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SYMMETRICAL EEG–FMRI IMAGING BY SPARSE REGULARIZATION
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∗ INP–ENSEEIHT and IRIT, University of Toulouse, Toulouse, France
† Inria – Irisa, Rennes, France

ABSTRACT

This work considers the problem of brain imaging using si-
multaneously recorded electroencephalography (EEG) and
functional magnetic resonance imaging (fMRI). To this end,
we introduce a linear coupling model that links the electrical
EEG signal to the hemodynamic response from the blood-
oxygen level dependent (BOLD) signal. Both modalities are
then symmetrically integrated, to achieve a high resolution
in time and space while allowing some robustness against
potential decoupling of the BOLD effect.

The novelty of the approach consists in expressing the
joint imaging problem as a linear inverse problem, which
is addressed using sparse regularization. We consider sev-
eral sparsity-enforcing penalties, which naturally reflect the
fact that only few areas of the brain are activated at a cer-
tain time, and allow for a fast optimization through proximal
algorithms. The significance of the method and the effective-
ness of the algorithms are demonstrated through numerical
investigations on a spherical head model.

Index Terms— EEG-fMRI; multimodal imaging; struc-
tured sparsity; EEG inverse problem

1. INTRODUCTION

Over the past decades, numerous methods have been devel-
oped to non-invasively measure and analyze brain activity.
Electroencephalography (EEG) and, to a lower extent, func-
tional Magnetic Resonance Imaging techniques (fMRI), have
been intensively used by neuroscientists, psychologists as
well as physicians. Yet, the "brain activity" seen through each
of these modalities is very different.

On one side, the EEG gives instantaneous measures of
the brain electrical activity, produced by synchronized pyra-
midal neurons under the cortex. However reconstructing the
electrical activity inside the brain is an ill-posed inverse prob-
lem, since these electrical currents are highly perturbed by
diffusion across the skull and the scalp, and since one only
measures them at a few locations. Even though many tech-
niques manage to estimate this activity [1], their resolution
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in space remains low. On the other side, functional imag-
ing of the brain is achieved now intensively in neurosciences
or in clinical studies through fMRI with an increased spa-
tial precision. The most common fMRI procedure measures
the Blood-oxygen-level dependent (BOLD) signal, which is
related to the deoxygenation of the blood, and thus reveals
with high spatial accuracy the regions of the brain involved in
a cognitive task. However, the relatively long physiological
processes that link the "neuronal activity" and the measured
BOLD signal prevent the reconstruction of this activity with
a high temporal resolution.

Numerous attempts have tried to combine both modali-
ties, improving our knowledge about the neurophysiological
coupling as well as the space-time resolution of the imaging
techniques. Among them, asymmetrical methods consist in
informing one modality with the other, by constraining the
EEG inverse problem to a specific region determined by fMRI
[2], or by using time-frequency patterns from the EEG in the
fMRI data processing [3]. More recently, several authors pro-
posed to integrate both modalities symmetrically, in order to
prevent the results of one modality to be perturbed by the
other one. Such approaches use neurovascular coupling mod-
els within a Bayesian framework [4] or stochastic filtering [5].

The approach described hereafter is in the same spirit:
it builds a simplified linear model for the neurovascular
coupling, and addresses the corresponding inverse problem
through sparsity-regularized regression. The paper is orga-
nized as follows: Section 2 describes the coupling model and
states the inverse problem, for which numerical analysis and
algorithms are derived in Section 3. Section 4 is devoted to
numerical experiments on simulated data.

2. A LINEAR SYMMETRICAL COUPLING OF EEG
AND FMRI

2.1. Distributed source model in EEG

One usually represents the neuronal electrical activity as re-
sulting from a certain number of electric dipoles, which cre-
ate a current. Solving the quasi-static approximation of the
Maxwell’s equations allows to express the measurements as a
known linear instantaneous mixing of these sources. The es-
timation of the dipole activity from the measurements is com-



monly referred as the (EEG) inverse problem. To solve this
inverse problem, we will adopt the distributed source model
[6], which consists in fixing a high number (S ≈ 104) of
dipoles (or sources) on the cortical surface, oriented perpen-
dicularly to that surface, and in estimating the amplitude of
these dipoles. In the discrete setting, the source activity will
be denoted by the S × T matrix X = Xs,t, the dimensions
corresponding to time (index t) and space (s), respectively.
The measured activity, denoted byE ∈ RN×T (N � S is the
number of electrodes, T the number of time instants), writes:

E = GX +NE , (1)

where G is the mixing "leadfield" (or gain) matrix, of size
N × S, and NE is a "noise" term, containing both measure-
ment errors and physiological noise. The leadfield matrix can
be computed accurately from a morphological image of the
subject’s brain and is thus assumed to be known. Note that
in general the noise is not white, but can be considered as
Gaussian with an estimated covariance matrix.

2.2. The neurovascular coupling

The main difficulty in symmetrical EEG–fMRI coupling lies
in the complexity of the relation between the neuronal activ-
ity and the BOLD signal. Both quantities are related by a
cascade of complex physiological processes that are not yet
fully understood. A model of this relationship has been pro-
posed in [7], through several differential equations involving
physiological and anatomical parameters. A simplified model
can be found in [8], which linearizes the “balloon model”
of [7]. Here, the BOLD response is obtained by temporally
convolving the neuronal activity with a function h similar to
the canonical hemodynamic response function (HRF) used in
standard BOLD fMRI.

Assuming this linear convolutive coupling, we can model
the BOLD signal F as a function of the neuronal activity
through operators Q and H in the following way:

F = QXH +NF . (2)

Typically, Q is a spatial sampling (or interpolation) operator,
while H ∈ RT×U encodes the temporal convolution as well
as a subsampling (in time). Its coefficients writeHij = h(ti−
uj), with ti and uj the time instants corresponding to EEG
and fMRI respectively, and h a canonical HRF. To simplify
the problem, we will assume in the sequel that the BOLD
signal is measured at the exact locations of the dipoles. We
will thus neglect operator Q. To summarize, the electrical
activity X of the sources is related to the BOLD signal F and
the EEG measures E by the linear system:{

E = GX +NE
F = XH +NF

. (3)

2.3. Joint EEG–fMRI inverse problem

To reconstruct the activity X from measurements (E,F ), as-
suming Gaussian noise one seeks to minimize the observation
error in the least-square sense. Since the problem is ill-posed
and admits infinitely many solutions, one needs to regularize
it through some penalty function φ, which leads to the follow-
ing optimization problem:

X∗ = argmin
X

(
α

2
‖E −GX‖2F +

1− α
2
‖F −XH‖2F + λφ(X)

)
,

(4)
where λ is a positive parameter tuning the tradeoff between
the data-fidelity and the regularization terms, and α ∈ [0, 1]
balances the information used from each modality. Let us
mention that the minimum is unique as soon as the penalty
φ is convex, but may be achieved at several points, unless φ
is strongly convex. We describe in the following section the
algorithm used to solve problem (4), as well as the strategies
to choose the penalty φ and the parameters α, λ.

3. SOLVING THE INVERSE PROBLEM

3.1. Proximal algorithms

The wide class of iterative-thresholding algorithms has been
introduced as early as in the sixties, and has been intensively
studied in the field of image/signal processing [9]. They aim
to solve optimization problems where one term of the objec-
tive function is not differentiable. The minimization problem
writes:

min f(x) + φ(x) , (5)

where f is a differentiable function, with L-Lipschitz contin-
uous gradient, and φ is proper and convex. When applied to
problem (4), function f is quadratic with a Lipschitz constant
of its gradient smaller than L = α ‖G∗G‖+(1−α) ‖HH∗‖,
where ‖.‖ denotes the spectral norm of a matrix. The Iterative
Shrinkage-Thresholding Algorithm (ISTA) consists in updat-
ing the current solution xk with:

xk+1 = prox 1
Lφ

(xk − 1

L
∇f(xk)) , (6)

where the proximal operator of the proper convex function φ
is defined by proxφ(x) = argminy∈Rn

1
2 ‖x− y‖

2
2 + φ(y) .

One can prove that, whatever the initialization x0, this algo-
rithm (ISTA, also called FB for Forward-Backward proximal
optimization) converges towards a minimizer, with asymp-
totic linear rate [9].

3.2. Choice of the penalty term

We will now mention some possible choices for the function
φ, which must reflect the a priori information available on
the true solution. The naive regularization uses a squared
`2 norm, which tends to reduce the energy of the solution.



Unfortunately, this spreads the energy of the solution across
all sources, being unrealistic with EEG data. Instead, it is
reasonable to assume that sources are sparse, only a few of
them being active at a certain time. The most obvious way of
promoting sparsity is to set φ as the `0 pseudo-norm, which
counts the number of non-zero coefficients. But the opti-
mization problem becomes combinatorial, and in practice in-
tractable. Instead, a wide literature suggests to use the `1
norm, defined by ‖X‖1 =

∑
s,t |Xs,t| . Using the `1 penalty

makes problem (4) convex, which allows to use the ISTA al-
gorithm, the proximal operator being the well-known soft-
thresholding, defined for µ > 0 as:

[proxµ‖.‖1(x)]j = sgn(xj)(|xj | − µ)+ =

(
1− µ

|xj |

)
+

xj .

(7)
However, the `1 norm favors sparse but scattered sources

and does not take into account the temporal persistence of the
sources, namely their consistent behavior across time. Oth-
erwise stated, the `1 norm considers the matrix X as a long
one-dimensional vector. In order to enforce both temporal
persistence and spatial sparsity of the sources, an alternative
[6] is to use the `12 mixed-norm, which writes

‖X‖12 =

S∑
s=1

(
T∑
t=1

X2
s,t

) 1
2

, (8)

whose proximal operator is a block soft-thresholding [10]:

[proxµ‖.‖12(X)]i =

(
1− µ

‖Xi‖2

)
+

Xi . (9)

Other potential choices for the penalty φ include the 3-level
mixed norm `212 proposed by [11]. Note that in practice,
these penalties must depend on some weights ws and zu, that
compensate the fact that the columns of G (corresponding to
dipoles) and the lines of H are not normalized. To lighten the
notation, we do not consider the weights in the whole paper.

Many works in the past five years have underlined the sub-
optimality of `1 penalty for sparse recovery [12]. In practice,
one observes that the `1 norm does not promote the spars-
est solutions, and that it introduces a bias in the estimation,
i.e. it tends to overpenalize high coefficients. This issue is
worsened in the case of the `12 penalty, since in this case the
`2 norm of a source ‖Xi‖2 is lowered, which promotes "flat"
sources with constant amplitudes over time. To circumvent
this drawback, we considered non-convex penalties and their
associated proximal operators, such as the empirical Wiener
shrinkage (EW) [13], also called nonnegative garrote in statis-
tics. We obtained particularly good results with a variant of
this operator, called structured EW (SEW), and defined by:

[Sµ(X)]i =

(
1−

(
µ

‖Xi‖2

)2
)

+

Xi . (10)

3.3. Choice of the parameters

This section gives some heuristic to choose appropriate pa-
rameters λ and α, which are of course crucial for solving the
inverse problem with high accuracy. We consider the case
of `1 regularization, but the results hold for other choices of
penalty function φ.

Parameter α balances the relative weight of both modal-
ities: EEG and fMRI. To choose a suitable value for α, it
seems natural to evaluate the confidence we have in each
modality, thus to make α dependent on the noise levels of
both measures. Assuming white Gaussian noise with vari-
ance σ2

E for EEG and σ2
F for fMRI, we propose to select α so

as to equal the two data-fidelity terms in the functional:

α∗ =
Uσ2

F

Tσ2
E + Uσ2

F

. (11)

Choosing the regularization parameter λ is a common (yet
hard) issue in linear inverse problems. We can however easily
compute an upper bound on λ, from which the minimization
(4) leads to the null solution. Suppose that we can estimate
the penalty term of the "true" solution φ(X∗). If we have

λ < λM :=
α
2 ‖E‖

2
F + 1−α

2 ‖F‖
2
F

φ(X∗)
, (12)

then the null solution will be preferred to the "true" one when
minimizing (4). Conversely, a too low λ leads to unstable and
non-sparse solutions. In practice, we obtain good results by
setting λ∗ = 0.05λM .

4. NUMERICAL EXPERIMENTS

4.1. Data and experiments

We use simulated data on a simple spherical 3-layer model.
The sampling frequencies are set to 500 Hz for the EEG and
1 Hz for the fMRI. We consider 31 electrodes and 272 elec-
tric dipoles on the sphere representing the cortex. We gener-
ate three artificial electrical sources with damped waves, and
generate the EEG and fMRI measures according to our linear
model. A strong white Gaussian noise is then added to the
measures, with input SNR of 2 dB for EEG and -18 dB for
fMRI. The positions and time courses of the sources are de-
picted on Fig. 1, together with the ideal and noisy measures
for both EEG and fMRI.

Let us first illustrate qualitatively the interest of using both
EEG and fMRI on these simulated data. Fig. 2 shows the re-
constructed sources, together with the corresponding recon-
structed measurements, for EEG alone, fMRI alone, and the
coupling. We always take a `1 penalty, and chose parameters
α and λ so as to get the "best" results. For each test, we dis-
play the reconstruction error in terms of output SNR (Signal
to noise ratio): if x is the true solution and x̂ the estimated
one, it writes SNR-out = −20 log(‖x− x̂‖ / ‖x‖). We also
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Fig. 1. Location of the active sources (a), time course of the
"true" sources (b), ideal (c) and noisy (d) EEG measurements,
ideal (e) and noisy (f) fMRI measurements. The different col-
ors correspond to different sources or sensors.

display the spatial error (SE), which consists of the sum of
the Euclidean distances between the true sources and the es-
timated ones.

We observe that the EEG finds only one of the active
sources, which leads to a quite poor spatial and temporal re-
construction. At the opposite, the fMRI–only solution finds
the right source locations, but without any relevant temporal
information. The combined solution we propose is satisfac-
tory, since it manages to estimate the right source locations
while giving a good temporal reconstruction.

EEG only
SNR-out = 6 dB

SE = 6.3 cm

fMRI only
SNR-out = 0 dB

SE = 0 cm

EEG–fMRI
SNR-out = 16 dB

SE = 0 cm

Fig. 2. Time courses of the reconstructed sources, the dif-
ferent colors corresponding to different dipoles. Comparison
between the EEG–only (left), fMRI–only (center) and com-
bined (right) reconstructions.

4.2. Influence of the parameters

In order to investigate the sensitivity of the reconstruction to
the parameters, as well as the relevance of values (α∗, λ∗), we
display in Fig. 3 the accuracy of reconstruction as a function
of the noise levels σE and σF . The SNR-out is color-coded,
with highest values in red, and the value of (α∗, λ∗) (Sect.
3.3) is displayed as a white disc. We remark that our estimate
(α∗, λ∗) gives a good order of magnitude, but does not exactly
match the optimal parameters (i.e., the parameters achieving

the highest SNR-out). We further observe that the area with
high SNR-out are ellipsoidal, indicating a linear relationship
between optimal λ and α which was enlighten in equation
(12).
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Fig. 3. Sensitivity to the parameters for different noise lev-
els. The SNR-out is color-coded as a function of parameters
(λ, α). The position of (λ∗, α∗) is displayed as a white disc.

4.3. Influence of the penalty term

Let us now investigate the influence of the penalty function φ.
Figure 4 shows the reconstructed time-course of the dipoles
for three different penalties: the standard `1 and `12 norms,
and the structured empirical Wiener shrinkage. Interestingly,
the `12 norm does not provide accurate results: although it
estimates the right source locations, it tends to flatten their
amplitude, which gives a poor SNR-out. The nonconvex SEW
shrinkage seems to circumvent this problem, improving the
reconstruction compared to the `1 penalty.

`1
SNR-out = 16 dB

SE = 0 cm

`12
SNR-out = 8 dB

SE = 5 cm

SEW
SNR-out = 24 dB

SE = 0 cm

Fig. 4. Influence of the penalty on the reconstruction. From
left to right: `1, `12 and SEW penalties.

4.4. Robustness to false positives or negatives

One of the major issues in EEG–fMRI is the errors in the cou-
pling models, and more precisely the possible mismatches be-
tween EEG activity and BOLD. The major expected strength
of direct symmetrical coupling is that such mismatches should
not perturb too much the reconstruction. We investigate here
this phenomenon, by artificially adding a false positive or
a false negative activation in the simulated BOLD signal
F . In the former, an artificial HRF-like response is added
to F (equation (2)), that does not correspond to any EEG
source, while in the latter the BOLD corresponding to one
EEG source is artificially removed (i.e., one line of F is set
to 0). Both noise-free BOLD signals are depicted on Fig. 5,
together with the corresponding reconstructions. We compare
the EEG–fMRI solution using the SEW, with an asymmetric



reconstruction, consisting in computing the fMRI–only so-
lution, selecting the three main sources, and then inverting
the EEG with only those sources. The results clearly show

noise-free BOLD signal asymmetrical symmetrical

SNR-out = 25 dB

SE = 0 cm

SNR-out = 24 dB

SE = 0 cm

SNR-out = 4 dB

SE = 6.4 cm

SNR-out = 18 dB

SE = 0 cm

SNR-out = 3 dB

SE = 3 cm

SNR-out = 19 dB

SE = 0 cm

Fig. 5. Influence of false positive or negative BOLD activa-
tions. The first row shows the reconstruction with full EEG–
fMRI coupling, while second and third rows consider the case
of BOLD false negative and positive activations, respectively.
From left to right: noise-free simulated BOLD signal, asym-
metrical, and symmetrical reconstructions.

that asymmetric reconstruction is very sensitive to false pos-
itives, since the corresponding source is automatically added
in the reconstruction, the same effect being observed in case
of a false negative. Instead, our symmetrical reconstruction
appears to be quite stable.

5. CONCLUSION

This paper introduced a new symmetric coupling for EEG–
fMRI imaging, based on recent developments in sparse reg-
ularization for inverse problems. The neuronal activity is re-
constructed from both modalities symmetrically, through an
efficient and convergent algorithm.

The main limitation of the approach is the assumption of
a convolutive linear coupling between the electrical neuronal
activity and the BOLD signal. Although this is quite restric-
tive, recent literature suggests that a linear model holds for a
wide range of neuronal events. For potential application, this
drawback can be circumvented by calibrating the temporal
filter (our operator H) according to the subject and the task.
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