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Abstract

Several interpretations can be given to the third
truth value in three-valued logics. Here, we con-
sider the case when it refers to the epistemic no-
tion of contradictory, or both true and false at the
same time. We study several paraconsistent three-
valued logics that carry this concern and show that
they can be translated into a fragment of a sim-
ple epistemic logic where modalities can only ap-
pear in front of literals. This logic is unusual in
the sense that necessity modalities distribute over
disjunctions instead of conjunctions. An equivalent
translation into a fragment of KD modal logic can
be obtained by exchanging the role of possibility and
necessity modalities, highlighting the perfect sym-
metry between three-valued logics of contradiction
and three-valued logics of incomplete information.

1. Introduction

The program of paraconsistent logics after
Jaśkowski [14] is to find a logic which can manage
contradictions and satisfies three requirements:

1. when applied to the contradictory sys-
tems would not always entail their
over-completeness1;

2. would be rich enough to enable prac-
tical inference;

3. would have an intuitive justification.

Nowadays, a consensual definition of what a para-
consistent logic is does not seem to exist, but a nec-
essary condition is that the logical consequence re-
lation is not explosive, that is, there can exist con-
tradictions in the logic without implying that ev-
erything is true (point 1 above) - see introduction
of [20]. Several proposals to define such a logic have
been studied in literature, following different lines:
discursive logic, preservationism, adaptive logics,
relevant logics, many valued logics [20]. Here, we
are interested in the case of many valued logics,
most of which are based on a three-valued calculus.
In three-valued calculi, the intuition (point three
above) which is attached to the third value is not
always discussed and when it is, it often assumes
an epistemic flavor, which can vary from unknown,
contradictory to borderline [10].

1A system is over-complete if any formula is a theorem.

Jaśkowski himself tried to use a third value to ex-
press paraconsistency, but he seems not to have a
clear definition of what a contradiction stands for.
He refers to theories with conflicting hypotheses,
each one able to only partially explain the result
of some experiment, or to facts that are not pre-
dictable a-priori.

D’Ottaviano and Da Costa [12] cite, as a justifi-
cation for their three-valued logic J3, the existence
of contradictory theories in empirical disciplines for
which we are (at the moment) not able to say which
theory is the correct one, which sounds more like the
idea of incomplete knowledge. In [2], the third value
represents antinomies, that is, propositions that are
at the same time true and false. The connectives
used are Kleene ones and the same logic has been
studied by Priest [17]. Although the meaning is
not expressed clearly, it seems that the third value
stands for both true and false, as in Belnap set-ups
[6].

In the following, we try to provide a unified view
of three-valued logics of paraconsistency, adopt-
ing this last interpretation of the third value: it
represents the case of two sources (or two groups
of sources) of information which assign a differ-
ent (Boolean) truth value to a proposition (this is
akin to the society semantics of Carnielli and Lima-
Marques [16]). We do it in the same style as we
recently did for three-valued logics of incomplete in-
formation [10], namely by translating many known
three-valued paraconsistent formalisms into a very
simple fragment of modal logic. This translation
highlights the epistemic meaning of sentences in
paraconsistent logics and facilitates a comparison
among them.

A simple epistemic logic MELCC 2 is introduced
to deal with the interpretation of the third truth
value in terms of conflict between sources. It is a
two-layered logic: an objective level topped by an
epistemic one, with no nested modal operators. In
particular, it is different from the single-layer S5 dis-
cursive logic introduced by Jaśkowksi [14]. The pa-
per lays bare the symmetry existing between three-
valued paraconsistent logics and three-valued logics
of incomplete information. It is shown that indeed
MELCC possesses the properties of a KD modal
logic provided that we exchange the possibility and

2It stands for Minimal Epistemic Logic with Completeness
and Conflict



necessity modalities.

2. Conflicting agents, three-valued logics
and modal logic

Let us consider a set of propositional variables
V = {a, b, c, . . . , p, . . . } and a standard proposi-
tional language L built on these symbols with the
Boolean connectives of conjunction (∧), disjunction
(∨), negation (′), and implication (→), plus tau-
tology symbol (⊤). Suppose n logically sophisti-
cated agents (i.e. they can use classical logic) shar-
ing the same propositional language L, and capable
to decide whether any proposition α ∈ L is true or
false. In other words each agent possesses complete
Boolean knowledge. Let Ω be the set of interpre-
tations of L : {ω : V → {0, 1}}. It comes down
to assuming that agent Ai believes that the real
world is wi ∈ Ω. For each formula α ∈ L, agent
i can say whether it is true (vi(α) = Ti) or false
(vi(α) = Fi). Let us consider a modal expression
of the assertions made by the two agents. Let �iα
stand for the agent Ai asserting the truth of α. Due
to the complete knowledge assumption, each �i is
a trivial modality, i.e. �iα ∨�iα

′ is true, so �i and
♦i coincide, since ♦iα := (�i(α

′))′ = �iα. In fact
each modal system coincides with classical logic.

Now, let us consider a three-valued logic L3. We
denote by v(a) the truth value of the variable a,
v(a) ∈ {0, 1, 1

2
}. We consider that these three val-

ues can be interpreted in the light of the joint as-
sertions of both agent:

• v(a) = 1 means that all agents say that a is
true (vi(a) = Ti, ∀i = 1, . . . , n);

• v(a) = 0 means that all agents say that a is
false (vi(a) = Fi, ∀i = 1, . . . , n);

• v(a) = 1
2 means that some agents say a is true,

the other ones say a is false.

This kind of setting was first introduced by Bel-
nap [6] with agents having incomplete knowledge.
It leads to a 4-valued truth-functional logic where
the 4 values include unknown and contradictory. It
also corresponds to the so-called society semantics
[16] where the authors (see also Dubois [13]) indi-
cate that only two agents are needed to render this
meaning of truth-values without any loss of general-
ity. This is what is assumed in the following. Thus,
v(a) = 1 stands for the set {T1, T2}, v(a) = 0 stands
for the set {F1, F2}, and the value of contradiction
1

2
stands for either set of truth values {T1, F2} or

{T2, F1}3. This is pictured in Table 1.
Now, let us define the collective modal symbols:

• �p stands for “at least one source asserts p”:
�p := �1p ∨ �2p.

• If, as usual, we define ♦p := (�(p′))′, we have
that ♦p = ♦1p ∧ ♦2p = �1p ∧ �2p here (since

3This convention is in accordance with Belnap logic where
1

2
is named BOTH and contrary to the approach in [13] where

contradiction is represented by the emptyset.

T2 F2

T1 1
1

2

F1
1

2
0

Table 1: Epistemic values from two complete
sources

each agent has complete knowledge), that is
“both sources assert p”.

We can then encode the assignment of L3 truth-
values to a (Boolean) propositional variable a by
means of the global modalities � and ♦. To this
end, on top of the standard propositional language
L, we build another propositional language L�

which encapsulates L. It is another propositional
language based on a set of variables V� = {�α :
α ∈ L}, where the modality operator � expresses
necessity, as well as the classical connectives.

Let S ⊆ {0, 1, 1

2
} be a subset of L3 truth-values.

We denote by T (v(a) ∈ S) the modal translation of
the set {v : v(a) ∈ S} corresponding to the state-
ment v(a) ∈ S by an agent. Due to the proposed
understanding of the three truth-values, the trans-
lation of the assignment of a subset of ternary truth-

values to an atom is a function T : 2({0,1,
1

2
}V ) → L�

from subsets of ternary valuations to the modal lan-
guage L� such that:

T (v(a) ≥ 1

2
) = �a T (v(a) ≤ 1

2
) = �a′

T (v(a) = 1) = ♦a T (v(a) = 0) = ♦a′

T (v(a) = 1

2
) = �a ∧ �a′ T (v(a) ∈ ∅) = ♦⊥

T (v(a) ∈ {0, 1}) = ♦a ∨ ♦b T (v(a) ≥ 0) = �⊤

So, 1

2
means that one source asserts a and the other

a′. Moreover, since in paraconsistent logics desig-
nated values are usually 1

2
and 1, we see that �a

corresponds to asserting a in a paraconsistent logic.
Note that this is NOT a syntactic translation from
one logic to another: it provides a tool for express-
ing the semantics of one logic into the syntax of
another one.

3. The target modal system

We denote by α, β, . . . the propositional formulae of
L, and φ, ψ, . . . the modal formulae of V�. A logic
that uses the language L� defined above, called
MELC [13] has been proposed as a minimal epis-
temic logic with conflicts. It uses the propositional
logic axioms, and some modal ones:

1. φ → (ψ → φ)

2. (ψ → (φ → µ)) → ((ψ → φ) → (ψ → µ))

3. (φ′ → ψ′) → (ψ → φ)

(RE) �α ≡ �β if and only if ⊢ α ≡ β

(RM) �α → �β if ⊢ α → β in PL



(3-C) �α∧�β ∧�γ → �(α∧β)∨�(α∧γ)∨�(β ∧γ)

(N) �⊤;

(POS) ♦⊤

The only rule is modus ponens: If ψ and ψ → φ then
φ. This is a fragment of the non-regular logic EMN
[8] (except for axiom 3-C). Semantics are usually
expressed in terms of neighborhood semantics, but
they can be related to the multisource environment
suggested above. Concerning semantics, denote the
set of classical models of α by [α] = {ω : ω |= α}.
Each source has its own epistemic state Ei ⊆ Ω. A
(meta)-interpretation of L� is a pair (E1, E2), with
E1, E2 Ó= ∅. We define satisfiability as:

• (E1, E2) |= �α if E1 ⊆ [α] or E2 ⊆ [α];
• (E1, E2) |= φ ∧ ψ if (E1, E2) |= φ and

(E1, E2) |= ψ;
• (E1, E2) |= φ′ if (E1, E2) |= φ is false.

In this setting, axiom (3-C) expresses the fact that
there are exactly two sources. �α can be ex-
pressed as the disjunction �1α∨�2α corresponding
to KD modalities [13]. Semantic inference of a for-
mula from a modal base B is defined in the usual
way: B |= φ if and only if ∀E1, E2 Ó= ∅ ⊆ Ω, if
(E1, E2) |= ψ, ∀ψ ∈ B, then (E1, E2) |= φ.

The logic we want to consider here is an exten-
sion of MELC that takes into account the fact that
we can have contradictions and that the knowledge
of each agent is complete. As a consequence, the
modalities constructed in the previous section have
distinguished properties. Due to the fact that both
sources are complete, there is the following (un-
usual) property, for general Boolean propositions.

Proposition 3.1. For any proposition, �α∨�β is
equivalent to �(α ∨ β).

Proof. This is easily derived from the definition of
� and the fact that we suppose the knowledge com-
plete, that is for each agent Ai it holds for �i.

However, we do not have that �α ∧ �β is equiv-
alent to �(α ∧ β). Likewise, the following property
holds : �α∨�α′ is a tautology. From it, we can also
derive ♦α → �α, which represents the idea that ♦

stands for an agreement of the two sources, both
asserting that α is true, whereas � just expresses
the idea that one of the two is true, but not neces-
sarily both. Finally the MELCC system is MELC
plus deviant modal axioms:

(N∨) ⊢ �(α ∨ β) → (�α ∨ �β);

(Dt) ⊢ ♦α → �α.

The semantics of this system is the same as MELC,
except that now, (E1, E2) = ({w1}, {w2}) in the
above definitions of satisfiability and semantic infer-
ence. This is enforced by axiom (N∨). Moreover,
(N) becomes a redundant axiom. At this point, we

are equipped with sufficient tools to make sense of
three-valued paraconsistent logics inside the multi-
source epistemic logic MELCC, via a translation of
their connectives and axioms. We start with the
simplest one, that is Priest logic.

4. Translation of Priest logic

Priest [17] attaches to the third truth value the
meaning of a paradox; it refers to sentences that
are “both true and false” His intention is to “iso-
late paradoxes and prevent them from contaminat-
ing everything else”.

To define the basic connectives, his reasoning im-
plicitly assumes that a sentence can have the follow-
ing values {0}, {0, 1}, {1} and then he extends the
classical Boolean truth tables to set-valued argu-
ments (see also [15, 13]). So if A is true and B para-
doxical, he gets {1}∧{0, 1} = {1∧0, 1∧1} = {0, 1},
i.e. paradoxical. Hence, Kleene strong truth tables
are recovered, that is the minimum ⊓, the maxi-
mum ⊔, and the involutive negation ¬, the material
implication a →P b := ¬a ⊔ b of a Kleene lattice.
However, in his system both 1 and 1

2
are designated.

In fact, the notion of semantic inference is defined
as follows:

Definition 1. If B is a set of propositions in Kleene
logic, then B �P α if and only if there does not exist
an interpretation v such that v(α) = 0 and for all
β ∈ B, v(β) ∈ {1, 1

2
}.

In other words, if v(β) ≥ 1

2
, ∀β ∈ B then v(α) ≥

1

2
. As a result, all Boolean tautologies are still valid,

but modus ponens does not hold any longer. A
similar intuition of the third value is given by Asenjo
[2] to deal with antinomies and he also comes up
with Kleene truth tables.

If the knowledge base B in Priest logic contains
an atom a, it means that v(a) ≥ 1

2
, that is, we write

�a in MELCC. If B contains the conjunction of two
atoms a ⊓ b, this is translated as:

T (v(a ⊓ b) ≥ 1

2
) = �a ∧ �b

and similarly for the disjunction. Note that T (v(a⊓
b) = 1) = ♦a∧♦b. Translations of formulae declared
as true in Priest Logic are defined recursively.

T (v(α ⊓ β) ≥ i) = T (v(α) ≥ i) ∧ T (v(β) ≥ i), i ≥ 1

2

T (v(α ⊔ β) ≥ i) = T (v(α) ≥ i) ∨ T (v(β) ≥ i), i ≥ 1

2

T (v(¬α) ≥ 1

2
) = T (v(α) ≤ 1

2
)

Note that T (v(¬α) ≥ 1

2
) = (T (v(α) = 1))′. Im-

plication statements can be translated by means of
other connectives or directly:

T (v(α →P β) ≥ 1

2
) = T (v(α) = 1) → T (v(β) ≥ 1

2
).

Applied to atoms a and b, implication statement
a →P b ∈ B translates into:

T (v(a →P b) ≥ 1

2
) = ♦a → �b = �a′ ∨ �b.



Note that in contrast T (v(α →P β) = 1) =
T (v(α) ≥ 1

2
) → T (v(β) = 1), so that T (v(a →P

b) = 1) = �a → ♦b = ♦a′ ∨ ♦b. Note that all sub-
sets of ({0, 1, 1

2
}V) can be expressed as {v : v(α ∈

S)} for some subset S of truth-values and some
Priest logic formula α. So, by extending function
T to all formulas built with connectives of Priest
logic, we make it a mapping.

Let α be a formula in conjunctive normal form
(without simplifying the terms of the form a ⊓ ¬a).
Now, since designated truth values are 1 and 1

2
,

its translation into MELCC consists in the same
classical conjunction of disjunctions where we put a
modality � in front of all literals. So, if we replace
all literals l by �l, any propositional tautology in
this form remains a tautology in MELCC. Clearly,
the fragment of MELCC we can capture is just given
by the conjunction and disjunction of literals pre-
ceded by a �. That is: �a|�a′|ψ ∨ φ|ψ ∧ φ. In
Priest logic, we do not have modus ponens. This
is captured in MELCC, noticing that from �a and
♦a → �b it does not follow �b. Similarly, α⊓¬α ⊢ β
does not hold, and this is expressed by the fact that
�a ∧ �a′ is not a contradiction in MELCC.

Given a formula α in Priest logic and a model
for its translation into MELCC, we are now able to
define a three-valued interpretation for α.

Proposition 4.1. Let α be a formula in Priest
logic. For any model (w1, w2) of T (v(α) ≥ 1

2
) the

interpretation v(w1,w2) defined below is a model of
α: ∀a,

v(w1,w2)(a) =































1 (w1, w2) � ♦a

(that is, w1 |= a and w2 |= a)

0 (w1, w2) � ♦¬a

(that is, w1 |= a and w2 |= a)
1

2
otherwise

The other way around does not hold, strictly
speaking. Indeed, given a pair (w1, w2) of Boolean
evaluations, we are able to define the correspond-
ing three-valued valuations. On the contrary, if we
have a three-valued valuation, we are not able to
distinguish between the two sources that generated
it. However, this is not a real issue : in MELCC,
the two models (w1, w2) and (w2, w1) satisfy the
same set of formulas and are indeed indistinguish-
able; in fact MELCC models are to be viewed, like
two-element models of MEL, as doubletons of in-
terpretations (i.e. sets, not pairs). In fact, another
translation is possible into MEL [10]. It is exactly
like the above translation, exchanging � and ♦. The
two translations are then isomorphic.

5. Translation of A and J3 logics

This is the logic proposed by Asenjo and Tamburino
in [3]. Connectives are min, max, involutive nega-

tion and Jaskowksi implication4: the designated

→J 0
1

2
1

0 1 1 1
1

2
0

1

2
1

1 0
1

2
1

Table 2: Jaśkowski implication

values are 1 and 1

2
. The only difference with respect

to Priest is the introduction of the new implication
→J , whose translation into MELCC is as follows.

T (v(α →J β) = 1) = T (v(α) ≥ 1

2
) → T (v(β) = 1)

T (v(α →J β) ≥ 1

2
) = T (v(α) ≥ 1

2
) → T (v(β) ≥ 1

2
)

If α = a, β = b are atoms, we obtain respec-
tively �a → ♦b and �a → �b. Clearly, in this
logic modus ponens does hold. Indeed, it corre-
sponds in MELCC to state that from T (v(α) ≥
1

2
) → T (v(β) = 1) and T (v(α) ≥ 1

2
), it follows

T (v(β) = 1). On the other hand, not all classi-
cal tautologies are valid. But if we consider the
fragment of A without ¬ we have that all classical
tautologies are still valid in A (this has also been
stated in [12] for the equivalent logic J3, see below).

We note that the negation ∼α := α →J 0

is an intuitionistic one and we have the equal-
ity α →J β = ∼α ∨ β. At the atomic level,
the translation into MELCC of the negation ∼a is
T (v(∼a) = 1) = T (v(∼a) ≥ 1

2
) = (♦a)′ = �a′. So

the fragment in MELCC which corresponds to the
A logic is �a|�a′|φ′|φ∧ψ|φ∨ψ, that is the language
of MELCC where modalities are in front of literals
only. Proposition 4.1 can be extended to Jaśkowski
implication.

In [12] the authors introduce the logic J3 to an-
swer points 1-3 of Jaśkowski. The primitive con-
nectives are max, the involutive negation and the
unary strengthening operator ∇ such that ∇0 = 0,
∇ 1

2 = ∇1 = 1. Among the derived operations,
it is worth to mention Jaśkowski implication as
a →J b := ¬∇a ∨ b and Łukasiewicz implication
as a →L b := (∇¬a ∨ b) ∧ (∇b ∨ ¬a). If we ex-
plicitly express ∇ in MELCC we have that for a
given atom a, ∇a is translated into �a. Further, it
can be easily seen that ∇ is also definable in A as
∇a = ¬(a →J 0), so A and J3 have the same con-
nectives and all the results proved for A also hold
for J3.

Finally, in [3] an axiomatic system is proposed for
the logic A, that takes into account the distinction
between antinomic vs. non-antinomic statements,
distinction at the basis of the logic A. This differ-
ence looks hardly expressible in MELCC, in partic-
ular the axiom asserting Bi⊓¬Bi with Bi an atomic
antinomy (that is both Bi and ¬Bi are provable).

4Note that Jaśkowski traces back this implication to Słu-
pecki



6. Translation of RM3 (Sobociński) logic

The same connectives that define A, also define the
relevance logic RM→J

3 [4] (→J is denoted by ⊃ in
the original paper), which is also equivalent to RM3
[1, 7], that is to Sobociński [19, 4] logic through the
following mutual definitions:

p →S q := (p →J q) ∧ (¬q →J ¬p)

p →J q := q ∨ (p →S q)

Thus, even if Sobociński and RM3 were not con-
ceived to deal with paraconsistency, they can play
a role in this framework: in [4], it is claimed that
RM→J

3 “might be considered an optimal paracon-
sistent logic”.

As a consequence of all these equivalences, all
above translation results also apply to RM3 and
Sobociński logic. In particular, Sobociński impli-
cation whose truth table is on Table 3 can be trans-
lated as

T (v(α →S β) = 1) = [T (v(α) ≥ 1

2
) → T (v(β) = 1)]

T (v(α →S β) ≥ 1

2
) = [T (v(α) ≥ 1

2
) → T (v(β) ≥ 1

2
)]

∧ [T (v(α) = 1) → T (v(β) = 1)]

→S 0
1

2
1

0 1 1 1
1

2
0

1

2
1

1 0 0 1

∧S 0
1

2
1

0 0 0 0
1

2
0

1

2
1

1 0 1 1

∨S 0
1

2
1

0 0 0 1
1

2
0

1

2
1

1 1 1 1

Table 3: Sobociński implication, conjunction and
disjunction

For atoms, it respectively yields �a → ♦b and
(�a → �b) ∧ (♦a → ♦b).

Sobociński conjunction and disjunction can be
translated into MEL from Table 3 or by means of
the definition α∧S β = ¬(α →S ¬β) and de Morgan
properties.

On atoms they read as

T (v(a ∧S b) = 1) = (�a ∧ ♦b) ∨ (♦a ∧ �b)

T (v(a ∧S b) ≥ 1

2
) = �a ∧ �b

T (v(a ∨S b) = 1) = ♦a ∨ ♦b

T (v(a ∨S b) ≥ 1

2
) = ♦a ∨ ♦b ∨ (�a ∧ �a′ ∧ �b ∧ �b′)

As far as the axiom system is con-
cerned and due to the equivalence be-
tween the RM3 and Sobociński logics, we
just consider the axiom system of RM3 [7].

(R1) α →S α;
(R2) (α ⊓ (α →S β)) →S β;
(R3) α ⊓ β →S α;
(R4) α ⊓ β →S β;
(R5) ((α →S β) ⊓ (α →S γ)) →S (α →S (β ⊓ γ));
(R6) (α →S ¬α) →S ¬α;
(R7) (α →S ¬β) → (β →S ¬α);
(R8) (¬¬α →S α);
(R9) (¬α ⊓ β) → (α → β);
(R10) ¬α →S (α ⊔ (α → β));
Inference rules are:

1. α and α →S β implies β

2. α and β implies α ⊓ β

3. α →S β and γ →S δ implies (β →S γ) →S

(α →S δ)

Lemma 1. If α is a formula in RM3 logic, then
T (v(α) ≥ 1

2
) ∨ T (v(α) ≤ 1

2
) is a tautology in

MELCC.

Proof. The proof (omitted here) is by induction on
the structure of α.

Proposition 6.1. If A is an axiom in RM3 logic,
then T (v(A) ≥ 1

2
) is a tautology in MELCC.

Proof. Axioms (R1), (R3), (R4) and (R8) are easily
proved.
Axiom (R2). It is the conjunction of two tautolo-
gies. The first one follows from the fact that (R2)
holds in Boolean logic and the second one by Lemma
1.
Axiom (R5) and (R7) are the conjunctions of two
tautologies that easily follows by the fact that (R5)
is a Boolean theorem.
Axiom (R6) is the conjunction of two tautologies.
The first one is just lemma 1 and the second one
the Boolean version of axiom (R6).
Axiom (R9) is the conjunction of two tautologies.
The second one is just axiom R9 in Boolean logic.
The first half is:
(T (v(¬α) ≥ 1

2
)∧T (v(β) ≥ 1

2
)) → [(T (v(α) ≥ 1

2
) →

T (v(β) ≥ 1

2
)) ∧ (T (v(α) = 1) → T (v(β) = 1)],

that is:
T (v(α) = 1) ∨ (T (v(β) ≥ 1

2
))′ ∨ [(T (v(α) ≥ 1

2
)′ ∨

T (v(β) ≥ 1

2
)) ∧ (T (v(α) = 1)′ ∨ T (v(β) = 1)].

Then by distributivity, we can simplify as
T (v(α) = 1) ∨ (T (v(β) ≥ 1

2
))′ ∨ (T (v(α) = 1)′ ∨

T (v(β) = 1),
which is a Boolean tautology.
Axiom (10) is translated into the following two tau-
tologies:
T (v(α) = 1) ∨ (T (v(α) ≥ 1

2
) ∨ [((T (v(α) ≥ 1

2
)′ ∨

T (v(β ≥ 1

2
)) ∧ (T (v(α) = 1)′ ∨ T (v(β) = 1))]

and
T (v(α) ≥ 1

2
) ∨ T (v(α) = 1) ∨ (T (v(α) ≥ 1

2
)′ ∨

T (v(β) = 1).

Inference rules can be checked to hold in the
translation into MELCC.



7. Translation of Sette logic

Sette [18] introduced a paraconsistent logic with the
aim to give a logic for “inconsistent (but not abso-
lutely inconsistent) formal systems”. Its connectives
are on Table 4. In this logic, the intuitionistic nega-

→Se 0
1

2
1

0 1 1 1
1

2
0 1 1

1 0 1 1

x − x
0 1
1

2
1

1 0

∧Se 0
1

2
1

0 0 0 0
1

2
0 1 1

1 0 1 1

∨Se 0
1

2
1

0 0 1 1
1

2
1 1 1

1 1 1 1

Table 4: Sette logic connectives

tion is definable as ∼ a := a →Se 0. The peculiarity
of this logic is that conjunction and disjunction can
be expressed from implication and negation as fol-
lows (they are not min and max):

x ∧Se y := (((x →Se x) →Se x) →Se

− ((y →Se y) →Se y)) →Se −(x →Se −y)

x ∨Se y := (x →Se − − x) →Se (−x →Se y)

The meaning of the third value is not discussed, but
the connectives (see Table 4), except for negation,
suggest no difference between 1 and 1

2
. The trans-

lation of Sette connectives in MELCC is thus the
same in the two cases ≥ 1

2
and = 1:

T (v(α →Se β) ≥ 1

2
) = T (v(α ≥ 1

2
) → T (v(β ≥ 1

2
)

T (v(α ∧Se β) ≥ 1

2
) = T (v(α ≥ 1

2
) ∧ T (v(β ≥ 1

2
)

T (v(α ∨Se β) ≥ 1

2
) = T (v(α ≥ 1

2
) ∨ T (v(β ≥ 1

2
)

For atoms we have T (v(−a) ≥ 1

2
) = �a′ and

T (v(a →Se b) ≥ 1

2
) = �a → �b; T (v(a ∧Se b) ≥

1

2
) = �a ∧ �b; T (v(a ∨Se b) ≥ 1

2
) = �a ∨ �b. Note

that this is the same translation as conjunctions and
disjunctions of Priest logic (the min and the max)
and Jaśkowksi implication.

An axiom system together with modus ponens
is given such that the logic (named P1) is complete
and “cannot be strengthened (i.e., there is no propo-
sitional calculus between P1 and P0, where P0 is the
classical propositional calculus)”. In other words, if
we add to P1 any tautology which holds in P0 but
not in P1 we get P0. The axioms are:

(S1) α →Se (β →Se α)

(S2) (α →Se (β →Se γ)) →Se ((α →Se β) →Se

(α →Se γ))

(S3) (−α →Se −β) →Se ((−α →Se − − β) →Se α)

(S4) −(α →Se − − α) →Se α

(S5) (α →Se β) →Se − − (α →Se β)

and the rule of inference is modus ponens. We note
that modus ponens holds also in the translation.
Indeed, since we consider both 1 and 1

2
as desig-

nated values, it corresponds to: “from T (v(α) ≥ 1

2
)

and T (v(α) ≥ 1

2
) → T (v(β) ≥ 1

2
) it follows

T (v(β) ≥ 1

2
)”, which clearly holds in MELCC.

Proposition 7.1. If A is an axiom in Sette logic,
then T (v(A) ≥ 1

2
) is a tautology in MELCC.

Proof. Lemma 1 applies to Sette Logic. Axioms
(S1) and (S2) are Boolean axioms, thus they easily
follow. For axiom (S3), we use recursive transla-
tion rules and come down to a formula of the form
T (v(α) ≤ 1

2
)∨T (v(α) ≥ 1

2
), which is a tautology by

lemma 1. Axioms (S4, S5) are proved in a similar
manner.

The fragment of MELCC capturing Sette logic is
thus: �a|�a′|ψ′|ψ ∧ φ|ψ ∨ φ, the same as for J3 and
Sobociński’s logics.

Sette logic connectives are definable in
Łukasiewicz three-valued logic as follows
[11]: α ∧Se β := ¬(α ∧ β) →L (α ∧ β)
and α →Se β := J0(β) →L J0(α), where
J0(α) := ¬α ∧Se ¬(α ∧Se ¬α) and ∧ denotes the
minimum; J0 returns 1 if and only if α = 0. The
converse does not hold since with Sette connectives
is not possible to obtain the value 1

2 .
So, even if the three 3-valued logics J3, RM3 and

Sette are not equivalent, they share the same para-
consistent behaviour: they can be expressed in the
same MELCC fragment where the only language re-
striction is the presence of modalities only in front
of literals, and conjunction, disjunction and impli-
cation have the same translation.

8. The symmetry between paraconsistent
and incomplete information logics

Note that Proposition 1 says that the necessity
modality � behaves like a possibility modality ♦

in the sense of usual regular modal logics. Namely,
exchanging the notation � and ♦, the modal axioms
of MELCC become

1. φ → (ψ → φ)

2. (ψ → (φ → µ)) → ((ψ → φ) → (ψ → µ))

3. (φ′ → ψ′) → (ψ → φ)

(RE) �α ≡ �β if and only if ⊢ α ≡ β

(RM) ♦α → ♦β if ⊢ α → β in PL

(3-D) ♦α ∧♦β ∧♦γ → ♦(α ∧ β) ∨♦(α ∧ γ) ∨♦(β ∧ γ)

(N) �⊤;

(POS) ♦⊤

(Π∨) ♦(α ∨ β) → (♦α ∨ ♦β)

(D) �α → ♦α



Unsurprisingly, these axioms (but for (3-D)) are
typical of the KD systems, and (POS) is redun-
dant, this time. These axioms actually characterize
the fragment of KD, called MEL (Meta- or Minimal
Epistemic Logic) [5]. In fact, the syntax of MELCC
is exactly the same as the one of MEL. The MEL
system (with Modus Ponens rule) has been proved
sound and complete with respect to the following
satisfiability relation, where epistemic states (non-
empty sets E ⊆ Ω) and semantic inference of a for-
mula from a modal base B:

• E |= �α if E ⊆ [α];
• E |= φ ∧ ψ if E |= φ and E |= ψ;
• E |= φ′ if E |= φ is false.
• B |= φ if and only if ∀E ⊆ Ω, if E |= ψ, ∀ψ ∈

B, E |= φ.

MEL is also a syntactic rendering of Boolean pos-
sibility theory. Namely, an epistemic state E in-
duces two Boolean set functions N and Π on 2Ω de-
fined by N(A) = 1 if E ⊆ A and 0 otherwise (this
is the necessity measure expressing the � modality
here) and Π(A) = 1 if E ∩ A Ó= ∅ and 0 other-
wise (this is the possibility measure expressing the
♦ modality)

We thus consider a fragment of MELC [13], which
has been conceived for two possible incomplete con-
tradictory sources, and strengthen it in order to
capture completeness of information. It is easy
to check that axiom (3-D) induced from (3-C) en-
forces epistemic states satisfying the MEL axioms
to contain only one or two classical interpretations,
i.e., be of the form E = {w1, w2}. Indeed if E =
{w1, w2, w3} then we may have w1 ∈ A ∩ Bc ∩ Cc,
w2 ∈ Ac ∩ B ∩ Cc, w3 ∈ Ac ∩ Bc ∩ C, so that
Π(A) = Π(B) = Π(C) = 1 but Π(A ∩ B) =
Π(A ∩ C) = Π(B ∩ C) = 0.

However, with only two elements w1, w2, Π(A) =
Π(B) = Π(C) = 1 implies that at least one of Π(A∩
B), Π(A ∩ C), Π(B ∩ C), is 1. Indeed we cannot
choose w1 ∈ A ∩ Bc ∩ Cc, w2 ∈ Ac ∩ B ∩ Cc, since
Π(C) = 1, which enforces either Π(A ∩ C) = 1 or
Π(B ∩ C) = 1.

The total symmetry between systems MELCC
and MEL+(3-D) can thus be viewed at the semantic
level in terms of possibility theory :

�α holds in MELCC
if and only if w1 ∈ [α] or w2 ∈ [α],
if and only if {w1, w2} ∩ [α] Ó= ∅

if and only if ♦α holds in MEL+(3-D).

Interestingly the MEL system is the target language
for the translation of three-valued logics of incom-
plete information where the third truth-value means
unknown (such as Kleene logic) [10]. We denote by
TMEL(v(a) ∈ T ) the translation into MEL of the
statement v(a) ∈ T , with the same understanding

as in Section 3:

TMEL(v(a) = 1) = �a

TMEL(v(a) = 0) = �a′

TMEL(v(a) = 1

2
) = ♦a ∧ ♦a′

TMEL(v(a) ≥ 1

2
) = ♦a

TMEL(v(a) ≤ 1

2
) = ♦a′

which can be compared with the translation into
MELCC : � and ♦ are again exchanged.

Note that the fragment of MEL obtained from
translating truth-assigned formulae in three-valued
logics only uses modal atoms of the form �ℓ, where
ℓ is a literal [10]. As a consequence, this fragment
does not contain axiom 3-D, since the latter puts
♦ in front of conjunctions of atoms, and cannot be
expressed in terms of a propositional formula with
atoms �ℓ. So the presence of axiom 3-D is imma-
terial for the translation from three-valued logics to
MEL. The same remark can be done for MELCC
with respect to axiom 2-C. This is reflected by the
fact that even if the number of agents can be re-
stricted to two, this number is immaterial in the
definitions of the three truth-values.

In summary, it is immaterial to choose the trans-
lation T into MELCC or translation TMEL into
MEL. In other words, TMEL(v(a) ≥ 1

2
) in MEL be-

haves just as T (v(a) ≥ 1

2
) in MELCC in the sense

that we can map sentences in a MELCC base into
sentences in a MEL base by swapping ♦ and �,
while preserving the same deductive closures (up to
the renaming of modalities). More precisely, if K a
set of sentences in L�, denote by σ(K) the set of
sentences obtained by swapping the two modalities
� and ♦. If B = {αi : i = 1, . . . n} is a set of sen-
tences in one of the paraconsistent logics mentioned
above and C denotes the deductive closure, we have
that:

CMEL(TMEL(B)) = σ(CMELCC(T (B))),

where T (B) = {T (αi) : i = 1, . . . n}. So both
MELCC and MEL +(3-D) can be used as the tar-
get language for three-valued paraconsistent logics.
For instance, the fact that Sette logic is reputed to
be a maximal logic less than propositional logic is
retrospectively not mysterious, and can be seen in
the modal translation at the semantic level. One
can claim that MEL + (3-D) is really an epistemic
logic expressing knowledge as little incomplete as
possible, since epistemic states that serve as models
contain not more than two interpretations. Enforc-
ing an additional constraint will reduce such epis-
temic states to standard interpretations and leads a
collapse into propositional logic.

Note that the Belnap [6] truth-values unknown
and contradictory, indeed play symmetric roles in
the bilattice structure (the two three-valued logics
obtained by deleting one of these values coincide
with a Kleene structure).



9. Conclusion

This paper suggests that the two-completely-
informed-agent modal logic MELCC is a natural
framework for reasoning under contradictory infor-
mation in the style of several existing three-valued
paraconsistent logics, when the third truth value
means both true and false. The restriction to
the fragment of MELCC putting modalities only
in front of literals is the price paid by the truth-
functionality of these logics. MELCC thus offers
an encompassing framework, where it is possible to
express the fact that a conjunction is not paracon-
sistent while each of its conjoints is (typically the
case where w1 |= a ∧ b′ and w2 |= a′ ∧ b).

As MELCC may look like a baroque modal sys-
tem (since the roles of the usual modalities are
exchanged), it is important to point out that the
modal framework for the translation is equivalently
the one of MEL [5], that is, logic KD without modal-
ity nesting and purely modal formulas, provided
that � and ♦ are swapped in the translation. It
highlights the fact that three-valued paraconsistent
logics are symmetric to logics of incomplete infor-
mation (for instance Priest and Kleene logics can
be paired). So, the choice of the meaning of the
third truth-value (unknown vs. contradictory) does
not affect the translation into MEL, but for the
choice between � (if 1/2 = unknown) and ♦ (if
1/2 =contradictory) when prefixing the translations
of atoms of the concerned three-valued language. It
seems that given a 3-valued logic, the choice be-
tween the two meanings of the third truth-value
(unknown and contradictory) is a matter of choos-
ing the designated truth values (1 for unknown and
1, 1

2
for contradictory); it remains to be understood

what makes one system of paraconsistent logic more
attractive than another one, and what the transla-
tions into modal logic, where the meaning of impli-
cations is clear, can contribute to this issue.

Clearly, we can deal with both flaws in informa-
tion, incomplete and contradictory knowledge, to-
gether. In this case, we need four values, in the
style of Dunn-Belnap logic, and the next step is to
formally show that the logic MELC introduced in
[13] plays for Belnap logic the same role as MEL
plays for Kleene logic and MELCC for Priest logic.
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