni, with

C(P,i) := lim
n→∞

C(n, 1)−
∑P

j=i+1C
(P,j)nj

ni
,

and E(n, 0) =
∑Q

i=0E
(Q,i)ni, with

E(Q,i) := lim
n→∞

C(n, 0)−
∑Q

j=i+1E
(Q,j)nj

ni
,

Then, as n→∞, w(n) = w∞(n) + o(1), where w∞(n) = d(µ+ θ′)− d′θ′ + wc(n) + o(1), and

wc(n) = E(n, 0)− E(n, 1) +
(µ+ θ′ − θ)

θ

(E(n, 0)− E(λ/θ, 0))

n− λ/θ
.

Note that (E(n, 0)− E(λ/θ, 0))/(n− λ/θ) for large values of n can equivalently be written as

∑Q
i=0E

(Q,i)ni −
∑Q

i=0E
(Q,i)(λ/θ)i

n− λ/θ
=

Q∑
i=0

E(Q,i) (ni − (λ/θ)i)

n− λ/θ
=

Q∑
i=2

E(Q,i)

 i∑
j=0

(
λ

θ

)j
ni−1−j


=
E(n, 0)

n
+
E(Q,1)

(
λ
θ

)
+ E(Q,2)

(
λ
θ

)2
+ . . .+ E(Q,Q)

(
λ
θ

)Q
n

+

Q∑
i=2

E(Q,i)
i−2∑
j=0

ni−2−j
(
λ

θ

)j+1

=
E(n, 0)

n
+

Q∑
i=2

E(Q,i)
i−2∑
j=0

ni−2−j
(
λ

θ

)j+1

+ o(1). (93)

We then compute limn→∞W (n)/w(n), which by the result in (19) is equivalent to

lim
n→∞

W (n)

w(n)
= lim

n→∞

W∞(n) + o(1)

w∞(n) + o(1)
= lim

n→∞

d(µ+ θ′)− d′θ′ +W c(n) + o(1)

d(µ+ θ′)− d′θ′ + wc(n) + o(1)

= lim
n→∞

E(n, 0)− E(n, 1) + (µ+θ′−θ)
θ

(
E(n,0)
n +

∑P
i=2C

(P,i)
∑i−2

j=0 n
i−2−j (λ

θ

)j+1
)

+O(1)

E(n, 0)− E(n, 1) + (µ+θ′−θ)
θ

(
E(n,0)
n +

∑Q
i=2E

(Q,i)
∑i−2

j=0 n
i−2−j

(
λ
θ

)j+1
)

+O(1)

= 1 + o(1),

which follows from the fact that both in the denominator and numerator the highest term comes

from E(n, 0)− E(n, 1) + (µ+θ′−θ)
θ

E(n,0)
n . This concludes the proof for the expression in (27).

Let us now obtain the expression in (28) with the extra assumptions P = Q and C(P,i) = E(P,i)

for all i ∈ {2, . . . , P}. Observe that under this assumption we obtain from (93) that (E(n, 0) −
E(λ/θ, 0))/(n− λ/θ), for large values of n, can be written as

E(n, 0)

n
+

P∑
i=2

C(P,i)
i−2∑
j=0

ni−2−j
(
λ

θ

)j+1

+ o(1),
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and hence,

w∞(n) =dk(µ+ θ′)− d′θ′ + E(n, 0)− E(n, 1)

+
(µ+ θ′ − θ)

θ

(
E(n, 0)

n
+

P∑
i=2

C(P,i)
i−2∑
j=0

ni−2−j
(
λ

θ

)j+1)
+ o(1).

Then, by the result in (19) we have W∞(n) = w∞(n) + o(1), and hence W (n) = w(n) + o(1) for
large values of n which concludes the proof for (28).
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