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DECISION-MAKING WITH SUGENO INTEGRALS:

BRIDGING THE GAP BETWEEN MULTICRITERIA EVALUATION

AND DECISION UNDER UNCERTAINTY

MIGUEL COUCEIRO, DIDIER DUBOIS, HENRI PRADE, AND TAMÁS WALDHAUSER

Abstract. This paper clari�es the connection between multiple criteria decision-
making and decision under uncertainty in a qualitative setting relying on a �nite
value scale. While their mathematical formulations are very similar, the underlying
assumptions di�er and the latter problem turns out to be a special case of the
former. Sugeno integrals are very general aggregation operations that can represent
preference relations between uncertain acts or between multifactorial alternatives
where attributes share the same totally ordered domain. This paper proposes a
generalized form of the Sugeno integral that can cope with attributes which have
distinct domains via the use of qualitative utility functions. It is shown that in
the case of decision under uncertainty, this model corresponds to state-dependent
preferences on act consequences. Axiomatizations of the corresponding preference
functionals are proposed in the cases where uncertainty is represented by possibility
measures, by necessity measures, and by general order-preserving set-functions,
respectively. This is achieved by weakening previously proposed axiom systems for
Sugeno integrals.

1. Motivation

Two important chapters of decision theory are decision under uncertainty and multi-
criteria evaluation [5]. Although these two areas have been developed separately, they
entertain close relationships. On the one hand, they are not mutually exclusive; in fact,
there are works dealing with multicriteria evaluation under uncertainty [31]. On the
other hand, the structure of the two problems is very similar, see, e.g., [20, 22]. Decision-
making under uncertainty (DMU), after Savage [37], relies on viewing a decision (called
an act) as a mapping from a set of states of the world to a set of consequences, so that
the consequence of an act depends on the circumstances in which it is performed. Un-
certainty about the state of the world is represented by a set-function on the set of
states, typically a probability measure.

In multicriteria decision-making (MCDM) an alternative is evaluated in terms of its
(more or less attractive) features according to prescribed attributes and the relative
importance of such features. Attributes play in MCDM the same role as states of the
world in DMU, and this very fact highlights the similarity of alternatives and acts: both
can be represented by tuples of ratings (one per state or objects). Moreover, importance
coe�cients in MCDM play the same role as the uncertainty function in DMU. A major
di�erence between MCDM and DMU is that in the latter there is usually a unique
consequence set, while in MCDM each attribute possesses its own domain. A similar
setting is that of voting, where voters play the same role as attributes in MCDM.

There are several possible frameworks for representing decision problems that range
from numerical to qualitative and ordinal. While voting problems are often cast in a
purely ordinal setting (leading to the famous impossibility theorem of Arrow), decision
under uncertainty adopts a numerical setting as it deals mainly with quantities (since
its tradition comes from economics). The situation of MCDM in this respect is less
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clear: the literature is basically numerical, but many methods are inspired by voting
theory; see [6].

In the last 15 years, the paradigm of qualitative decision theory has emerged in
Arti�cial Intelligence in connection with problems such as webpage con�guration, rec-
ommender systems, or ergonomics (see [19]). In such topics, quantifying preference in
very precise terms is di�cult but not crucial, as these problems require on-line inputs
from humans and must be provided in a rather short period of time. As a consequence,
the formal models are either ordinal (like in CP-nets, see [4]) or qualitative, that is,
based on �nite value scales. This paper is a contribution to evaluation processes in the
�nite value scale setting for DMU and MCDM. In such a qualitiative setting, the most
natural aggregation functions are based on the Sugeno integral. Theoretical founda-
tions for them (in the scope of DMU) have been proposed in the setting of possibility
theory [26], and assuming a more general representation of uncertainty [25]. The same
aggregation functions have been used in [32] in the scope of MCDM, and applied in
[34] to ergonomics. In these papers it is assumed that the domains of attributes are the
same totally ordered set.

In the current paper, we remove this restriction, and consider an aggregation model
based on compositions of Sugeno integrals with qualitative utility functions on distinct
attribute domains, which we call Sugeno utility functionals. We propose an axiomatic
approach to these extended preference functionals that enables the representation of
preference relations over Cartesian products of, possibly di�erent, �nite chains (scales).
We consider the cases when importance weights bear on individual attributes (the
importance function is then a possibility or a necessity measure), and the general case
when importance weights are assigned to groups of attributes, not necessarily singletons.
We study this extended Sugeno integral framework in the DMU situation showing that
it leads to the case of state-dependent preferences on consequences of acts. The new
axiomatic system is compared to previous proposals in qualitative DMU: it comes down
to deleting or weakening two axioms on the global preference relation.

The paper is organized as follows. Section 2 introduces basic notions and terminol-
ogy, and recalls previous results needed throughout the paper. Our main results are
given in Section 3, namely, representation theorems for multicriteria preference relations
by Sugeno utility functionals. In Section 4, we compare this axiomatic approach to that
previously presented in DMU. We show that this new model can account for preference
relations that cannot be represented in DMU, i.e., by Sugeno integrals applied to a
single utility function. This situation remains in the case of possibility theory.

This contribution is an extended and corrected version of [7] that was presented at
ECAI'2012.

2. Basic background

In this section, we recall basic background and present some preliminary results
needed throughout the paper. For introduction on lattice theory see [35].

2.1. Preliminaries. Throughout this paper, let Y be a �nite chain endowed with
lattice operations ∧ and ∨, and with least and greatest elements 0Y and 1Y , respectively;
the subscripts may be omitted when the underlying lattice is clear from the context;
[n] is short for {1, . . . , n} ⊂ N.

Given �nite chains Xi, i ∈ [n], their Cartesian product X =
∏
i∈[n]Xi constitutes a

bounded distributive lattice by de�ning

a ∧ b = (a1 ∧ b1, . . . , an ∧ bn), and a ∨ b = (a1 ∨ b1, . . . , an ∨ bn).

In particular, a ≤ b if and only if ai ≤ bi for every i ∈ [n]. For k ∈ [n] and c ∈ Xk, we
use xck to denote the tuple whose i-th component is c, if i = k, and xi, otherwise.

Let f : X → Y be a function. The range of f is given by ran(f) = {f(x) : x ∈ X}.
Also, f is said to be order-preserving if, for every a,b ∈

∏
i∈[n]Xi such that a ≤ b, we

have f(a) ≤ f(b). A well-known example of an order-preserving function is the median
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function med: Y 3 → Y given by

med(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3).

2.2. Basic background on polynomial functions and Sugeno integrals. In this
subsection we recall some well-known results concerning polynomial functions that will
be needed hereinafter. For further background, we refer the reader to, e.g., [18, 28].

Recall that a (lattice) polynomial function on Y is any map p : Y n → Y which can
be obtained as a composition of the lattice operations ∧ and ∨, the projections x 7→ xi
and the constant functions x 7→ c, c ∈ Y .

As shown by Goodstein [27], polynomial functions over bounded distributive lattices
(in particular, over bounded chains) have very neat normal form representations. For
I ⊆ [n], let 1I be the characteristic vector of I, i.e., the n-tuple in Y n whose i-th
component is 1 if i ∈ I, and 0 otherwise.

Theorem 2.1. A function p : Y n → Y is a polynomial function if and only if

(1) p(x1, . . . , xn) =
∨
I⊆[n]

(
p(1I) ∧

∧
i∈I

xi
)
.

Equivalently, p : Y n → Y is a polynomial function if and only if

p(x1, . . . , xn) =
∧
I⊆[n]

(
p(1[n]\I) ∨

∨
i∈I

xi
)
.

Remark 2.2. Observe that, by Theorem 2.1, every polynomial function p : Y n → Y is
uniquely determined by its restriction to {0, 1}n. Also, since every lattice polynomial
function is order-preserving, the coe�cients in (1) are monotone increasing as well, i.e.,
p(1I) ≤ p(1J) whenever I ⊆ J . Moreover, a function f : {0, 1}n → Y can be extended
to a polynomial function over Y if and only if it is order-preserving.

Polynomial functions are known to generalize certain prominent nonadditive inte-
grals, namely, the so-called Sugeno integrals. A capacity on [n] is a mapping µ : P([n])→
Y which is order-preserving (i.e., if A ⊆ B ⊆ [n], then µ(A) ≤ µ(B)) and satis�es
µ(∅) = 0 and µ([n]) = 1; such functions qualify to represent uncertainty.

The Sugeno integral associated with the capacity µ is the function qµ : Y n → Y
de�ned by

(2) qµ(x1, . . . , xn) =
∨
I⊆[n]

(
µ(I) ∧

∧
i∈I

xi
)
.

For further background see, e.g., [30, 38, 39].

Remark 2.3. As observed in [32, 33], Sugeno integrals coincide exactly with those poly-
nomial functions q : Y n → Y which are idempotent, that is, which satisfy q(c, . . . , c) = c,
for every c ∈ Y . In fact, by (1) it su�ces to verify this identity for c ∈ {0, 1}, that is,
q(1[n]) = 1 and q(1∅) = 0.

Remark 2.4. Note also that the range of a Sugeno integral q : Y n → Y is ran(q) = Y .
Moreover, by de�ning µ(I) = q(1I), we get q = qµ.

In the sequel, we shall be particularly interested in the following types of capacities.
A capacity µ is called a possibility measure (resp. necessity measure) if for every
A,B ⊆ [n], µ(A ∪B) = µ(A) ∨ µ(B) (resp. µ(A ∩B) = µ(A) ∧ µ(B)).

Remark 2.5. In the �nite setting, a possibility measure is completely characterized
by the value of µ on singletons, namely, µ({i}), i ∈ [n] (called a possibility distri-
bution), since clearly, µ(A) =

∨
i∈A µ({i}). Likewise, a necessity measure is com-

pletely characterized by the value of µ on sets of the form Ni = [n] \ {i} since clearly,
µ(A) =

∧
i6∈A µ(Ni)

Note that if µ is a possibility measure [40] (resp. necessity measure [24]), then qµ is
a weighted disjunction

∨
i∈I µ(i) ∧ xi (resp. weighted conjunction µ(I) ∧

∧
i∈I xi)) for

some I ⊆ [n] [23] (where µ(i), a shorthand notation for µ({i}), represents importance
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of criterion i). The weighted disjunction operation is then permissive (it is enough
that one important criterion be satis�ed for the result to be high) and the weighted
conjunction is demanding (all important criteria must be satis�ed).

Polynomial functions and Sugeno integrals have been characterized by several au-
thors, and in the more general setting of distributive lattices see, e.g., [9, 10, 30].

The following characterization in terms of median decomposability will be instru-
mental in this paper. A function p : Y n → Y is said to be median decomposable if for
every x ∈ Y n,

p(x) = med
(
p(x0

k), xk, p(x
1
k)
)

(k = 1, . . . , n),

where xck denotes the tuple whose i-th component is c, if i = k, and xi, otherwise.

Theorem 2.6 ([8, 33]). Let p : Y n → Y be a function on an arbitrary bounded chain
Y . Then p is a polynomial function if and only if p is median decomposable.

2.3. Sugeno utility functionals. Let X1, . . . , Xn and Y be �nite chains. We denote
(with no danger of ambiguity) the top and bottom elements of X1, . . . , Xn and Y by 1
and 0, respectively.

We say that a mapping ϕi : Xi → Y , i ∈ [n], is a local utility function if it is order-
preserving. It is a qualitative utility function as mapping on a �nite chain. A function
f : X → Y is a Sugeno utility functional if there is a Sugeno integral q : Y n → Y and
local utility functions ϕi : Xi → Y , i ∈ [n], such that

(3) f(x) = q(ϕ1(x1), . . . , ϕn(xn)).

Note that Sugeno utility functionals are order-preserving. Moreover, it was shown in
[15] that the set of functions obtained by composing lattice polynomials with local
utility functions is the same as the set of Sugeno utility functionals.

Remark 2.7. In [15] and [16] a more general setting was considered, where the inner
functions ϕi : Xi → Y , i ∈ [n], were only required to satisfy the so-called �boundary
conditions�: for every x ∈ Xi,

(4) ϕi(0) ≤ ϕi(x) ≤ ϕi(1) or ϕi(1) ≤ ϕi(x) ≤ ϕi(0).

The resulting compositions (3) where q is a polynomial function (resp. Sugeno integral)
were referred to as �pseudo-polynomial functions� (resp. �pseudo-Sugeno integrals�). As
it turned out, these two notions are in fact equivalent.

Remark 2.8. Observe that pseudo-polynomial functions are not necessarily order-
preserving, and thus they are not necessarily Sugeno utility functionals. However,
Sugeno utility functionals coincide exactly with those pseudo-polynomial functions (or,
equivalently, pseudo-Sugeno integrals) which are order-preserving, see [15].

Sugeno utility functionals can be axiomatized in complete analogy with polynomial
functions by extending the notion of median decomposability. We say that f : X→ Y
is pseudo-median decomposable if for each k ∈ [n] there is a local utility function
ϕk : Xk → Y such that

(5) f(x) = med
(
f(x0

k), ϕk(xk), f(x1
k)
)

for every x ∈ X.

Theorem 2.9 ([15]). A function f : X → Y a Sugeno utility functional if and only if
f is pseudo-median decomposable.

Remark 2.10. In [15] and [16] a more general notion of pseudo-median decomposabil-
ity was considered where the inner functions ϕi : Xi → Y , i ∈ [n], were only required
to satisfy the boundary conditions.

Note that once the local utility functions ϕi : Xi → Y (i ∈ [n]) are given, the pseudo-
median decomposability formula (5) provides a disjunctive normal form of a polynomial

function p0 which can be used to factorize f . To this extent, let 1̂I denote the charac-
teristic vector of I ⊆ [n] in X, i.e., 1̂I ∈ X is the n-tuple whose i-th component is 1Xi

if i ∈ I, and 0Xi
otherwise.



DECISION-MAKING WITH SUGENO INTEGRALS 5

Theorem 2.11 ([16]). If f : X → Y is pseudo-median decomposable w.r.t. local util-
ity functions ϕk : Xk → Y (k ∈ [n]), then f = p0(ϕ1, . . . , ϕn), where the polynomial
function p0 is given by

(6) p0 (y1, . . . , yn) =
∨
I⊆[n]

(
f
(
1̂I
)
∧
∧
i∈I

yi
)
.

This result naturally asks for a procedure to obtain local utility functions ϕi : Xi → Y
(i ∈ [n]) which can be used to factorize a given Sugeno utility functional f : X → Y
into a composition (3). In the more general setting of pseudo-polynomial functions,
such procedures were presented in [15] when Y is an arbitrary chain, and in [16] when
Y is a �nite distributive lattice; we recall the latter in Appendix I.

The following result provides a noteworthy axiomatization of Sugeno utility function-
als which follows as a corollary of Theorem 19 in [16]. For the sake of self-containment,
we present its proof in Appendix II.

Theorem 2.12. A function f : X → Y is a Sugeno utility functional if and only if it
is order-preserving and satis�es

f
(
x0
k

)
< f (xak) and f (yak) < f

(
y1
k

)
=⇒ f (xak) ≤ f (yak)

for all x,y ∈ X and k ∈ [n], a ∈ Xk.

Let us interpret this result in terms of multicriteria evaluation. Consider alternatives
x and y such that xk = yk = a. Then f

(
x0
k

)
< f (x) means that down-grading

attribute k makes the corresponding alternative x0
k strictly worse than x. Similarly,

f (y) < f
(
y1
k

)
means that upgrading attribute k makes the corresponding alternative

y1
k strictly better than y. Then pseudo-median decomposibility expresses the fact that

the value of x is either f(x0
k), or f(x1

k) or ϕk(xk). In such a situation, given another
alternative y such that yk = xk = a :

f
(
x0
k

)
< f (x) = med

(
f(x0

k), ϕk(a), f(x1
k)
)

= ϕk(a) ∧ f(x1
k) ≤ ϕk(a),

f
(
y1
k

)
> f (y) = med

(
f(y0

k), ϕk(a), f(y1
k)
)

= ϕk(a) ∨ f(y0
k) ≥ ϕk(a),

and so f (x) ≤ ϕk(a) ≤ f (y). Hence, if maximally downgrading (resp. upgrading)
attribute k makes the alternative worse (resp. better) it means that its overall rating
was not more (resp. not less) that the rating on attribute k. We shall further discuss
this and other facts in Section 5.

It is also interesting to comment on Sugeno utility functionals as opposed to Sugeno
integrals applied to a single local utility function. First, the role of local utility functions
is clearly to embed all the local scales Xi into a single scale Y in order to make the scales
Xi commensurate. In other words, a Sugeno integral (2) cannot be de�ned if there is
no common scale X such that Xi ⊆ X, for every i ∈ [n]. In particular, the situation
in decision under uncertainty is precisely that where Xi = X, for every i ∈ [n], that
is, the utility of a consequence resulting from implementing an act does not depend on
the state of the world in which the act is implemented. Then it is clear that ϕi = ϕ,
for every i ∈ [n], namely, a unique utility function is at work. In this sense, the Sugeno
utility functional becomes a simple Sugeno integral of the form

(7) qµ(y1, . . . , yn) =
∨
I⊆[n]

(
µ(I) ∧

∧
i∈I

yi
)
.

where Y = ϕ(X). This is the case for DMU, where [n] is the set of states of nature, and
X is the set of consequences (not necessarily ordered). It is the utility function ϕ that
equips X with a total order: xi ≤ xj ⇐⇒ ϕ(xi) ≤ ϕ(xj). The general case studied
here corresponds to that of DMU but where the local utility functions ϕi : X → Y
are state-dependent; this situation was already considered in the literature of expected
utility theory [36], here adapted to the qualitative setting. Namely, an act is of the
form x ∈ Xn where the consequences xi of the act performed in state i belong to the
same set X, and the evaluation of x is of the form (3), i.e. they are not evaluated in
the same way in each state.
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3. Preference relations represented by Sugeno utility functionals

In this section we are interested in relations which can be represented by Sugeno
utility functionals. In Subsection 3.1 we recall basic notions and present preliminary
observations pertaining to preference relations. We discuss several axioms of MCDM
in Subsection 3.2 and present several equivalences between them. In Subsections 3.3
and 3.4 we present axiomatizations of those preference relations induced by possibility
and necessity measures, and of more general preference relations represented by Sugeno
utility functions.

3.1. Preference relations on Cartesian products. One of the main areas in de-
cision making is the representation of preference relations. A weak order on a set
X =

∏
i∈[n]Xi is a relation -⊆ X2 that is re�exive, transitive, and complete (∀x,y ∈

X : x - y or y - x). Like quasi-orders (i.e., re�exive and transitive relations), weak
orders do not necessarily satisfy the antisymmetry condition:

(AS) ∀x,y ∈ X : x - y, y - x =⇒ x = y.

This fact gives rise to an �indi�erence� relation which we denote by ∼, and which is
de�ned by y ∼ x if x - y and y - x. Clearly, ∼ is an equivalence relation. Moreover,
the quotient relation - / ∼ satis�es (AS); in other words, - / ∼ is a complete linear
order (chain).

By a preference relation on X we mean a weak order - which satis�es the Pareto
condition:

(P) ∀x,y ∈ X : x ≤ y =⇒ x - y.

In this section we are interested in modeling preference relations, and in this �eld
two problems arise naturally. The �rst deals with the representation of such preference
relations, while the second deals with the axiomatization of the chosen representation.
Concerning the former, the use of aggregation functions has attracted much attention
in recent years, for it provides an elegant and powerful formalism to model preference
[5, 29] (for general background on aggregation functions, see [30, 2]).

In this approach, a weak order - on a set X =
∏
i∈[n]Xi is represented by a so-called

global utility function U (i.e., an order-preserving mapping which assigns to each event
in X an overall score in a possibly di�erent scale Y ), under the rule: x - y if and only
if U(x) ≤ U(y). Such a relation is clearly a preference relation.

Conversely, if - is a preference relation, then the canonical surjection r : X→ X/ ∼,
also referred to as the rank function of -, is an order-preserving map from X to X/ ∼
(linearly ordered by v:=- / ∼), and we have x - y ⇐⇒ r (x) v r (y). Thus, -
is represented by an order-preserving function if and only if it is a preference relation,
and in this case - is represented by r.

3.2. Axioms pertaining to preference modelling. In this subsection we recall
some properties of relations used in the axiomatic approach discussed in [22, 25]; here
we will adopt the same terminology even if its motivation only makes sense in the realm
of decision making under uncertainty. We also introduce some variants, and present
connections between them.

First, for x,y ∈ X and A ⊆ [n], let xAy denote the tuple in X whose i-th component
is xi if i ∈ A and yi otherwise. Moreover, let 0 and 1 denote the bottom and the top
of X, respectively.

We consider the following axioms. The optimism axiom [26] is

∀x,y ∈ X,∀A ⊆ [n] : xAy ≺ x =⇒ x - yAx,(OPT)

which subsumes1 two instances of interest, namely,

∀x ∈ X,∀A ⊆ [n] : xA0 ≺ x =⇒ x - 0Ax,(OPT′)

∀x,y ∈ X, k ∈ [n] , a ∈ Xk : x0
k ≺ xak =⇒ xak - yak.(OPT1)

1For (OPT) =⇒ (OPT1), just take x = xa
k, y = y0

k and A = [n] \ {k}.
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Note that under (P) the conclusion of (OPT′) is equivalent to x ∼ 0Ax. Similarly, the
conclusion of (OPT1) could be replaced by xak ∼ 0ak. The name optimism is justi�ed
considering the case where x = 1 and y = 0. Then (OPT) reads A ≺ [n] implies
[n] - [n] \A (full trust in A or [n] \A, an optimistic approach to uncertainty).

Dual to optimism we have the pessimism axiom

∀x,y ∈ X,∀A ⊆ [n] : xAy � x =⇒ x % yAx,(PESS)

which subsumes the two dual instances

∀x ∈ X,∀A ⊆ [n] : xA1 � x =⇒ x % 1Ax,(PESS′)

∀x,y ∈ X, k ∈ [n] , a ∈ Xk : x1
k � xak =⇒ xak % yak.(PESS1)

Again, under (P), the conclusions of (PESS′) and (PESS1) are equivalent to x ∼ 1Ax
and xak ∼ 1ak, respectively. When x = 0 and y = 1, (PESS) reads [n] \ A � ∅ implies
∅ % A (full distrust in A or [n] \A, a pessimistic approach to uncertainty).

We will also consider the disjunctive and conjunctive axioms

∀y, z ∈ X : y ∨ z ∼ y or y ∨ z ∼ z,(∨)
∀y, z ∈ X : y ∧ z ∼ y or y ∧ z ∼ z.(∧)

Moreover, we have the so-called disjunctive dominance and strict disjunctive domi-
nance

∀x,y, z ∈ X : x % y, x % z =⇒ x % y ∨ z,(DD%)

∀x,y, z ∈ X : x � y, x � z =⇒ x � y ∨ z,(DD�)

as well as their dual counterparts, conjunctive dominance and strict conjunctive domi-
nance

∀x,y, z ∈ X : y % x, z % x =⇒ y ∧ z % x,(CD%)

∀x,y, z ∈ X : y � x, z � x =⇒ y ∧ z � x.(CD�)

Theorem 3.1. If - is a preference relation, then axioms (OPT), (OPT′), (OPT1),
(∨), (DD%) and (DD�) are pairwise equivalent.

Proof. We prove the theorem by establishing the following six implications:

(OPT′) =⇒ (OPT) =⇒ (OPT1) =⇒ (∨)

=⇒ (DD%) =⇒ (DD�) =⇒ (OPT′).

Note that the implication (∨) =⇒ (DD%) is trivial, and recall that (OPT1) is just

a special case of (OPT). Thus, we only need to prove the four implications below.
(OPT′) =⇒ (OPT): Suppose that xAy ≺ x. By the Pareto property we have

xA0 - xAy, and then xA0 ≺ x follows by the transitivity of -. Applying (OPT′) and
(P), we obtain x - 0Ax - yAx, and then x - yAx follows again from transitivity.

(OPT1) =⇒ (∨): Let us suppose that y ∨ z � z; we will prove using (OPT1) that
y∨z ∼ y. From (P) we see that z - y∨z, hence we have z ≺ y∨z by our assumption.
If A = {i ∈ [n] : yi > zi}, then obviously yAz = y ∨ z. Let ` denote the cardinality of
A, let A = {i1, . . . , i`}, and de�ne the sets Aj := {i1, . . . , ij} for j = 1, . . . , `. Using the
Pareto property, we obtain the following chain of inequalities:

z - yA1z - · · · - yA`z = y ∨ z.

Since z ≺ y ∨ z, at least one of the above inequalities is strict. If the s-th inequality is
the last strict one, then

(8) z - yA1z - · · · - yAs−1z ≺ yAsz ∼ · · · ∼ yA`z = y ∨ z.

To simplify notation, let us put x = yAs−1z, k = is and a = yk. Then we have
x0
k - x = yAs−1z ≺ yAsz = xak, hence xak - yak follows from (OPT1). On the other

hand, we see from (8) that yAsz ∼ y ∨ z, therefore

y ∨ z ∼ yAsz = xak - yak = y - y ∨ z,
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where the last inequality is justi�ed by (P). Since - is a weak order, we can conclude
that y ∨ z ∼ y.

(DD%) =⇒ (DD�): Assume that x � y,x � z. Since - is complete, we can
suppose without loss of generality that y % z. By re�exivity, we also have y % y, hence
it follows from (DD%) that y % y∨z. Since x � y, we obtain x � y ∨ z by transitivity.

(DD�) =⇒ (OPT′): Putting y = xA0 and z = 0Ax, we clearly have y ∨ z = x. If
x � y and x � z, then (DD�) implies x � y ∨ z, which is a contradiction. Therefore,
we must have x � y or x � z. This shows that x � y =⇒ x � z =⇒ x - z, where
the second implication holds because - is complete. Thus we have y ≺ x =⇒ x - z,
and this is exactly what (OPT′) asserts. �

Dually, we have the following result which establishes the pairwise equivalence be-
tween the remaining axioms.

Theorem 3.2. If - is a preference relation, then axioms (PESS), (PESS′), (PESS1),
(∧), (CD%) and (CD�) are pairwise equivalent.

3.3. Preference relations induced by possibility and necessity measures. In
this subsection we present some preliminary results towards the axiomatization of pref-
erence relations represented by Sugeno utility functionals (see Theorem 3.6). More
precisely, we �rst obtain an axiomatization of relations represented by Sugeno utility
functionals associated with possibility measures (weighted disjunction of utility func-
tions).

Theorem 3.3. A preference relation - satis�es one (or, equivalently, all) of the ax-
ioms in Theorem 3.1 if and only if there are local utility functions ϕi, i ∈ [n], and
a possibility measure µ, such that - is represented by the Sugeno utility functional
f = qµ(ϕ1, . . . , ϕn).

Proof. First let us assume that - is represented by a Sugeno utility functional f =
qµ(ϕ1, . . . , ϕn), where µ is a possibility measure. As observed in Subsection 2.2, f can
be expressed as a weighted disjunction:

f (x) =
∨
i∈[n]

(
µ (i) ∧ ϕi (xi)

)
.

Using the fact that each ϕi is order-preserving and Y is a chain, we can verify that f
commutes with the join operation of the lattice X:

f (y ∨ z) =
∨
i∈[n]

(
µ (i) ∧ ϕi (yi ∨ zi)

)
=
∨
i∈[n]

(
µ (i) ∧ (ϕi (yi) ∨ ϕi (zi))

)
=
∨
i∈[n]

(
µ (i) ∧ ϕi (yi)

)
∨
∨
i∈[n]

(
µ (i) ∧ ϕi (zi)

)
= f (y) ∨ f (z) .

Since the ordering on Y is complete, we have f (y ∨ z) ∈ {f (y) , f (z)}, and this implies
that y ∨ z ∼ y or y ∨ z ∼ z for all y, z ∈ X, i.e., - satis�es (∨).

Now let us assume that - satis�es (∨), and let Y = X/ ∼. Using the rank function
r of -, we de�ne a set function µ : P ([n]) → Y by µ (I) = r (1I0) and a unary map
ϕi : Xi → Y by ϕi (a) = r (0ai ) for each i ∈ [n]. The Pareto condition ensures that µ
and each ϕi, i ∈ [n], are all order-preserving; moreover, µ is a capacity, since 0 and 1
have the least and greatest rank, respectively.

Condition (∨) can be reformulated in terms of the rank function as

(9) ∀y, z ∈ X : r (y ∨ z) = r (y) ∨ r (z) ,

and this immediately implies that µ is a possibility measure. Therefore, as observed in
Subsection 2.2, the Sugeno utility functional f := qµ(ϕ1, . . . , ϕn) can be written as

f (x) =
∨
i∈[n]

(
µ (i) ∧ ϕi (xi)

)
=
∨
i∈[n]

(
r
(
01
i

)
∧ r (0xi

i )
)
,
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since µ (i) = r (1 {i}0) = r
(
01
i

)
. By the Pareto condition, we have 01

i % 0xi
i , hence

r
(
01
i

)
∧ r (0xi

i ) = r (0xi
i ), and thus f (x) takes the form

f (x) =
∨
i∈[n]

r (0xi
i ) .

Applying (9) repeatedly, and taking into account that x =
∨
i∈[n] 0

xi
i , we conclude that

f (x) = r (x). As observed in Subsection 3.1, r represents -, and thus - is represented
by the Sugeno utility functon f corresponding to the possibility measure µ. �

Remark 3.4. Note that the above theorem does not state that every Sugeno utility
functional representing a preference relation that satis�es the conditions of Theorem 3.1
corresponds to a possibility measure. As an example, consider the case n = 2 with
X1 = X2 = {0, 1} and Y = {0, a, b, 1}, where 0 < a < b < 1. Let us de�ne local utility
functions ϕi : Xi → Y (i = 1, 2) by

ϕ1 (0) = 0, ϕ1 (1) = b, ϕ2 (0) = a, ϕ2 (1) = 1,

and let µ be the capacity on {1, 2} given by

µ (∅) = 0, µ ({1}) = a, µ ({2}) = b, µ ({1, 2}) = 1.

It is easy to see that µ is not a possibility measure, but the preference relation - on
X1 × X2 represented by f := qµ(ϕ1, ϕ2) clearly satis�es (∨), since (0, 0) ∼ (1, 0) ≺
(0, 1) ∼ (1, 1) . On the other hand, the same relation can be represented by the second
projection (x1, x2) 7→ x2 on {0, 1}2, which is in fact a Sugeno integral with respect to
a possibility measure satisfying 0 = µ(∅) = µ({1}) and µ({2}) = µ({1, 2}) = 1.

Concerning necessity measures, by duality, we have the following characterization of
the weighted conjunction of utility functions.

Theorem 3.5. A preference relation - satis�es one (or, equivalently, all) of the ax-
ioms in Theorem 3.2 if and only if there are local utility functions ϕi, i ∈ [n], and
a necessity measure µ, such that - is represented by the Sugeno utility functional
f = qµ(ϕ1, . . . , ϕn).

3.4. Axiomatizations of preference relations represented by Sugeno utility

functionals. Recall that - is a preference relation if and only if - is represented by
an order-preserving function valued in some chain (for instance, by its rank function).
The following result that draws from Theorem 2.12 (and whose interpretation was given
immediately after) axiomatizes those preference relations represented by general Sugeno
utility functionals.

Theorem 3.6. A preference relation - on X can be represented by a Sugeno utility
functional if and only if

(10) x0
k ≺ xak and yak ≺ y1

k =⇒ xak - yak

holds for all x,y ∈ X and k ∈ [n], a ∈ Xk.

Proof. From Theorem 2.12 it follows that r is a Sugeno utility functional if and only if
(10) holds. Thus, to prove Theorem 3.6, it is enough to verify that - can be represented
by a Sugeno utility functional if and only if r is a Sugeno utility functional.

The su�ciency is obvious. For the necessity, let us assume that - is represented by
a Sugeno utility functional f : X → Y of the form f = qµ(ϕ1, . . . , ϕn). Furthermore,
we may assume that f is surjective.

Since r also represents -, we have f (x) ≤ f (y) ⇐⇒ r (x) v r (y), and hence the
mapping α : Y → X/ ∼ given by α(f (x)) = r (x) is a well-de�ned order-isomorphism
between Y and X/ ∼. As α is order-preserving, it commutes with the lattice operations
∨ and ∧, and hence

r (x) = α(f (x)) =
∨
I⊆[n]

(
α(µ (I)) ∧

∧
i∈I

α(ϕi (xi))
)

2Since X/ ∼ has two elements, this is essentially the same as the rank function r : X→ X/ ∼.
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for all x ∈ X. Since α is an order-isomorphism, each composition αϕi, i ∈ [n], is a
local utility function, and the composition αµ is a capacity on [n]. Thus r is indeed a
Sugeno utility functional, namely, r = αf = qαµ(αϕ1, . . . , αϕn). �

4. DMU vs. MCDM

In [25], Dubois, Prade and Sabbadin, considered the qualitative setting under uncer-
tainty, and axiomatized those preference relations on X = Xn that can be represented
by special (state-independent) Sugeno utility functionals f : X→ Y of the form

(11) f(x) = p(ϕ(x1), . . . , ϕ(xn)),

where p : Y n → Y is a polynomial function (or, equivalently, a Sugeno integral; see, e.g.,
[11, 12]), and ϕ : X → Y is a utility function. To get it, two additional axioms (more
restrictive than (DD%) and (CD%)) were considered, namely, the so-called restrictive
disjunctive dominance and restrictive conjunctive dominance:

∀x,y, c ∈ X : x � y, x � c =⇒ x � y ∨ c,(RDD)

∀x,y, c ∈ X : y � x, c � x =⇒ y ∧ c � x,(RCD)

where c is a constant tuple.

Theorem 4.1 (In [25]). A preference relation - on X = Xn can be represented by a
state-independent Sugeno utility functional (11) if and only if it satis�es (RDD) and
(RCD).

Clearly, (11) is a particular form of (3), and thus every preference relation - on X =
Xn which is representable by (11) is also representable by a Sugeno utility functional
(3). In other words, we have that (RDD) and (RCD) imply condition (10). However,
as the following example shows, the converse is not true.

Example 4.2. Let X = {1, 2, 3} = Y endowed with the natural ordering of integers,
and the consider the preference relation - on X = X2 whose equivalence classes are

[(3, 3)] = {(3, 3), (2, 3)},
[(3, 2)] = {(3, 2), (3, 1), (1, 3), (2, 2), (2, 1)},
[(1, 2)] = {(1, 2), (1, 1)}.

This relation does not satisfy (RDD), e.g., take x = (2, 3), y = (1, 3) and c = (2, 2)
(similarly, it does not satisfy (RCD)), and thus it cannot be represented by a Sugeno
utility functional (11). However, with q(x1, x2) = (2∧x1)∨ (2∧x2)∨ (3∧x1 ∧x2), and
ϕ1 = {(3, 3), (2, 3), (1, 1)} and ϕ2 = {(3, 3), (2, 1), (1, 1)}, we have that - is represented
by the Sugeno utility functional f(x1, x2) = q(ϕ1(x1), ϕ2(x2)).

In the case of preference relations induced by possibility and necessity measures,
Dubois, Prade and Sabbadin [26] obtained the following axiomatizations.

Theorem 4.3 (In [26]). Let - be a preference relation on X = Xn. Then the following
assertions hold.

(i) - satis�es (OPT) and (RCD) if and only if there exist a utility function ϕ
and a possibility measure µ, such that - is represented by the Sugeno utility
functional f = qµ(ϕ, . . . , ϕ).

(ii) - satis�es (PESS) and (RDD) if and only if there exist a utility function ϕ
and a necessity measure µ, such that - is represented by the Sugeno utility
functional f = qµ(ϕ, . . . , ϕ).

Again, every preference relation which is representable as in (i) or (ii) of Theorem 4.3,
is representable as in Theorems 3.3 and 3.5, respectively. In other words, MCDM is at
least as expressive as DMU.

Now one could think that in these more restrictive possibility and necessity frame-
works the expressive power of DMU and MCDM would coincide. As the following
example shows, MCDM is again strictly more expressive than DMU.
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Example 4.4. Let once again X = {1, 2, 3} = Y endowed with the natural ordering
of integers, and the consider the preference relation - on X = X2 whose equivalence
classes are

[(3, 3)] = {(3, 3), (3, 2), (3, 1), (1, 3), (2, 3)},
[(2, 2)] = {(2, 2), (2, 1)},
[(1, 2)] = {(1, 2), (1, 1)}.

This relation does not satisfy (RCD), e.g., take x = (1, 2), y = (1, 3) and c = (2, 2),
and thus it cannot be represented by a Sugeno utility functional f = qµ(ϕ, . . . , ϕ)
where µ is possibility measure. However, with q(x1, x2) = (3 ∧ x1) ∨ (3 ∧ x2), and
ϕ1 = {(3, 3), (2, 2), (1, 1)} and ϕ2 = {(3, 3), (2, 1), (1, 1)}, we have that - is represented
by the Sugeno utility functional f(x1, x2) = q(ϕ1(x1), ϕ2(x2)).

Dually, we can easily construct an example of a preference relation representable in
the necessity setting of MCDM, but not in that of DMU.

5. Concluding remarks and open problems

In the numerical setting, utility functions play a crucial role in the expressive power
of the expected utility approach, introducing the subjective perception of (real-valued)
consequences of acts and expressing the attitude of the decision-maker in the face of
uncertainty. In the qualitative and �nite setting, the latter point is taken into account
by the choice of the monotonic set-function in the Sugeno integral expression.

So one might have thought that a direct appreciation of consequences is enough to
describe a large class of preference relations. This paper questions this claim by showing
that even in the �nite qualitative setting, the use of local utility functions increases the
expressive power of Sugeno integrals, thus proving that the framework of qualitative
MCDM is formally more general that the one of state-independent qualitative DMU.
In fact, the same holds in the more restrictive frameworks dealing with possibility and
necessity measures.

6. Appendix I: Factorization of Sugeno utility functionals

In this appendix we recall the procedure given in [16] to obtain all possible factor-
izations of a given Sugeno utility functional into a composition of a Sugeno integral
(or, more generally, a polynomial function) with local utility functions. Note that
Theorem 2.11 provides a canonical polynomial function p0 that can be used in such a
factorization.

First, we provide all possible inner functions ϕk : Xk → Y which can be used in the
the factorization of any Sugeno utility functional. To this extent, we need to recall the
basic setting of [16], and in what follows we take advantage of Birkho�'s Representation
Theorem [1] to embed Y into P (U), the power set of a �nite set U . Identifying Y with
its image under this embedding, we will consider Y as a sublattice of P (U) with 0 = ∅
and 1 = U . The complement of a set S ∈ P (U) will be denoted by S. Since Y is closed
under intersections, it induces a closure operator cl on U , and since Y is closed under
unions, it also induces a dual closure operator int (also known as �interior operator�):

cl (S) :=
∧
y∈Y
y≥S

y, int (S) :=
∨
y∈Y
y≤S

y.

(Recall that Y is thought of as a sublattice of P (U).
Now given an order-preserving function f : X → Y , we de�ne for each k ∈ [n] two

auxiliary functions Φ−k ,Φ
+
k : Xk → Y as follows:

(12) Φ−k (ak) :=
∨

xk=ak

cl
(
f (x) ∧ f (x0

k)
)
, Φ+

k (ak) :=
∧

xk=ak

int
(
f (x) ∨ f (x1

k)
)
.

Since f is order-preserving, both Φ−k and Φ+
k are also order-preserving.
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With the help of these two mappings, we can determined all possible local utility
functions ϕi : Xi → Y , i ∈ [n], which can be used to factorize a Sugeno utility functional
f : X→ Y as a composition

f(x) = p(ϕ1(x1), . . . , ϕn(xn)),

where p : Y n → Y is a polynomial function.

Theorem 6.1 (In [16]). For any order-preserving function f : X → Y and order-
preserving mappings ϕk : Xk → Y (k ∈ [n]), the following conditions are equivalent:

(1) Φ−k ≤ ϕk ≤ Φ+
k holds for all k ∈ [n];

(2) f (x) = p0 (ϕ (x));
(3) there exists a polynomial function p : Y n → Y such that f (x) = p (ϕ (x)).

In particular, Φ−k and Φ+
k are the minimal and maximal, respectively, local utility

functions (w.r.t. the usual pointwise ordering of functions), which can be used to
factorize a Sugeno utility functional. Moreover, we have the following corollary.

Corollary 6.2. An order-preserving function f : X→ Y is a Sugeno utility functional
if and only if

(13) Φ−k ≤ Φ+
k , for all k ∈ [n] .

As mentioned, p0 can be used in any factorization of a Sugeno utility functional, but
there may be other suitable polynomial functions. To �nd all such polynomial functions,
let us �x local utility functions ϕk : Xk → Y (k ∈ [n]), such that Φ−k ≤ ϕk ≤ Φ+

k for
each k ∈ [n]. To simplify notation, let ak = ϕk (0) , bk = ϕk (1), and for each I ⊆ [n]
let 1I ∈ Y n be the n-tuple whose i-th component is ai if i /∈ I and bi if i ∈ I. If
p : Y n → Y is a polynomial function such that f (x) = p (ϕ (x)), then

(14) p (1I) = f
(
1̂I
)

for all I ⊆ [n] ,

since 1I = ϕ
(
1̂I
)
3. As shown in [16], (14) is not only necessary but also su�cient to

establish the factorization f (x) = p (ϕ (x)).
To make this description explicit, let us de�ne the following two polynomial functions

�rst presented in [17], namely,

p− (y) =
∨
I⊆[n]

(
c−I ∧

∧
i∈I

yi
)
, where c−I = cl

(
f
(
1̂I
)
∧
∧
i/∈I

ai
)
,

and

p+ (y) =
∨
I⊆[n]

(
c+I ∧

∧
i∈I

yi
)
, where c+I = int

(
f
(
1̂I
)
∨
∨
i∈I

bi
)
.

As it turned out, a polynomial function p is a solution of (14) if and only if p− ≤ p ≤ p+.
Since, by Theorem 2.1, p is uniquely determined by its values on the tuples 1I , this is
equivalent to

c−I = p− (1I) ≤ p (1I) ≤ p+ (1I) = c+I for all I ⊆ [n] .

These observations are reassembled in the following theorem which provides the de-
scription of all possible factorizations of Sugeno utility functionals.

Theorem 6.3 (In [16]). Let f : X → Y be an order-preserving function, for each
k ∈ [n] let ϕk : Xk → Y be a local utility function, and let p : Y n → Y be a polynomial
function. Then f (x) = p (ϕ (x)) if and only if Φ−k ≤ ϕk ≤ Φ+

k for each k ∈ [n], and
p− ≤ p ≤ p+.

3Recall that 1̂I denotes the characteristic vector of I ⊆ [n] in X, i.e., 1̂I ∈ X is the n-tuple whose
i-th component is 1Xi

if i ∈ I, and 0Xi
otherwise.
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7. Appendix II: Proof of Theorem 2.12

As before, Y can be thought of as a sublattice of P (U) for some �nite set U . In
fact, U can be chosen as U = [m] = {1, 2, . . . ,m}, and Y = {[0] , [1] , . . . , [m]}, where
[0] = ∅. In this case the two operators given in the Appendix I, become rather simple:
for every S ⊆ U , we have

cl (S) = [maxS] , int (S) =
[
minS − 1

]
.

Let us now consider an order-preserving function f : X → Y . Then f
(
x0
k

)
=

[u] , f (x) = [v] , f
(
x1
k

)
= [w] with u ≤ v ≤ w, hence we have

f (x) ∧ f (x0
k) = {u+ 1, . . . , v} ,

f (x) ∨ f (x1
k) = {1, . . . , v, w + 1, . . . ,m} .

Therefore the terms in the de�nition of Φ−k and Φ+
k can be determined as follows:

cl
(
f (x) ∧ f (x0

k)
)

=

{
f (x) , if f

(
x0
k

)
< f (x) ;

∅, if f
(
x0
k

)
= f (x) ;

(15)

int
(
f (x) ∨ f (x1

k)
)

=

{
f (x) , if f

(
x1
k

)
> f (x) ;

U, if f
(
x1
k

)
= f (x) .

(16)

By making use of these observations we can now prove Theorem 2.12:

Theorem 7.1 (In [16]). A function f : X → Y is a Sugeno utility functional if and
only if it is order-preserving and satis�es

(17) f
(
x0
k

)
< f (xak) and f (yak) < f

(
y1
k

)
=⇒ f (xak) ≤ f (yak)

for all x,y ∈ X and k ∈ [n], a ∈ Xk.

Proof. Suppose �rst that f is a Sugeno utility functional. As observed, f is order-
preserving, and thus we only need to verify that (17) holds. For a contradiction,
suppose that there is k ∈ [n] such that for some a ∈ Xk and x,y ∈ X, we have
f
(
x0
k

)
< f (xak) and f (yak) < f

(
y1
k

)
, but f (xak) > f (yak). Then

cl
(
f (xak) ∧ f (x0

k)
)
> int

(
f (yak) ∨ f (y1

k)
)
,

and thus Φ−k (a) > Φ+
k (a). This contradicts Corollary 6.2 as f is a Sugeno utility

functional. Hence both conditions are necessary.
To see that these conditions are also su�cient, suppose that f is order-preserving

and satis�es (17). Then, for every k ∈ [n], a ∈ Xk, and every x,y ∈ X,

cl
(
f (xak) ∧ f (x0

k)
)
≤ int

(
f (yak) ∨ f (y1

k)
)
.

Thus, for every k ∈ [n], we have Φ−k ≤ Φ+
k and, by Corollary 6.2, f is a Sugeno utilty

function. �
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