
Probabilistic Knowledge-Based Programs

Jérôme Lang, Bruno Zanuttini

To cite this version:

Jérôme Lang, Bruno Zanuttini. Probabilistic Knowledge-Based Programs . 24th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2015), Jul 2015, Buenos Aires, Ar-
gentina. Proc. 24th International Joint Conference on Artificial Intelligence (IJCAI 2015).
<hal-01196656>

HAL Id: hal-01196656

https://hal.archives-ouvertes.fr/hal-01196656

Submitted on 10 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01196656

Probabilistic Knowledge-Based Programs∗

Jérôme Lang
CNRS-LAMSADE

Université Paris-Dauphine, France
lang@lamsade.dauphine.fr

Bruno Zanuttini
GREYC

UNICAEN, CNRS, ENSICAEN, France
bruno.zanuttini@unicaen.fr

Abstract

We introduce Probabilistic Knowledge-Based Pro-
grams (PKBPs), a new, compact representation of
policies for factored partially observable Markov
decision processes. PKBPs use branching condi-
tions such as if the probability of ϕ is larger than
p, and many more. While similar in spirit to value-
based policies, PKBPs leverage the factored repre-
sentation for more compactness. They also cope
with more general goals than standard state-based
rewards, such as pure information-gathering goals.
Compactness comes at the price of reactivity, since
evaluating branching conditions on-line is not poly-
nomial in general. In this sense, PKBPs are com-
plementary to other representations. Our intended
application is as a tool for experts to specify poli-
cies in a natural, compact language, then have them
verified automatically. We study succinctness and
the complexity of verification for PKBPs.

1 Introduction
Partially observable Markov decision processes (POMDPs)
are probably the most popular framework for planning under
partial observability. Planning for a POMDP means comput-
ing a policy, specifying what action to take at each step at exe-
cution time. A key question is how to represent policies. Two
well-known families of representations are history-based and
value-based ones. We investigate here a radically different
representation: probabilistic knowledge-based programs.

Standard knowledge-based programs (KBPs) were intro-
duced by Fagin et al. [1995], as high-level protocols describ-
ing the actions that agents should perform as a function of
their knowledge, such as, typically, if I know ϕ then π1 else
π2. Knowledge is expressed by S5 modalities. Thus, in
a KBP, branching conditions are epistemically interpretable,
and deduction tasks are involved at execution time (online).

Some works have considered the use of KBPs in an AI
planning context. KBPs are implemented in the situation cal-
culus by Reiter [2001] and Claßen and Lakemeyer [2006].
Son and Baral [2001] and Herzig et al. [2003] use epistemic

∗Funded by the French Research Agency (ANR-10-BLAN-215).

logic for expressing planning problems, with KBPs as out-
put. Laverny and Lang [2005] generalize KBPs to belief-
based programs with uncertain action effects and noisy obser-
vations. Lang and Zanuttini [2012; 2013] show that KBPs are
powerful for expressing policies or plans: epistemic branch-
ing conditions allow for exponentially more compact repre-
sentations than standard plans; the counterpart is an increase
of complexity for plan verification and existence. Yet some
other approaches that investigate succinct representations of
plans, although not under the form of KBPs, are discussed by
Bonet et al. [2010] and Bäckström and Jonsson [2011].

However, the practical applicability of these works is
hampered by the restriction to nonprobabilistic belief states.
Hence we consider a probabilistic variant of KBPs, PKBPs
for short. These form a representation of policies or contin-
gent plans for standard POMDPs and stochastic planning do-
mains. The novelty is in allowing complex combinations of
probabilistic statements as branching conditions, such as if
the probability that a tiger is behind door i is less than 0.1
then open door i, else listen at the door j with the lowest
probability (among all doors) of there being a tiger behind.

PKBPs provide an alternative to standard representations,
as a more natural and compact language, but with reasoning
involved during execution. We view them as a tool for helping
experts to specify policies easily; so we study their succinct-
ness and the complexity of automatically verifying them.

Background is given in Section 2 and related work dis-
cussed in Section 3. In Section 4 we define PKBPs and their
execution semantics. In Section 5 we show that PKBPs are
more succinct than standard POMDP policies or contingent
plans in probabilistic planning. We address execution with
compact representations in Section 6 and the complexity of
plan verification in Section 7. We conclude in Section 8.

2 Preliminaries
A partially observable Markov decision process is a tuple
Π = (S,b0, A,Ω, T,O,R), where S,A,Ω are finite sets of
states, actions, and observations, and b0 is a probability dis-
tribution on S (written b0 ∈ ∆(S)). An agent controls Π by
taking an action at ∈ A and observing some ot ∈ Ω at each
timestep t = 0, 1, The dynamics are given by T,O,R:

• at each timestep t ≥ 0, the process is in some state st ∈
S, which is not directly observed; s0 is drawn from b0.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1594

• ∀a ∈ A, s, s′ ∈ S, T (s, a, s′) ∈ [0, 1] gives the proba-
bility of st+1 = s′ for st = s, at = a.
• for T (s, a, s′) > 0, ∀o ∈ Ω, O(s, a, s′, o) ∈ [0, 1] gives

the probability of ot = o for st = s, at = a, st+1 = s′.
• R(b) ∈ Q gives the reward obtained by the agent at

timestep t if its belief state is b (see below).
A purely ontic action a never gives feedback (∃o> ∈
Ω,∀s, s′, O(s, a, s′, o>) = 1), and a sensing action a never
changes the current state (∀s, T (s, a, s) = 1).

Partial observability implies that the agent cannot monitor
the current state st at execution time. Rather, it can maintain
a belief state bt ∈ ∆(S); bt(s) is its belief at timestep t that
st is s. The belief state can be monitored using progression
by actions taken and observations received:

Prog(bt, at, ot)(s′) =

∑
s b

t(s)T (s, at, s′)O(s, at, s′, ot)∑
s,s′′ b

t(s)T (s, at, s′′)O(s, at, s′′, ot)

Note that we define rewards on belief states. Since we con-
sider expectations of rewards, a state-based reward function
R′ : S → Q can be captured by R(b) =

∑
s∈S b(s)R′(s).1

The more general setting however comes for free in our ap-
proach (since we do not use the piecewise linearity and con-
vexity of Q-values), and captures more general goals: for in-
stance, information-gathering goals [Sabbadin et al., 2007;
Araya-López et al., 2010] such as R(b) = 1 if ∃s ∈
S,b(s) > 0.99 and 0 otherwise (identify the current state),
or
∑
i(1 − P (xi | b)P (xi | b)) (identify the value of each

xi, where xi is a state variable, or equivalently, a set of states).
A policy π prescribes an action at each step, given (pos-

sibly indirectly) past actions and observations. Its expected
value at horizon H < ∞ is E(

∑H
t=0R(bt)), with bt+1 =

Prog(bt, at, ot), at = π(a0, o0, . . . , at, ot), and expectation
over s0 ∼ b0, st+1 ∼ T (st, at, ·), ot ∼ O(st, at, st+1, ·).
Example 2.1. We consider a variant of the famous tiger ex-
ample. There are 5 doors, a tiger hidden behind 2 of them,
and a princess behind one of the other 3. Initially, all triples
(i, j, k) (tigers behind doors i and j, princess behind door k,
with i, j, k all different) are equiprobable. We consider (sens-
ing) actions listeni, i = 1, . . . , 4 (note that one cannot listen
at door 5), and (ontic) actions openi, i = 1, . . . , 5. When per-
forming listeni, the agent may hear the tiger roaring (r+) or
not (r−), with probability 0.5 each, if a tiger is behind door
i, and never hears anything otherwise. If the agent performs
openi, it is eaten for sure by the tiger if there is one behind
door i (yielding reward −1), and married to the princess for
sure if she is there (yielding reward +1).

In a POMDP formulation, T (s, listeni, s
′) is 1 for s = s′

and 0 otherwise (the state is unchanged) and, for instance:
O(s, listeni, s, r+) is 0.5 if there is a tiger behind door i in
s; T (s, openi, s

′) is 1 if there is a tiger behind door i in s, and
s′ is the same as s but with door i open and the agent eaten,
and R(s′) is−1 in such s′; R(b) is defined by

∑
s b(s)R(s).

Representation of Policies Representing policies is a cru-
cial issue for POMDPs, given that a policy π maps an expo-
nential number (in the horizonH) of histories to actions. Two
main families of approaches are studied in the literature.

1The extension to R(st, at, st+1) or R(bt, a,bt+1) is direct.

In history-based approaches, when π is executed it is in
some internal state qt at any timestep, and there is a direct
mapping from internal states to actions to take. The transi-
tion to the next internal state qt+1 is directly provoked by the
observation ot received. Basic examples are policy trees, with
nodes labelled by actions and arcs by observations: qt is the
current node, at is its label, and qt+1 is obtained by following
the arc labelled ot. A more compact representation is given
by finite-state controllers, which are generalisations of this to
possibly cyclic graphs, typically seen as automata.

In value-based approaches, the agent explicitly maintains
its belief state bt, and π gives the expected value of taking
each action (assuming that the continuation of the policy will
be optimal) as a function of bt; the action maximizing this
value is chosen. A typical example is a set Ξ of α-vectors:
π is represented by pairs (αi, ai) with αi an |S|-dimensional
vector of scalars and ai ∈ A. Such Ξ represents π through
π(bt) = ai∗ , with i∗ = argmaxi b

t · αi (inner product).

Factored Representations We use factored representa-
tions of POMDPs, in which X = {x1, . . . , xn} is set of
Boolean state variables and S = 2X is the set of assignments
to them. b0, T , O, R are specified using structured represen-
tations. We assume b0 is represented by a Bayesian network
(BN) overX ,2 and T,O by two-slice temporal BNs (2TBNs).

We assume familiarity with BNs (see [Darwiche, 2009]).
2TBNs [Dean and Kanazawa, 1989] have been used in plan-
ning since [Boutilier et al., 1999], and are taken into account
in probabilistic PDDL [Younes et al., 2005]. A 2TBN over
X is a BN over X ∪ X ′, where X ′ = {x′1, . . . , x′n}; xi and
x′i represent xi at some timestep and at the next one, respec-
tively. Each edge in the underlying digraph of a 2TBN is from
some unprimed to some primed variable, or from x′i to x′j for
i < j in some fixed ordering. Moreover, only primed vari-
ables have conditional probability tables (CPTs). A 2TBN
hence represents distributions on the assignments to X ′ con-
ditional on the value of X . An example of representation of
T with 2TBNs is given below. The function O is represented
similarly: the 2TBN for O(·, a, ·, ·) has variables X ∪X ′ and
o (with domain Ω), and a CPT only for o, which gives the
probability ditribution on Ω for all s, s′ with T (s, a, s′) > 0.
We discuss the representation of rewards in Section 7.

Example 2.2 (cont’d). We use state variables ti (a tiger is
behind door i, i = 1, . . . , 5), pi (the princess is behind door
i, i = 1, . . . , 5), m (married) and e (eaten). The state as-
signing only t1, t3, p4 to true formalizes the situation where
the tigers are behind doors 1 and 3, and the princess behind
door 4. Figure 1 shows a part of the 2TBN Nopen1 represent-
ing T (·, open1, ·) (variables ti and pi, i 6= 1, are not repre-
sented), Figure 2 a part of the BN Nb0 for b0, and Figure 3 a
part of the BN for Prog(b0, open1) obtained by progressing
Nb0 by Nopen1

before receiving the observation.

3 Related Work
Boutilier and Poole [1996] investigated factored representa-
tions for POMDPs, with CPTs represented by decision trees,

2Abusing notation, we do not distinguish between state variables
and the corresponding random variables.

1595

T1 E P1 M

T ′

1 E′ P ′

1 M ′

t1 : [1 : t′1]
t1 : [1 : t

′

1]

t1e : [1 : e′]
t1e : [1 : e′]
t1e : [1 : e′]
t1e : [1 : e′]

p1 : [1 : p′

1]
p1 : [1 : p′

1]

p1m : [1 : m′]
p1m : [1 : m′]
p1m : [1 : m′]
p1m : [1 : m′]

Figure 1: (A part of) the 2TBN Nopen1

T1 P1

0.4 : t1
0.6 : t1

t1 : [1 : p1]
t1 : [1/3 : p1; 2/3 : p1]

Figure 2: (A part of) the BN Nb0 representing b0

and derived a condensed representation of α-vectors. This
work was extended in particular by Hansen and Feng [2000]
to CPT and α-vector representation by ADDs, and by Shani et
al. [2008] for point-based (nonexact) approaches. Probabilis-
tic STRIPS operators [Kushmerick et al., 1995] are another
factored representation. They were investigated for POMDPs
by Wang and Schmolze [2005], who also derived compact
representations of α-vectors. We discuss these works more
in depth in Section 5. Poupart [2005, Chapters 3, 4] gives a
thorough overview of compact representations up to 2005.

Mundhenk et al. [2000] and Madani et al. [2003] consider
succinct and compressed representations of POMDPs, where
T and O are represented by circuits. They study the de-
cidability and complexity of evaluating a policy and decid-
ing whether there exists one reaching a given value, but do
not consider compact representations of (history-dependent)
policies. Yet other compact representations studied in the
literature are first order [Sanner and Boutilier, 2009] and
predictive-state representations [Hamilton et al., 2014].

The Knowledge Representation and Reasoning community
also studied progression (and sometimes regression) of be-
lief states by stochastic actions (including sensing actions)
in expressive and compact logical languages, such as first-
order logic or the situation calculus [Bacchus et al., 1999;
Gabaldon and Lakemeyer, 2007; Belle and Levesque, 2013;
Belle and Lakemeyer, 2011]), propositional logic and dy-
namic BNs [Hajishirzi and Amir, 2010], or propositional
action languages [Iocchi et al., 2009]. Extensions to dy-
namic logic were also developed for reasoning with stochastic
actions (associated with modalities) and observations, such
as in [Aucher, 2007; van Eijck and Schwarzentruber, 2014;
Rens et al., 2014]. Nevertheless, none of these works consid-
ers programs which branch on knowledge or belief.

Finally, although we are interested in exact representations
of policies here, let us mention the large body of work on

T1 P1 E M

0.4 : t1
0.6 : t1

t1 : [1 : p1]
t1 : [1/3 : p1; 2/3 : p1]

0.4 : e
0.6 : e

e : [1 : m]
e : [1/3 : m; 2/3 : m]

Figure 3: (A part of) the BN representing Prog(b0, open1)

approximate solutions to POMDPs, the most prominent of
which being point-based approaches [Shani et al., 2013].

4 Probabilistic Knowledge-Based Programs
We now introduce probabilistic knowledge-based programs
(or policies — PKBPs). The representation aims at taking the
best of history- and value-based representations: like the for-
mer, they do not need to distinguish belief states with differ-
ent expected values, provided the action to take is the same,
and like the latter, they summarize the relevant portion of the
history as conditions on the current belief state.

The term knowledge-based is borrowed from knowledge-
based programs [Fagin et al., 1995], and refers to the fact that
PKBPs branch on what the agent knows (believes) at execu-
tion time. Hence they rely on belief state monitoring. As we
will see, with PKBPs the next action to take cannot be com-
puted in polynomial time in general, but PKBPs can be expo-
nentially more compact than “reactive” policies. Moreover,
they are expressed in a very natural language.

Hence PKBPs complement standard representations. In
particular, we have in mind applications in which experts do
not want to let an automated system compute decisions, like
when human lives (military scenarios) or a lot of money (e.g.,
spacecrafts) are at stake. Then PKBPs provide a very interest-
ing (compact and natural) language for them to write policies
by themselves, while allowing for automated verification.

Moreover, in some applications decisions need not be made
instantaneously online: for instance, for systems interacting
with humans, when decisions are interleaved with human
actions (typically slow as compared to CPU clocks), or for
robotic systems in which the execution of one action is very
slow (e.g., Curiosity is known to move at 150 m/h on Mars).

Representation We use a language, written Fn, of proba-
bility formulas over variables x1, . . . , xn [Fagin et al., 1990].

The atoms in Fn are all atoms of the form P (ϕ), where
ϕ is a propositional formula over x1, . . . , xn. The value of
P (ϕ) in a belief state b is the probability for ϕ to be true in
b, namely, Vb(ϕ) =

∑
s|=ϕ b(s). Expressions can be formed

using sum and product3 between atoms and/or rational num-
bers; e.g., 2P (ϕ)P (ψ) +P (ξ) + 0.5. We write En for the set
of all such expressions, and define Vb(E) in the obvious way
for E ∈ En. Finally, Fn is defined inductively by:

• > (truth) and ⊥ (falsity) are probability formulas in Fn,

• for E ∈ En, p ∈ Q,on∈ {≥, >,≤, <}, E on p is in Fn,

• for Φ,Ψ ∈ Fn, ¬Φ, Φ ∨Ψ, Φ ∧Ψ, Φ→ Ψ are in Fn.

While an expression E ∈ En has a value Vb(E) in a belief
state b, a probability formula Φ is either true or false in b.
For instance, the uniform belief state satisfies P (ϕ) > 0 for
any satisfiable ϕ, and falsifies P (x1) ≥ 2P (x2)∨P (x1) ≤ 0.
We write b |= Φ if b satisfies Φ, and b 6|= Φ otherwise. We
sometimes write xi instead of ¬xi.
Example 4.1 (cont’d). Let b assign probability 1/30 to each
state satisfying e andm, and 0 to all other states (the agent is
not married nor eaten, and situations are otherwise equally

3Other efficiently computable operators could be used.

1596

likely). Then Vb(P (t1∨t2)) is 1/2, Vb(P (t1)−1/2P (t2∧t3))
is 1/5, and b |= P (t1) > 0 ∧ P (t2) ≤ 1/2 holds.

We can now define PKBPs formally.

Definition 1. Let n ∈ N and A a set of actions. Probabilistic
knowledge-based programs (PKBPs) are defined by:

• λ is a PKBP (empty policy), and every a ∈ A is a PKBP,

• if π1, π2 are PKBPs, then [π1;π2] is a PKBP (sequence),

• if π1, π2 are PKBPs and Φ ∈ Fn is a probability for-
mula, then [if Φ then π1 else π2] is a PKBP,4

• if π is a PKBP and Φ ∈ Fn is a probability formula,
then [while Φ do π] is a PKBP.

Example 4.2 (cont’d). The following is a PKBP:

listen1; listen2; listen3; listen4;
while P (t1) > 0.1 ∧ · · · ∧ P (t5) > 0.1 do

if P (t1) ≤ P (t2) ∧ · · · ∧ P (t1) ≤ P (t5) then
[listen1; if P (t1) ≤ 0.1 then open1]

elseIf P (t2) ≤ P (t1) ∧ · · · ∧ P (t2) ≤ P (t5) then
[listen2; if P (t2) ≤ 0.1 then open2]

. . .
else [if P (t5) ≤ 0.1 then open5]

In general, PKBPs represent nonstationary policies, which
can prescribe a different action for the same belief state at
different timesteps. If while constructs are omitted, PKBPs
can also be seen as plans, prescribing a finite sequence of
actions (contingent on observations) for a given initial belief
state. Stationary policies are captured by policies of the form

while > do [if Φ1 then a1 elseIf Φ2 then a2 . . . else ak] .

PKBPs make up a very natural language for specifying
policies. In particular, they make explicit what condi-
tions on the belief state imply the choice of a given action,
unlike with value-based representations, even for factored
POMDPs [Boutilier and Poole, 1996].

Semantics As a representation of a policy, a PKBP gives an
action for each timestep t, as a function of actions taken and
observations received so far, as summarized in the current be-
lief state bt. The semantics is straightforward. For instance,
for π = [a;π1] , the prescribed action is a, and execution goes
on from the next timestep on with π1. For π = [if Φ then π1
else π2] , the agent must first decide bt |= Φ: if this is true
then the agent acts following π1 (which may recursively call
for other tests), and otherwise it acts following π2. Finally,
if the PKBP boils down to the empty PKBP λ, we define the
execution to stop (and no more reward to be obtained).

A PKBP of the form π = [while Φ do π1] has exactly the
same semantics as the PKBP [if Φ then π1 ;π else λ] . Of
course, plans with loops are not guaranteed to stop.5

4[if Φ then π1 else λ] is abbreviated by [if Φ then π1] .
5Note that there is an ambiguity about the meaning of the in-

finitely repeated empty plan (the simplest form of which being of
the form [while Φ do λ]): it is not clear whether running an empty
plan forever is a plan that stops immediately or runs forever. This is
however not important for this paper (we consider finite horizons).

Example 4.3 (cont’d). Let us denote a belief state b as
the tuple (P (t1), . . . , P (t5)) (probability of there being a
tiger behind each door), with situations otherwise equally
likely. The initial belief state is b0 = (0.4, 0.4, 0.4, 0.4, 0.4).
We take a0 = listen1; assume we receive observation r−,
then b1 = (0.25, 0.4375, 0.4375, 0.4375, 0.4375). Then
we take listen2; assuming o1 = r− we get b2 =
(0.28, 0.28, 0.48, 0.48, 0.48). After taking listen3 and ob-
serving r+ we get b3 ≈ (0.17, 0.17, 1.0, 0.33, 0.33). Af-
ter performing listen4 and observing r− we get b4 ≈
(0.2, 0.2, 1.0, 0.2, 0.4). Now we evaluate the branching con-
dition and find b4 |= P (t1) ≤ P (ti) for all i > 1,
therefore we take a1 = listen1. Assuming o1 = r− we
get b5 ≈ (0.11, 0.22, 1.0, 0.22, 0.44), hence a5 = listen1
again. Assuming we observe r− once again, we get b6 ≈
(0.06, 0.24, 1, 0.24, 0.47), hence we execute open1.

Interestingly, some PKBPs containing a while loop (such
as the one in Example 4.2) almost surely stop, that is, the
probability that they stop after at most t steps tends to 1 with
t → ∞. Then the probabilities of all finite histories sum up
to 1 and the expected reward at an infinite horizon is well-
defined, even without using a discount factor.6

5 Succinctness
We now show that PKBPs are always at least as, and pos-
sibly exponentially more, succinct than other representations
of policies, which makes them appealing. Precisely, we com-
pare them to representations using α-vectors, possibly com-
pactly represented, and to generic “reactive” representations.

Definition 2. A representation of a policy π is reactive if for
any POMDP Π, timestep t, history ~h = (a0, o0, . . . , at, ot)

with each au given by π, the action at+1 = π(~h) can be
computed in polytime in the size of Π and π.

Policy trees and finite state controllers are reactive repre-
sentations, since the action to take can be read off directly
from the current state in the representation, which can be up-
dated by simply following the observation received. Simi-
larly, a set Ξ of flat α-vectors, that is, α-vectors represented
explicitly as vectors of |S| rational numbers, forms a reactive
representation, as a flat belief state can be maintained with
per-step updating in time polynomial in |S| and hence in the
size of Ξ, and deciding the next action to take requires es-
sentially as many inner products as |Ξ|. Note that under our
definition, a representation can be reactive while of size ex-
ponential in the size of the problem (this is typically the case
for sets of α-vectors). The picture is more subtle for compact
α-vectors; we discuss this case at the end of this section.

Recall that P/poly is the (nonuniform) complexity class of
problems whose answer can be computed by a polynomial-
size circuit for each input size. NP 6⊆ P/poly is a standard
complexity-theoretic assumption; the converse would imply
a collapse of the polynomial hierarchy at the second level.
The following result says that some PKBPs are exponentially
more succinct than any equivalent reactive representation.

6Of course, some PKBPs stop only with some probability < 1,
possibly even 0, such as [while > do toss-coin] .

1597

Proposition 5.1. If NP 6⊆ P/poly holds, there are policies
with polysize PKBP representations, but no polysize reactive
representation. This holds even if we forbid the while con-
struct in PKBPs (but not in reactive policies) and restrict the
reward function to be state-based.

Proof. Building on Lang and Zanuttini’s [2013] construction
for (standard) KBPs, we define POMDPs (Π1,Π2, . . .) such
that Πm = (n,b0, A,Ω, T,O,R) encodes the NP-complete
3-SAT problem over x1, . . . , xm. Intuitively, the state en-
codes an “immutable”7 3CNF ϕ =

∧
i∈I(Li,1 ∨Li,2 ∨Li,3),

where each Li,j is a literal xk or xk, and a mutable assign-
ment ~x = x1 . . . xm to its variables, together with the con-
straint (~x 6|= ϕ) → xs for a distinguished, immutable vari-
able xs. The goal is to set ~x to a model of ϕ or to detect that
ϕ is unsatisfiable, which amounts to being certain that xs is
false. We only sketch the construction, and refer to Lang and
Zanuttini [2013] for details on the encoding.

• b0 is uniform over all states satisfying (~x 6|= ϕ) → xs
(xs is false if ~x 6|= ϕ, with no more informed prior),

• Action test(Li,j) reliably reports which literal Li,j is,
and action a>i (resp. a⊥i) always sets xi to > (resp. ⊥),

• R is 1 at states satisfying xs or ~x |= ϕ, 0 elsewhere.

It is easy to check that Πm has a representation of size
polynomial in m using BNs for b0, 2TBNs for actions, and
an expression in En for R (see Section 7). Now the following
PKBP π has expected value 1 for Π at horizon O(

(
2m
3

)
+m):

test(`1,1) test(`1,2) . . . test(`(2m
3),3)

if P (xs) > 0 then
if P (ϕ ∧ x1) > 0 then a>1 else a⊥1
if P (ϕ ∧ x2) > 0 then a>2 else a⊥2
. . .
if P (ϕ ∧ xm) > 0 then a>m else a⊥m

Indeed, P (xs) = 0 holds if and only if P (~x |= ϕ) is 0, that is,
if ϕ is unsatisfiable since ~x is initially unknown. On the other
hand, if ϕ is satisfiable, then the PKBP builds a model of it
over ~x (read “P (ϕ ∧ xi)” as “there is at least one assignment
which extends x0, . . . , xi−1, sets xi to true, and satisfies ϕ”).

Clearly, π has size polynomial in m. Now, towards
contradiction, assume there is a polynomial p and reactive
policies π1, π2, . . . for Π1,Π2, . . . , with |πi| ≤ p(m) and
expected value 1 at the given horizon. Then executing πm
solve the 3-SAT problem over m variables. Since πm is
reactive and the horizon is polynomial in m, executing πm
amounts to running a polytime algorithm for 3-SAT over m
variables, hence 3-SAT is in P/poly, a contradiction. �

Proposition 5.2. For all families (Π)n of POMDPs and fam-
ilies (π)n of policies for (Π)n, if (π)n has a polysize rep-
resentation using flat α-vectors or α-vectors represented by
decision trees [Boutilier and Poole, 1996], then it also has a
polysize PKBP representation.

7By this we mean that no action can change the variables of ϕ.

Proof. We show the result for decision trees, which are at
least as compact as flat vectors. Given a representation Ξn =
{(αi, ai) | i = 1, . . . , N}, we first represent πn by:

while > do
if b · α1 ≥ b · α2 ∧ · · · ∧ b · α1 ≥ b · αN then a1
elseIf b · α2 ≥ b · α3 ∧ · · · ∧ b · α2 ≥ b · αN then a2
. . .
else aN

Now we reformulate b ·αi to
∑
β αi(β)P (β), where the sum

is over all branches β of the decision tree αi, αi(β) is the
value associated to β, and P (β) stands for P (

∧
β xi = vi),

i.e., the probability of the conjunction of all decisions which
make up β. Clearly, this conversion yields a PKBP represent-
ing πn and of size polynomial in the size of Ξn. �

For α-vectors represented by Algebraic Decision Diagrams
(ADDs) [Hansen and Feng, 2000; Sim et al., 2008] or with
other compact representations [Wang and Schmolze, 2005],
the result does not directly hold. Instead, we could obtain the
same result using ADDs or other compact representations for
formulas ϕ in atoms P (ϕ). All our results could be lifted to
such representations, but we leave the details for future work.

6 Execution with Compact Representations
We now show how to execute a PKBP π for a factored
POMDP Π = (n,b0, A,Ω, T,O,R), i.e., how to monitor the
belief state and evaluate conditions. We give two approaches.

Standard Progression The most natural approach to belief
state monitoring is to maintain a BN over x1, . . . , xn. It is
well-known that the progression of bt can be realized by con-
necting together the BN for bt and the 2TBNs of T (·, at, ·)
and O(·, at, ·, ·), then conditioning on ot and marginalizing
unprimed variables. For details about algorithms performing
this with BNs we refer the reader to Darwiche [2009].

We now consider the evaluation of branching conditions.
Recall that PP is the class of problems which are solvable in
polytime by a probabilistic algorithm which has probability
less than 1/2 to give the wrong answer, and that an algorithm
is in PPP it it runs in polytime with access to a PP-oracle.

Proposition 6.1. The problem of deciding, given π and a BN
for bt, which action to take according to π in bt, is in PPP.

Proof. From the semantics of PKBPs, this amounts to decid-
ing bt |= Φ for a polynomial number of branching conditions
Φ ∈ Fn. In turn, bt |= Φ can be decided in polynomial time
given the value Pb(ϕ) for each atom P (ϕ) occurring in Φ, so
it is enough to show that the computation of Pb(ϕ) is in PP.

For this we use a classical trick (see [Darwiche, 2009,
Sec. 5.2.1]): we add to bt a fresh node for each operator in ϕ
(assumed binary, parenthesizing as necessary). For instance,
if ϕ is of the form ψ ∨ ξ, we add a node Nϕ with parents
Nψ, Nξ, and CPT entries ψξ : 1.0, ψξ : 0.0, etc. This results
in a BN b+ of size polynomial in that of bt and containing,
in particular, a node Nϕ for the binary random variable rep-
resenting the satisfaction of ϕ. Then evaluating Pb(ϕ) can be
done via a polynomial number of tests Pb(ϕ) ≥ p, each of

1598

which is in PP [Darwiche, 2009, Section 11.4].8 �
While this may seem a prohibitive complexity for making

the next decision online, one can take advantage of the large
body of work about reasoning with BNs, using reasoners as
black-boxes, to achieve efficient execution in practice.

Memoryful Progression A generic drawback of belief
state monitoring is that the representation of bt may grow ex-
ponentially with t, since state variables initially uncorrelated
can become correlated when conditioning on observations (as
E and M on Figure 3). Hence, we propose another progres-
sion operator which, at least from the complexity-theoretic
point of view, allows to keep the size of bt under control.
The idea is keep track of the whole history of actions taken
and observations possibly received, which can be done effi-
ciently, and to condition on the observations actually received
only when necessary, for evaluating branching conditions.

For Π = (n,b0, A,Ω, T,O,R), ~h = (a0, o0, . . . , at, ot),
we define the memoryful representation of Prog(b0,~h) to be
the BN obtained as follows. We first rename each xi to x0i
in the BN for b0. Now for each timestep u, we make a fresh
copy of the 2TBN for T (·, au, ·) and that for O(·, au, ·, ·). In
these we rename xi to xui , x′i to xu+1

i (i = 1, . . . , n), and
the observation variable o to ou. Finally, we connect all these
copies together and to b0, merging common variables.

In the end, we obtain a representation of the current belief
state bt in intension, as a BN whose size only grows linearly
with t. It is easy to check that deciding bt |= Φ for a branch-
ing condition Φ can be done by conditioning on o0, o1, . . . , ot

as received in ~h, then marginalizing xui for all u < t. Of
course, a direct algorithm doing so would face an explosion
in size, but we can take advantage of any off-the-shelf algo-
rithm for reasoning with BNs (see again [Darwiche, 2009]).

Note that it is certainly not desirable in general to use mem-
oryful instead of standard progression in practice. A reason-
able heuristic would certainly be to use memoryful progres-
sion and regularly test whether some past variables can be
marginalized while keeping the representation small. Any-
way, as a theoretical tool, memoryful progression allows to
monitor the belief state in polynomial space.

7 Verification
Given that PKBPs provide a language for experts to specify
policies in a compact and natural way, an important problem
is that of verifying that such a specified policy is “correct”.
Such an automated verification complements the expertise of
the user who specified the policy. We restrict here to evalu-
ation at a finite horizon, leaving issues related to termination
for future work (see the end of Section 4).

Here we assume rewards are represented by expressions in
En, like

∑
i(1 − P (xi)P (xi)) (see Section 2). This makes

the presentation simpler, but the very same result would hold
with another representation of rewards, e.g., by ADDs.9

8Each digit in Pb(ϕ) can be computed in one test Pb(ϕ) ≥ q +
2−i, and for evaluating E > p we need no more digits than p has.

9For the result we only need the problem of computing R(b)
given a BN for b to be in PSPACE.

Proposition 7.1. The following problem is in PSPACE: given
a factored POMDP Π = (n,b0, A,Ω, T, A,R), a PKBP π,
H ∈ N written in unary, and θ ∈ Q, is the expected value of
π (for Π at horizon H) at least θ?10

Proof. The algorithm enumerates all observation histories
~h = (o1, o2, . . . , oH) ∈ OH of size H , and for each one
computes w(~h) = p(~h) × r(~h), namely, the reward r(~h) ob-
tained by π along ~h weighted by the probability p(~h) for ~h
to occur. Provided this can be computed in PSPACE for each
~h, the whole algorithm runs in PSPACE, since it simply sums
up all w(~h)’s in an accumulator.11

For a given ~h = (o0, o1, . . . , oH), we incrementally build
a series of Bayesian networks B0, . . . , BH , where Bt is the
memoryful progression of b0 by (a0, o0, . . . , ak, ok) (where
at’s are given by π). At each step we useBt and the construc-
tion in Section 6 to decide which action at to take next, and
we build Bt+1. At the same time we update the probability
p(~h) to p(~h)×PBt+1(ot+1), and r(~h) to r(~h)+R(bt+1) using
the tools from Section 6 again. Since memoryful progression
requires only polynomial space, and all elementary queries to
the BNs are in PPP ⊆ PSPACE, we get the result.

It is worth noting that there is no real increase in complex-
ity for verification when we use PKBPs instead of other rep-
resentations. Indeed, Mundhenk et al. [2000] show that veri-
fication is already PSPACE-hard for time-dependent (instead
of history-dependent) policies and nonobservable MDPs (in-
stead of POMDPs). While the complexity setting is not ex-
actly the same, this suggests that not much is lost with PKBPs
as long as verification is concerned (while a lot may be gained
in compactness). Note that membership in PSPACE could not
be taken for granted, given that we use factored representa-
tions and that observations introduce correlations.

8 Conclusion
We have introduced probabilistic knowledge-based programs
(PKBPs), as a new representation of policies for partially ob-
servable planning problems. PKBPs are more succinct than
standard, reactive policies, and are more intuitive to read and
to express by an expert. Moreover, verifying PKBPs at a fi-
nite horizon remains in PSPACE. On the other hand, PKBPs
require reasoning at execution time and hence cannot be re-
active, so they constitute a representation complementary to
standard ones. Which one to use should be chosen depending
on the domain at hand.

There are numerous issues for further research, such as
(obviously) the computation of solution PKBPs for a given
planning problem, as well as using advanced algorithms
on logics for representing probabilistic beliefs [Fagin et
al., 1990], and investigating heuristic and approximate ap-
proaches to POMDPs using PKBPs.

10Requiring that H is given in unary form means that O(H) is
considered to be polynomial in the size of the input.

11There are essentially |O|H histories to consider, hence if each
w(~h) can be represented in polynomial space p(|Π|), their sum can
be represented in space log(|O|H × 2|p(Π)|) ∈ O(H log(|O|) +
|p(|Π|)), which is indeed polynomial in H and the size of Π.

1599

References
[Araya-López et al., 2010] M. Araya-López, O. Buffet, V. Thomas,

and F. Charpillet. A POMDP extension with belief-dependent
rewards. In NIPS, pages 64–72, 2010.

[Aucher, 2007] G. Aucher. Interpreting an action from what we
perceive and what we expect. J. of Applied Non-classical Logics,
17(1):9–38, 2007.

[Bacchus et al., 1999] F. Bacchus, J. Halpern, and H. Levesque.
Reasoning about noisy sensors and effectors in the situation cal-
culus. AIJ, 111(1-2):171–208, 1999.

[Bäckström and Jonsson, 2011] C. Bäckström and P. Jonsson. Lim-
its for compact representations of plans. In ICAPS, pages 146–
153, 2011.

[Belle and Lakemeyer, 2011] V. Belle and G. Lakemeyer. A seman-
tical account of progression in the presence of uncertainty. In
AAAI, 2011.

[Belle and Levesque, 2013] V. Belle and H. Levesque. Reasoning
about probabilities in dynamic systems using goal regression. In
UAI, 2013.

[Bonet et al., 2010] B. Bonet, H. Palacios, and H. Geffner. Auto-
matic derivation of finite-state machines for behavior control. In
AAAI, 2010.

[Boutilier and Poole, 1996] C. Boutilier and D. Poole. Computing
optimal policies for partially observable decision processes using
compact representations. In AAAI, pages 1168–1175, 1996.

[Boutilier et al., 1999] C. Boutilier, T.. Dean, and S. Hanks.
Decision-theoretic planning: Structural assumptions and compu-
tational leverage. JAIR, 11:1–94, 1999.

[Claßen and Lakemeyer, 2006] J. Claßen and G. Lakemeyer. Foun-
dations for knowledge-based programs using ES. In KR, pages
318–328, 2006.

[Darwiche, 2009] A. Darwiche. Modeling and Reasoning with
Bayesian Networks. Cambridge Univ. Press, 2009.

[Dean and Kanazawa, 1989] T. Dean and K. Kanazawa. A Model
for Reasoning about Persistence and Causation. Computational
Intelligence, 5:142–150, 1989.

[Fagin et al., 1990] R. Fagin, J. Halpern, and N. Megiddo. A logic
for reasoning about probabilities. Information and Computation,
87(1/2):78–128, 1990.

[Fagin et al., 1995] R. Fagin, J. Halpern, Y. Moses, and M. Vardi.
Reasoning about knowledge. MIT Press, 1995.

[Gabaldon and Lakemeyer, 2007] A. Gabaldon and G. Lakemeyer.
ESP: A logic of only-knowing, noisy sensing and acting. In
AAAI, pages 974–979, 2007.

[Hajishirzi and Amir, 2010] H. Hajishirzi and E. Amir. Reasoning
about deterministic actions with probabilistic prior and applica-
tion to stochastic filtering. In KR, 2010.

[Hamilton et al., 2014] W. Hamilton, M. Milani Fard, and
J. Pineau. Efficient learning and planning with compressed
predictive states. JMLR, 15:3395–3439, 2014.

[Hansen and Feng, 2000] E. Hansen and Z. Feng. Dynamic pro-
gramming for POMDPs using a factored state representation. In
AIPS, pages 130–139, 2000.

[Herzig et al., 2003] A. Herzig, J. Lang, and P. Marquis. Action
representation and partially observable planning using epistemic
logic. In IJCAI, pages 1067–1072, 2003.

[Iocchi et al., 2009] L. Iocchi, T. Lukasiewicz, D. Nardi, and
R. Rosati. Reasoning about actions with sensing under quali-
tative and probabilistic uncertainty. ACM Trans. Comput. Log.,
10(1), 2009.

[Kushmerick et al., 1995] N. Kushmerick, S. Hanks, and D. Weld.
An algorithm for probabilistic planning. AIJ, 76:239–286, 1995.

[Lang and Zanuttini, 2012] J. Lang and B. Zanuttini. Knowledge-
based programs as plans – the complexity of plan verification. In
ECAI, pages 504–509, 2012.

[Lang and Zanuttini, 2013] J. Lang and B. Zanuttini. Knowledge-
based programs as plans: Succinctness and the complexity of
plan existence. In TARK, 2013.

[Laverny and Lang, 2005] N. Laverny and J. Lang. From
knowledge-based programs to graded belief-based programs, part
II: off-line reasoning. In IJCAI, pages 497–502, 2005.

[Madani et al., 2003] O. Madani, S. Hanks, and A. Condon. On
the undecidability of probabilistic planning and related stochastic
optimization problems. AIJ, pages 5–34, 2003.

[Mundhenk et al., 2000] M. Mundhenk, J. Goldsmith, C. Lusena,
and E. Allender. Complexity of finite-horizon Markov decision
process problems. J. ACM, 47(4):681–720, 2000.

[Poupart, 2005] P. Poupart. Exploiting Structure to efficiently solve
large scale partially observable Markov decision processes. PhD
thesis, University of Toronto, 2005.

[Reiter, 2001] R. Reiter. Knowledge in action: logical foundations
for specifying and implementing dynamical systems. MIT press,
2001.

[Rens et al., 2014] G. Rens, T. Meyer, and G. Lakemeyer. SLAP:
specification logic of actions with probability. J. Applied Logic,
12(2):128–150, 2014.

[Sabbadin et al., 2007] R. Sabbadin, J. Lang, and N. Ravoanjana-
hary. Purely epistemic Markov decision processes. In AAAI,
2007.

[Sanner and Boutilier, 2009] S. Sanner and C. Boutilier. Practical
solution techniques for first-order MDPs. AIJ, 173(5):748–788,
2009.

[Shani et al., 2008] G. Shani, R. Brafman, S. Shimony, and
P. Poupart. Efficient ADD operations for point-based algorithms.
In ICAPS, pages 330–337, 2008.

[Shani et al., 2013] G. Shani, J. Pineau, and R. Kaplow. A survey
of point-based POMDP solvers. Autonomous Agents and Multi-
Agent Systems, 27(1):1–51, 2013.

[Sim et al., 2008] H. Sim, K.-E. Kim, J. Kim, D.-S. Chang, and M.-
W. Koo. Symbolic heuristic search value iteration for factored
POMDPs. In AAAI, pages 1088–1093, 2008.

[Son and Baral, 2001] T. C. Son and C. Baral. Formalizing sensing
actions: A transition function based approach. AIJ, 125(1-2):19–
91, 2001.

[van Eijck and Schwarzentruber, 2014] J. van Eijck and
F. Schwarzentruber. Epistemic probability logic simplified.
In Advances in Modal Logic, pages 158–177, 2014.

[Wang and Schmolze, 2005] C. Wang and J. Schmolze. Planning
with POMDPs using a compact, logic-based representation. In
ICTAI, pages 523–530, 2005.

[Younes et al., 2005] H. Younes, M. Littman, D. Weissman, and
J. Asmuth. The first probabilistic track of the international plan-
ning competition. JAIR, 24:851–887, 2005.

1600

