
Optimization of the control of a doubly fed induction

machine

Jules Gillet, Maria Pietrzak-David, Frédéric Messine

To cite this version:

Jules Gillet, Maria Pietrzak-David, Frédéric Messine. Optimization of the control of a doubly
fed induction machine. 11th International Workshop of Electronics, Control, Measurement,
Signals and their application to Mechatronics (ECMSM), Jun 2013, Toulouse, France. pp. 1-5,
2013. <hal-01178572>

HAL Id: hal-01178572

https://hal.archives-ouvertes.fr/hal-01178572

Submitted on 20 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract—This paper focuses on finding an optimal control 

for a doubly fed induction machine (DFIM) in motor mode. Our 

purpose is not to improve the quality of the DFIM functioning 

but to find a method to improve it. Thus we will start with a fixed 

system made by a DFIM and two ideal 3 phases voltage inverter 

with an open loop static V/f control. A method will demonstrate 

its efficiency to improve that control for the copper loss. 

This method is based on direct shooting techniques associated 

with a MATLAB optimization solver: fmincon. 

Keywords—Doubly fed induction machine (DFIM); ideal 3 

phases voltage inverter; open loop static V/f control; copper loss; 

direct shooting method; optimization; energetic efficiency 

I.  INTRODUCTION 

 

The Doubly Fed Induction Machine (DIFM) is often used 
as a Doubly Fed Induction Generator (DFIG). That is why, 
works are done to optimize the DFIG functioning as in [1] and 
[2]. Control of DFIM has been developed in [3], but now the 
goal is to find a method to optimize it, for example versus the 
copper loss. 

In this paper, a presentation of the studied system, (a DFIM 
in motor mode fed by two ideal voltage inverters with an open 
loop static V/f control), will be made. A very simple DFIM 
open loop control is chosen to point the optimization aspect to 
reduce the cooper loss. Thus, a model of this system will be 
given. With this model, the direct shooting method will be 
developed and used. Finally the results will be simulated to 
compare them with a traditional ramp control. 

The system is presented in Section II and its model is 
described in Section III. The optimization problem and 
methods are shown in Section IV. And finally, in section V the 
numerical results so obtained are validated with SABER© 
software. 

 

 

 

II. SYSTEM PRESENTATION 

 

The system is composed as in Fig. 1: 
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Fig. 1. General schema of DFIM drive controled by static V/f. 

 
KS = static V/f constant for the stator side, 

KR = static V/f constant for the rotor side. 

 

The source gives a continuous signal fs(t) which is the 
control of this DFIM. With this signal, fr(t) is calculated. Those 
signals represent the electrical variable frequencies of the stator 
and the rotor respectively. The corresponding value of the 
supply tension of the DFIM is calculated with them. For those 
transformations, ideal 3 phases voltage inverters are used. They 
have as inputs, a frequency and an amplitude and give an 
equilibrated tension system at the end to feed the DFIM. 

The aim is to try to optimize the stator frequency signal 
fs(t). 

 



III. MODELING 

 

In this part, the model used in the optimization method is 
described. The static converter model is not used at the 
beginning because the goal is to reduce the copper loss in the 
motor. It makes a simplified model, to focus on the DFIM, as it 
is the real purpose. 

 

A. DFIM Model 

 

The DFIM model used in this paper is developed in 
François Bonnet’s PhD thesis [4]. 

The expression of the control u(t) is put in the expressions 
of frequencies: 

t tu=ktf s   and  t t=utf R , (1) 

with: 

fs(t) - electrical values frequencies of the stator, 

fr(t) - electrical values frequencies of the rotor, 

u(t) - system control variable, 

k - frequency repartition coefficient between rotor and 
stator. 

This formulation is used to avoid frequency step. 

Now, according to the used control (static V/f law) the 
effective (rms) values of tensions are: 

SNSS  (t) (t)= fV 2    (2) 

and RNRR  (t) (t)= fV 2   (3) 

with: 

SN - nominal stator flux, 

RN - nominal rotor flux, 

VS(t) - effective value of the stator tension, 

VR(t) - effective value of the rotor tension. 

 

These equations are transformed to a static frame 
(Concordia basis) [5] to express the tension system with the 
flux: 
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And finally, the expression of the currents with the flux is: 
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with: 

LS LR - cyclic stator, rotor inductance, 

M the cyclic mutual inductance between the stator and the 

rotor, 

RS RR - stator rotor resistance, 

 
IS  IS  - stator currents in the ,  axes, 

IR  IR  - rotor currents in the ,  axes, 

 

VS  VS  - stator voltage in the ,  axes, 

VR  VR  - rotor voltage in the ,  axes, 

 

S  S  - stator flux in the axis ,  axes, 

R  R  - rotor flux in the axis ,  axes. 

 

Rotor electrical position and speed can be defined as follows: 

dt

d  and tftf RS2 . 

 

B. Toward an optimization formulation 

 

The model equations are put in a suitable form for 
optimization. A state representation is given by: 

uBAXX     (6) 

where: 

Sate vector matrix: 
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IV. OPTIMIZATION PROBLEM 

 

We introduce the mode separation principle. In this case, 
the temporal derivative of  is considered as null because the 
electrical variables evolve faster than the mechanic ones. 

The main point developed here is to find a solution to 
minimize the copper loss, so the cost function will be: 

dtIIRIIRuE

ft

RRRSSSJ

0

2222
33  (7) 

Following the state equation (7), with an time horizon tf = 3 
seconds, the physical constraints are defined by: 

SnSi II0  Stator current limitation to nominal values, 

RnRi II0  Rotor current limitation to nominal values, 

V 2300 SiV  Stator voltage limitation to nominal values, 

V 1300 RiV  Rotor voltage limitation to nominal values, 

rad/s 18820 RS ff  Speed limitation. 

 

At t=3 s the final rotation speed must be reached: 

rad/s 188final  Final speed. 

 

A. Indirect shooting method 

 

First Pontryagin Max Principle [6] was investigated but the 
Hamiltonian of the system is too complex to yield a differential 
system of equations which could be efficiently numerically 
solved. 

To illustrate, here is the Hamiltonian: 

 

 

 Because of the complexity of the Hamiltonian the optimal 
control is difficult to find. 

 

B. Direct shooting method 

 

Secondly the direct shooting method [7] is used. This 
method is based on the discretion of the time by small steps h. 
Hence, this yields to solve a large scale static optimization 
problem: 

N
iiii

u

uBAXhXX
Ni

0

1
min

 (8) 

with the same constraints than previously. 

For solving this large scale optimization problem the 
fmincon function of MATLAB is used to optimize a vector of 
N points representing the values of the control u(t) at each step 
of the discretized time. As a result, a vector of N points is given 
by the routine and at the end it will correspond to the optimal 
control for the system. 

As the final electrical frequency is about 26 Hz the time 
step must be small. That is why this is a large scale 
optimization problem. To begin a small amount of point is used 
with a small temporal horizon with always a small time step. 
Then after checking the results we enlarge the time horizon as 
well as the number of point to obtain the final optimization. 

Numerical solutions are reported in Fig. 2, 3, 4 and 5 for 
N=500. Those results must be checked by comparing them 
with a simulation tool. 

 

 

V. VALIDATION OF THE OPTIMAL SOLUTION 

 

In order to validate this optimization method SABER© 
software is used. The same schema than in presentation (Fig. 1) 
is used twice. One way to simulate the regular ramp control, 
and the other way to simulate the optimized control. 

 

fS ramp
fS optimized

0 Hz
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0 s 3 s  

Fig. 2. Control sources for the systems. 

 
The control is shown in the Fig. 2. In black, the regular 

control input and in pink the optimized control input. These 
signals are given as sources in the system. 

The outputs of these control signals, i.e., the rotation speed, 
have the shape as showed in Fig. 3: 
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Fig. 3. Systems responses (rotation speed). 

 
The response is shown in Fig. 3. In black, the response with 

the regular ramp control, and in pink the response with the 
optimized one. These signals are given as sources in the 
system. 

As said at the beginning, the quality of the torque or the 
rotation speed is not the aim, what is important is that at the 
end, with the two different controls, the DFIM has the same 
behavior. 

Now, the main result: 
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Fig. 4. Copper loss sum EJ (7). 

 
As shown in Fig. 4, the sum of the copper loss is lowered 

by 28% in the case of an optimized control. 

 

Electrical quantities can also be shown: 

 

Fig. 5.  In pink, the “optimized” electrical quantities and in 
black, the other one. 

 

In Fig 5 the electrical quantities appears similar in both case 
except for the rotor current witch is lower in the optimized 
case. 

 

CONCLUSION 

 

In many industrial applications, the power system 
architecture is given. And one way to improve the system 
performances can be trough the control strategy. 

In this paper, the authors present the direct shooting method 
to optimize efficiently the behavior of a DFIM speed drive. 
This optimization concept allows us to adapt the control 
strategy to the required operation of the system taking into 
account the formulated constraints. 

The optimization process is very difficult in real time. 
Consequently, a very simple control method, V/f law, was 
chosen to validate the optimization method applied in deferred 
time. 

To calculate this direct shooting method, we have to choose 
the control input, to place it in the system model and to define 
the cost function to be optimized. The main problem is the 
compromise between the time scale and the number of points 
to represent clearly and precisely the principle variables of the 
studied system. 

In the next step of this study, the cost function can be 
completed with iron loss or torque quality for example, and the 
control can be switched to a more complex one such as the non 
linear Double Direct Torque Control (DDTC) or the linear 
Field Oriented Control (FOC). The model of two real voltage 
inverters (one for the stator side and one for the rotor side) can 
be added too. The cost function could be eventually completed 
with the losses of them. 

In future works, the global optimization aspect will be 
considered to associate different real time controls to the DFIM 
system to improve their performances. 
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