
Agent-Based Natural Domain Modeling for Cooperative

Continuous Optimization

Tom Jorquera, Jean-Pierre Georgé, Marie-Pierre Gleizes, Christine Régis

To cite this version:

Tom Jorquera, Jean-Pierre Georgé, Marie-Pierre Gleizes, Christine Régis. Agent-Based Natural
Domain Modeling for Cooperative Continuous Optimization. 5th International Conference on
Computational Collective Intelligence Technologies and Applications (ICCCI 2013), Sep 2013,
Craiova, Romania. pp. 1-10, 2013. <hal-01202521>

HAL Id: hal-01202521

https://hal.archives-ouvertes.fr/hal-01202521

Submitted on 23 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01202521

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12858

The contribution was presented at ICCCI 2013 :

 http://software.ucv.ro/ICCCI2013/

To cite this version : Jorquera, Tom and Georgé, Jean-Pierre and Gleizes, Marie-
Pierre and Régis, Christine A Self-Adaptive Multi-Agent Algorithm for Interactive
Continuous Optimization / Agent-Based Natural Domain Modeling for Cooperative
Continuous Optimization. (2013) In: 5th International Conference on Computational
Collective Intelligence Technologies and Applications (ICCCI 2013), 11 September
2013 - 13 September 2013 (Craiova, Romania).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Agent-Based Natural Domain Modeling for

Cooperative Continuous Optimization

Tom Jorquera, Jean-Pierre Georgé, Marie-Pierre Gleizes, and Christine Régis

IRIT (Institut de Recherche en Informatique de Toulouse)
Paul Sabatier University, Toulouse, France

{jorquera,george,gleizes,regis}@irit.fr

Abstract. While multi-agent systems have been successfully applied to
combinatorial optimization, very few works concern their applicability to
continuous optimization problems. In this article we propose a framework
for modeling a continuous optimization problems as multi-agent system,
which we call NDMO, by representing the problem as an agent graph, and
complemented with optimization solving behaviors. Some of the results
we obtained with our implementation on several continuous optimization
problems are presented.

Keywords: Multi-Agent System, Continuous Optimization, Problem
Modeling

1 Introduction

One of the major areas in which Multi-Agent Systems (MAS) have been suc-
cessfully applied is the domain of combinatorial optimization. Using DCOP (Dis-
tributed Constraint Optimization Problem), numerous agent-based algorithms
have been proposed in the field. However, the applicability of MAS to another
optimization domain, continuous optimization, is still mostly unexplored, despite
the existence of whole categories of complex optimization problems. Continuous
optimization presents interesting challenges concerning the scalability of opti-
mization methods. The various topologies of optimization problems couple has
lead to highly specialized methods targeting specific problems types. However,
the industrial development created a need for solving highly complex optimiza-
tion problems involving heterogeneous models and complex interdependencies.
Some methods adapted to handle such types of problems have been proposed,
but are often unwieldy and lack flexibility. Arguably, the scalability and adapt-
ability properties of MAS indicate their strong potential for the field.

We present in this article a way of modeling a continuous optimization
problem as an agent graph, akin to how DCOP is used to model combinato-
rial optimization problems, named Natural Domain Modeling for Optimization
(NDMO). We propose to complement this graph representation with specific
agent behaviors tailored for continuous optimization.

In the next part (section 2), we begin by introducing complex continuous
optimization methods and the existing works on MAS for optimization. We

then present in section 3 a new generic agent-based modeling for continuous
optimization problems. To complement this modeling, we present in section 4
specific agent behaviors for continuous optimization as well as some results, and
finish by perspectives about future improvements based on the current work.

2 Context

2.1 Complex Continuous Optimization Methods

Continuous optimization problems are optimization problems where the shape
of the search space is defined by one (or several) continuous function. Contrary
to combinatorial optimization, where the difficulty lies in the combinatorial ex-
plosion of possible states, continuous optimization is more concerned with the
efficient exploration of search spaces of heterogeneous (and sometimes exotic)
topology. However, a common point between these two fields is the fact that the
problems encountered can vary from very simple ones to problems of tremendous
complexity.

A good example of complex continuous optimization problems are multi-
disciplinary optimization (MDO) problems. Sobieszczansky-Sobieski and Haftka
proposed to define MDO as methodology for the design of systems in which strong

interaction between disciplines motivates designers to simultaneously manipulate

variables in several disciplines [1]. Designers have to simultaneously consider dif-
ferent disciplines (such as, for example, aerodynamics, geometrics and acoustics
for an aircraft engine) which are often not only complex by themselves but also
strongly interdependent, causing the classical optimization approaches to strug-
gle handling them.

Currently, MDO problems require specific strategies to be solved, and a major
part of the research in the field has been focusing on providing these strategies.
For example Multi-Disciplinary Feasible Design, considered to be one of the
simplest methods [2], consists only in a central optimizer taking charge of all
the variables and constraints sequentially, but gives poor results when the com-
plexity of the problem increases [3]. Other approaches, such as Collaborative
Optimization [4] or Bi-Level Integrated System Synthesis [5], are said bi-level.
They introduce different levels of optimization [6], usually a local level where
each discipline is optimized separately and a global level where the optimizer
tries to reduce discrepancies among the disciplines. However these methods can
be difficult to apply since they often require to heavily reformulate the prob-
lem [7],and can have large computation time [3].

One of the major shortcomings of these methods is that they require a lot of
work and expertise from the engineer to be put in practice. To actually perform
the optimization process, one must have a deep understanding of the models
involved as well as of the chosen method itself. This is mandatory to be able
to correctly reformulate the models according to the formalism the method re-
quires, as well as to work out what is the most efficient way to organize the
models in regard to the method. Since by definition MDO involves disciplines of

different natures, it is often impossible for one person to possess all the required
knowledge, needing the involvement of a whole team in the process. Moreover,
answering all these requirements implies a lot of work before even starting the
optimization process.
It should be clear from these shortcomings that MDO methods are not universal
optimization methods but specialized tools to be applied in specific contexts.
However the nature of the problems they aim to solve is in this regard not differ-
ent from the one of ”smaller” continuous optimization problems. Their usefulness
lies in the fact that classical optimization techniques are not able to handle the
increased complexity incurred by the combinatorial explosion of the interactions
between the disciplines and their subproblems. This statement brings to light the
fact that one of the fundamental difficulties of continuous optimization problems
concerns the scalability of the approaches, which in itself is a strong indication
of the potential of MAS techniques for this domain.

2.2 Multi-Agent Systems for Optimization

While multi-agent systems have already been used to solve optimization prob-
lems, the existing works concern their application to Combinatorial Optimiza-
tion, mainly in the context of the DCOP framework [8].

In DCOP, the agents try to minimize a global cost function (or alternatively,
maximize a global satisfaction) which depends on the states of a set of design
variables. Each design variable of the optimization problem is associated to an
agent. The agent controls the value which is assigned to the variable. The global
cost function is divided into a set of local cost functions, representing the cost
associated with the conjoint state of two specific variables. An agent is only
aware of the cost functions which involve the variable it is responsible for.

While some works successfully used DCOP in the context of continuous op-
timization [9], it is not adequate to handle the type of problems we propose to
solve here. DCOP problems are supposed to be easily decomposable into several
cost functions, a property which is not true for continuous optimization prob-
lem in general. Moreover the cost values associated to the variables states are
supposed to be known. This major assumption does not stand for MDO prob-
lem, where the complexity of the models and their interdependencies cause this
information to be unavailable in most cases.

DCOP is a very successful framework since it provides a common ground for
researchers to propose and to compare new agent-based algorithms for combina-
torial optimization. No equivalent has been proposed for continuous optimization
using MAS, an obvious impediment to the development of the field.

3 Problem Modeling with NDMO

In answer to the previous shortcomings, we propose a generic approach called
Natural Domain Modeling for Optimization (NDMO) that relies on a natural or
intrinsic description of the problem (i.e. close to the reality being described).

«abstract»

Value

«abstract»

Criterion

Objective Constraint

0..n 1..n

use

Variable Output

Model

0..n1..n

use

1..1

1..n

produce

Fig. 1: Class diagram of continuous optimization problems.

In order to identify the elements of a generic continuous optimization model,
we worked with experts from several related fields: numerical optimization, me-
chanics as well as aeronautics and engine engineers. As a result, we identified
five classes of interacting entities: models, design variables, output variables, con-
straints and objectives. These entities and their relations are represented by the
diagram in Fig. 1.

To illustrate how an optimization problem is modeled, we use a simplified
Turbofan optimization problem, provided by one of our industrial partners. In
Fig. 2, the analytic expression of this optimization problem is given,with the
corresponding relations graph. The design variables of this problem are pi c and
bpr, which indicate respectively the compressor pressure ratio and the bypass
ratio of the engine. The turbofan model produces three outputs: Tdm0, s and
fr, representing respectively the thrust, fuel consumption and thrust ratio of
the engine. In this problem we try to maximize the thrust and minimizing the
fuel consumption while satisfying some feasibility constraints.

Let’s now see in more details the roles of each of these fives entities: model,
variable, output, constraint and objective.

Models. In the most general case, a model can be seen as a black box which
takes input values (which can be design variables or output variables) and pro-
duces output values. A model represents a technical knowledge of the relations
between different parts of a problem and can be as simple as a linear function
or a much more complex algorithm requiring several hours of calculation. Often
some properties are known (or can be deduced) about a model and specialized
optimization techniques can exploit this information. In our Turbofan example,
a model entity is the Turbofan function which calculate the three outputs using
the values of bpr and pi c.

Design Variables. These are the inputs of the problem and can be adjusted
freely (within their defining boundaries). The goal is to find the set(s) of values
for these variables that maximize the objectives while satisfying the constraints.
Design variables are used by models to calculate their outputs and by constraints
and objectives to calculate their current value. A design variable can be shared

(Tdm0, s, fr) = Turbofan(pi c, bpr)
max Tdm0

min s
subject to
s ≤ 155
fr ≥ 4

(a) mathematical formulation.

�������

��������
	�
��

��

�� � �

�

��� �
���
�
��

	
��

� �� ���

������ ���������

�������
	�
��

������� �� !����������

(b) corresponding entities graph.

Fig. 2: Turbofan problem.

among several models, objectives and constraints. Keeping with our example,
bpr and pi c are the two design variables of our optimization problem.

Output Variables. These values are produced by a model, and consequently
cannot be changed freely. As for the design variables, the output variables are
used by models to calculate their outputs and by constraints and objectives
to calculate their current value. In our example, Tdm0, s and fr are output

variables produced by the Turbofan model.

Constraints. These are strict restrictions on some parts of the problem, repre-
sented as functional constraints defined by equalities and/or inequalities. These
can be the expression of a physical constraint, or a requirement concerning
the problem. Regarding the Turbofan, the two constraints are s <= 155 and
fr >= 4.

Objectives. The goals to be optimized. In the general case, different objectives
are often contradictory. The two objectives of the Turbofan problems are to
maximize Tdm0 and to minimize s.

An interesting and important point is that models, constraints as well as
objectives involve computation. Often the most heavyweight calculus is encap-
sulated inside a model and the calculi concerning criteria tend to be simple
equations, but this is neither an absolute requirement nor a discriminating char-
acteristic.

The NDMO modeling aims to provide the most complete and natural rep-
resentation of the problem. This modeling preserves the relations between the

domain entities and is completely independent of the solving process. Since we
now have a way to model optimization problems as graphs of entities, we now
present the multi-agent algorithm proposed to solve them.

4 Agent Behavior and Experiments

In complement to this modeling of the problem, we propose for NDMO a multi-
agent system and associated solving behaviors where each domain entity is asso-
ciated with an agent. Thus, the multi-agent system is the representation of the
problem to be solved with the links and communication between agents reflecting
its natural structure. It is worth underlining the fact that this transformation
(i.e. the agentification) can be completely automatic as it is fully derived from
the analytical expression of the problem.

The solving process relies on two continuous simultaneous flow of informa-
tion: downward (from design variables to criteria) with new values computed
by models, and upward (from criteria to design variables) with change-value
requests that drive the movements of the design variable in the search space. In-
tuitively, by emitting requests, criteria agents are ”pulling” the different design
variables, through the intermediary agents, in multiple direction in order to be
satisfied. The system thus converges to an equilibrium between all these ”forces”,
especially in the case of multiple contradicting criteria, which corresponds to the
optimum to be found.

A summary of the basic principles of each agent type is given in Algorithm
1.

The functioning of the system can be divided into two main tasks: problem
simulation and collective solving.
Problem simulation can be seen as the equivalent of the analysis of classical
MDO method. The agents behavioral rules related to problem simulation con-
cern the propagation of the values of design variables to the models and criteria
based on the value. For this part, the agents will exchange inform messages
which contains calculated values. The ”message flow” is top-down: the initial
inform messages will be emitted by the variable agents and will be propagated
down to the criteria agents.
Collective solving concerns the optimization of the problem. The agent behav-
ioral rules related to collective solving are about satisfying the constraints while
improving the objectives. For this part, the agents will exchange request messages
which contains desired variations of values. The ”message flow” is bottom-up:
the initial request messages will be emitted by the criteria agents and propagated
up to variable agents.

These basic mechanisms are in themselves not sufficient to handle some of
the specificities of complex continuous optimization problems such as MDO. We
introduced several specific mechanisms used in conjunction with the previously
presented behaviors. The mechanisms have been designed to handle specific chal-
lenges related to complex continuous optimization, such as conflicting objectives,
cycle handling, hidden dependencies etc. The exact working of these mechanisms

Algorithm 1 Agents Behaviors

procedure Model Agent Behavior
loop

analyze received messages
if received new information messages then

recalculate outputs
inform depending agents

end if

if received new requests then
use optimizer to find adequate inputs
propagate requests to input agents

end if

end loop

end procedure

procedure Variable Agent Behavior
loop

analyze received messages
if received new requests then

select most important
adjust value
inform depending agents

end if

end loop

end procedure

procedure Output Agent Behavior
loop

analyze received messages
if received new information messages then

update its value
inform depending agents

end if

if received new requests then
select most important
transmit selected request to model agent

end if

end loop

end procedure

procedure Constraint/ Objective Agent Behavior
loop

analyze received messages
if received new information messages then

update its value
use optimizer to find adequate inputs
send new requests to variable/output agents

end if

end loop

end procedure

is of little interest here and will not be detailed. The interested reader can refers
to [10] for more detailed explanations.

In order to validate our prototype, we experimented on several test cases.
We present here synthetic results on three of them: Alexandrov, Turbofan and
Viennet1 test cases.

a1 = (l1 − a2)/2
a2 = (l2 − a1)/2

min 1

2
(a2

1 + 10a2

2 + 5(s− 3)2)
subject to
s+ l1 ≤ 1

−s+ l2 ≤ −2

(a) mathematical formulation.

�

�� ��

������� ��	
�

��

������� ��	
�

��

������� ���������

���
������

�������	�	

(b) corresponding agent graph.

Fig. 3: Alexandrov problem

The Alexandrov test case is inspired from an academic example taken in
literature by Alexandrov and al [6]. This simple example presents some of the
commons characteristics of MDO problems, such as interdependent disciplines
and multiple criteria. In the original article, the example was used to illustrate
some properties of Collaborative Optimization, which we presented earlier, in
terms of reformulation. While the paper only gave the structure of the problem,
we adapted it with meaningful values and equations. The mathematical formu-
lation of the problem and the corresponding agent graph can be seen in Fig. 3.
Interestingly, the NDMO representation is quite similar to the one adopted by
the original authors of the problem.
The Viennet1 test case is part of a series of problems proposed in [11] to evaluate
multi-criteria optimization techniques. This problem involves three objectives.

In each test case, the MAS is executed 100 times with random starting points
for each design variable and consistently converges towards the best (or one of
the best) solution. As the performances of the system are not central to the
topic at hand, we will only present some summarized results illustrating the
convergence of the system. Once more, the interested reader can refer to [10] for
a more detailed analysis of the performances.

These results are presented on Table 1. The first group of values represents
the number of evaluations which was needed for respectively 10%, 50% and 90%
of the instances to find the best solution. The second group represent the average

distance to the best solution (trucated at 10−3) among all instances at different
times (0% being the start 100% being the end of the solving in the worst case).

Table 1: Summary of experiments results for the tests cases
nb. evaluations to best average distance to best
10% 50% 90% 0% (start) 30% 60% 100% (end)

Alexandrov 29 52 79 13109.169 803.126 5.685 0.059

Turbofan o1 16 38 50 67.654 14.971 0.743 0.313
Turbofan o2 10 23 35 23.876 1.853 0.143 0.101

viennet o1 4 17 31 8.514 0.300 0.025 0.021
viennet o2 4 15 30 9.412 0.320 0.02 0.02
viennet o3 5 14 27 10.622 0.063 4.40E-004 1.68E-004

5 Conclusion

We have presented a model of numerical optimization problem and an agent-
based optimization algorithm. While classical methods often have difficulties to
handle complex continuous problems and require the use of specific methodolo-
gies, we distribute the problem among the agents in order to keep a low local
complexity.

One of our concerns has been to facilitate the work of the engineer and allow
him to express his problem in a way which is the most natural to him, instead
of restricting him to a specific formulation. By analyzing the different concepts
involved in the expression of a continuous problem, we extracted several atomic
roles upon which we based the relations between the entities of our system.
With these low-level entities, we are able to propose a way to represent con-
tinuous optimization problems as agents graphs ,which we name NDMO. This
representation can reconstruct a great variety of problems while mirroring their
original formulation. We applied NDMO by proposing a MAS capable of solving
continuous optimization problem.

In the same way DCOP is a framework used by several MAS techniques to
translate combinatorial optimization problems, this agent graph representation
is not restricted to the specific MAS we presented but can be used as a base for
multiple different techniques. With this work we achieved a proof-of-concept for
the mostly unexplored field of continuous optimization using MAS.

We continue to work on the validation of our approach, as well as of the
performances of our MAS, and already obtained interesting preliminary results
concerning the extension of this modeling for uncertainty propagation, as well
as optimization of scaled-up industrial test cases.

Acknowledgements. This work has been supported by French National Re-
search Agency (ANR) through COSINUS program with ANR-09-COSI-005 ref-
erence.

References

1. Sobieszczanski-Sobieski, J., Haftka, R.T.: Multidisciplinary aerospace design opti-
mization: Survey of recent developments. Structural Optimization 14 (1996) 1–23

2. Cramer, E., Dennis Jr, J., Frank, P., Lewis, R., Shubin, G.: Problem formulation
for multidisciplinary optimization. SIAM Journal on Optimization 4(4) (1994)
754–776

3. Yi, S., Shin, J., Park, G.: Comparison of mdo methods with mathematical exam-
ples. Structural and Multidisciplinary Optimization 35(5) (2008) 391–402

4. Kroo, I.M., Altus, S., Braun, R.D., Gage, P.J., Sobieski, I.P.: Multidisciplinary
optimization methods for aircraft preliminary design. AIAA 5th Symposium on
Multidisciplinary Analysis and Optimization (September 1994) AIAA 1994-4325.

5. Sobieszczanski-Sobieski, J., Agte, J., Sandusky, R.: Bi-Level Integrated System
Synthesis. NASA Langley Technical Report Server (1998)

6. Alexandrov, N., Lewis, R.: Analytical and computational aspects of collaborative
optimization for multidisciplinary design. AIAA journal 40(2) (2002) 301–309

7. Perez, R., Liu, H., Behdinan, K.: Evaluation of multidisciplinary optimization
approaches for aircraft conceptual design. In: AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Albany, NY. (2004)

8. Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: An asynchronous complete
method for distributed constraint optimization. In: International Conference on
Autonomous Agents: Proceedings of the second international joint conference on
Autonomous agents and multiagent systems. Volume 14. (2003) 161–168

9. Stranders, R., Farinelli, A., Rogers, A., Jennings, N.: Decentralised coordination of
continuously valued control parameters using the max-sum algorithm. In: Proceed-
ings of The 8th International Conference on Autonomous Agents and Multiagent
Systems-Volume 1, International Foundation for Autonomous Agents and Multia-
gent Systems (2009) 601–608

10. Jorquera, T., Georgé, J.P., Gleizes, M.P., Couellan, N., Noel, V., Régis, C.: A nat-
ural formalism and a multi-agent algorithm for integrative multidisciplinary design
optimization (to be published). AAMAS 2013 workshop: International Workshop
on Optimisation in Multi-Agent Systems (may 2013)

11. Viennet, R., Fonteix, C., Marc, I.: Multicriteria optimization using a genetic algo-
rithm for determining a pareto set. International Journal of Systems Science 27(2)
(1996) 255–260

