
Energy Consumption Library

Leandro Fontoura Cupertino, Georges Da Costa, Amal Sayah, Jean-Marc

Pierson

To cite this version:

Leandro Fontoura Cupertino, Georges Da Costa, Amal Sayah, Jean-Marc Pierson. Energy
Consumption Library. Energy Efficiency in Large Scale Distributed Systems (EE-LSDS 2013),
Apr 2013, Vienna, Austria. pp. 51-57, 2013. <hal-01220610>

HAL Id: hal-01220610

https://hal.archives-ouvertes.fr/hal-01220610

Submitted on 26 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50531826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01220610

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12710

Official URL: http://dx.doi.org/10.1007/978-3-642-40517-4_4

To cite this version : Fontoura Cupertino, Leandro and Da Costa, Georges and
Sayah, Amal and Pierson, Jean-Marc Energy Consumption Library. (2013) In:
Energy Efficiency in Large Scale Distributed Systems (EE-LSDS 2013), 22
April 2013 - 24 April 2013 (Vienna, Austria)

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Energy Consumption Library

Leandro F. Cupertino(B), Georges Da Costa, Amal Sayah,
and Jean-Marc Pierson

Toulouse Institute of Computer Science Research (IRIT),
University of Toulouse III (Paul Sabatier),

Toulouse, France
{fontoura, dacosta, sayah, pierson}@irit.fr

Abstract. The energy consumption of a computing system depends not
only on its architecture, but also on its usage. This paper describes the
Energy Consumption Library (libec), a modular library of sensors and
power estimators, which do not depend on wattmeter to measure the
power dissipated by a machine and/or the applications that it executes,
etc. In addition, four use cases are used to demonstrate some of the
library’s capabilities.

1 Introduction

The power dissipated on data centers is highly increasing along time. It is known
that the cost of maintaining such servers during two years can be greater than
the cost of the hardware itself. The energy fraction spent by Information and
Communications Technologies (ICT) over the worldwide available electricity is
estimated to double in twelve years [1].

Initially the focus of energy savings on ICT was related to hardware enhance-
ments. However, the power dissipated by a computing system is not static, i.e.,
it depends not only on its hardware specification but also on its usage. Distinct
workloads will waste different amount of energy, which can vary even for the
same application running on the same hardware depending, for instance, on its
communication issues. The understanding of how the energy is used by an appli-
cation can be used in software engineering to deploy libraries, implementations
or compilation parameters to achieve energy-aware software. This knowledge can
also be used on data centers to schedule the resources properly, taking into ac-
count the available electrical energy contracts. Several papers proposes different
power models for estimating the energy consumption of applications according
to its workload [2–5].

In this paper we present the Energy Consumption Library (libec), an open
source library of sensors that can estimate the power dissipated by a machine or
an application even without the presence of a wattmeter on the host machine.
The remainder of this paper is divided as follows. Section 2 describes the library
and its features. In Sect. 3 we present two use cases for this library, a process
monitor and an application profiler. Finally, Sect. 4 draws some conclusions over
the developed library.

2 The Library

The main goal of the Energy Consumption Library, libec, is to provide a modu-
lar library to aid the development of new power estimators. To be easy to extend
and maintain, it was implemented in C++ and is distributed under the GNU
General Public License (GPL) version 3.0 or later. It can be downloaded from [6].
This library contains a set of sensors as input variables in several power models.
The information provided from the sensors comes mainly from Linux kernel’s
API, /sys and /proc file systems. Nevertheless, these sensors can be extended
in order to collect different data coming from any source specific sensors.

The libec sensors can be implemented at two levels: machine and/or ap-
plication. The application level contains all the sensors that can be directly
associated with a process identification (PID), these sensors are mainly related
to software usage, such as performance counters. Meanwhile, the machine level
has not only the aggregated value for all the processes, but also some physical
properties measurements that cannot be associated to a PID, such as the CPU
thermal dissipation. Furthermore, there is a special kind of application level sen-
sor which is application’s power estimators. The next subsections describe each
available sensor.

2.1 Application/Machine Level Sensors

In order to estimate the energy consumed by an application, one need to have
at least one application related variable, i.e., a variable which can retrieve appli-
cation’s information. With that in mind, libec has some PID related sensors.
These sensors can gather not only application, but also machine level informa-
tion.

The most power consuming devices on servers are CPU, memory and disk.
In other words, in order to achieve good power models, one needs to access
information regarding the usage of such devices. On the CPU side, one can
exploit Performance Counters, CPU time, CPU elapsed time and CPU usage.
Furthermore, sensors with memory usage and disk read/write can be used for
memory and disk modeling, respectively. The available application’s sensors for
are implemented as follows.

Performance Counters (PCs) are hardware event counters that use special file
descriptors to count them. They are available through the Linux kernel API [7].
This sensor gives the count hits between two updates, which are defined by the
user. PCs can provide information related to a CPU, such as clock cycles, instruc-
tions, cache references and misses, branch instructions and misses, page faults,
context switches, among others. In order to access the performance counters,
one needs to have administrative privileges.

In order to enable more flexibility, the CPU usage sensor is composed by
two other intermediate sensors: CPU time and Elapsed CPU time. CPU time
provides the total CPU time, i.e., the sum of the system and user times. This
information is retrieved from the /proc/[PID]/stat file. For the machine level
information, this data is available in the /proc/stat file. This sensor can also

provide the total elapsed time between updades, i.e., system, user and idle time.
The returned time value is provided in clock ticks. The Elapsed CPU time sen-
sor uses the information from the CPU time sensor to measure the CPU time
difference between two updates. CPU usage (CPU%) provides the percentage of
CPU utilization of a specific PID or CPU core. For the moment it cannot return
the utilization of both at the same time, i.e., one cannot request the CPU usage
of a PID regarding to one specific core, but only the PID’s CPU usage on the
entire machine or the core’s usage for the machine as a whole. This sensor uses
the elapsed CPU time sensor and divides it by the machine level CPU elapsed
time, i.e., the total elapsed time.

Memory usage (MEM%) provides the percentage of memory used by a given
process. It collects application’s resident set size and divide it by the total avail-
able memory found in the /proc/[PID]/stat and /proc/meminfo files.

Disk Read/Write provides the number of read/written bytes between func-
tion calls available at the /proc/[PID]/io and /sys/block/[dev]/

stat file. This sensor can retrieve information for any file partition that may
come from a flash drives or an IDE hard drive.

2.2 Machine Level Sensors

In addition to the application level sensors, which can also be used to collect
machine related information, libec contains some other sensors that can only
be attributed to the machine as a whole. This section describes the sensors that
are only available at the machine level.

The CPU temperature sensor retrieves its information from the /sys file
system, but its file varies according to the CPU vendor. This information is
triggered at the constructor of the class.

CPU frequency is also available in the /sys file system. In order to read such
file, one needs to install the required packages and have administrative privileges.
To enable all users to use such sensor, even if the information access is slower,
the /proc/cpuinfo file is used according to the user’s privileges.

The Networking traffic information is retrieved from the /proc/net/

dev file. The user must define if the retrieved data will come from the sum
of the networking devices or from just one of them. Besides, user can decide
which type of data will be used (packets/bytes received/transmitted).

Some wattmeters interfaces can also be found on libec. To facilitate the li-
brary’s use not only on server but also on notebooks, there is a meter which
collects PDU power directly and another one which exploits the ACPI informa-
tion to estimate the portable device power. The ACPI Power Meter retrieves
information related to the voltage and current drained by the battery from
the /sys/class/power supply folder and calculates its power consumption. Its
drawback is that it requires ACPI enabled hardware. On the server side, the
PDU’s communication deeply depends on the vendor’s protocol used. Due to
personal uses, we made available meters for some of the Grid5000’s experimen-
tal testbed nodes [8], the RECS system [9] and Energy Optimizers Limited’s
Plogg (an outlet adapter to measure the dissipated power of devices).

2.3 Application’s Power Estimators

The main target of this library is to enable users to develop new power estima-
tors. For the moment, one static and two dynamic model where implemented.
Static models require a priori information, while dynamic ones can auto adapt
to different workloads but must have access to a power meter.

The simplest static model is a CPU proportional model. Our static model,
namely CPU MinMax, is a linear estimator based on the minimum (Pmin) and
maximum (Pmax) power consumption of the machine. This information must be
provided by the user. It uses a CPU usage sensor to weight the power variance
and the number of active processes (|AP |) to normalize the idle power (Pmin)
for each process as stated in Eq. 1. One must be aware that this estimator is
architecture dependent and its performance varies according to the accuracy of
the data provided by the user.

Ppid = (Pmax − Pmin) × CPU%pid +
Pmin

|AP |
(1)

When a wattmeter is available, one can exploit it to achieve more precise
results or to calibrate their models to use in similar machines that do not have
such device. The Inverse CPU power estimator uses the information from the
total energy consumption of a machine and attributes it to the application level
by the use of a CPU usage sensor as stated below

Ppid = Pmachine × CPU%pid. (2)

One well known method for achieving dynamic estimators is the use of linear
regression method to weight some pre-defined sensors and find a model without
user provided information. The Linear Regression Dynamic Power Estimator
can do so by estimating the weights (wi) for any application level sensor (si)
within the follow equation

Pmachine = w0 +
n∑

i=1

wi × si. (3)

3 Use Cases

In this section, we present four use cases for the eclib. The idea here is not
to evaluate the results in a detailed way, but only to show the user, what kind
of information it can produce using libec. The first use case shows how to
implement your own sensor for it to be compatible with the other tools developed
with libec. The second illustrates an easy way to monitor the top consuming
processes running on the machine through the ectop tool. The third one is how
to profile the energy spend by an application with Valgreen [10]. Finally the
importance of a workload adaptative model is illustrated by changing the load
of a machine and monitoring different types of power estimators. All of these
use cases are available within the ectools package [6].

3.1 Extending Sensors

New machine and application sensors can be easily implemented by extending
the Sensor and SensorPID classes, respectively. To do so, the user must at least
overload the update and updatePid methods, if specific data structures are used,
it may be necessary to overload the getValue and getValuePid methods as well.

3.2 Power Monitoring Tool

The Energy Consumption Monitoring Tool (ectop) application was conceived to
provide an easy way to monitor power estimators and compare their accuracy in
real time. It is a command line interface in which the user can keep track of the
top consuming processes. It also allows the user to add/remove application level
sensors and power estimators. To add/remove a sensor from the interface, one
simply needs to instantiate the desired sensor class and add it to the monitor
though the addSensor method.

Figure 1 shows an example of ectop with three sensors (CPU and memory
usage and disk I/O) and one power estimator (min-max CPU proportional,
PE MMC). The ectop monitor shows a sum bar for each sensor’s column, which
gives an idea of its system wide values. For the presented scenario the sum of the
power estimations is bigger than the value given in the power field. The power
field is filled with the ACPI power estimator. This difference occurs because of
the quality of the power estimator used. As stated earlier, eclib is a library to aid
the development of new estimators and, for the moment, the power estimators
present on this library are first attempts to generate broader models.

Fig. 1. ectop command line interface

3.3 Application’s Energy Profiling

For the profiling of applications an application’s energy profiler, namely Val-
green [10] is available. It uses libec to aid the programmer to implement energy
efficient algorithms by sampling the power consumption of a given application
in small time steps. These time steps may be configured and the smaller it goes,
more precise the energy measurement will be.

3.4 Dynamic Power Estimators

Auto-generated models have been widely used on the field of application’s power
estimation. This use case will compare a dynamic model that is updated through
linear regression in regular time intervals with a simple static model. These
dynamic models do not need any input from the user and can be used with
different devices. The idea is to show the importance of a dynamic model when
the workload on the machine changes and our model is not valid anymore.

Figure 2 presents a comparison between a dynamic model, the actual power
measured with a wattmeter and a static model parameterized in another ma-
chine. One can see that as time goes by, the adaptive model gets closer to the
actual dissipated power. Here we show the total power consumption of the ma-
chine, but the same model can also retrieve the power dissipated by each process.

Fig. 2. Comparison between a wattmeter, an adaptive model (CPU ADAPT) and a
static model (CPU MINMAX).

4 Conclusions

The Energy Consumption Library (libec) is a library that can be easily ex-
tended and can be used for several different purposes, such as, to compare power
estimators in real time, profile applications and efficiently allocate resources tak-
ing into account its energy consumption. It is usable on laptops as well as servers
and can estimate the power spent by an application even without the presence
of a wattmeter.

For the time, libec has very few power estimators and it sensors only runs
on Linux platforms. As future work we aim to implement new power estimators,
as well as expand it to android and windows.

Acknowledgments. The results presented in this paper were funded by the European
Commission under contract 288701 through the project CoolEmAll and by the COST
(European Cooperation in Science and Technology) framework under Action IC0804.

References

1. Vereecken, W., Van Heddeghem, W., Colle, D., Pickavet, M., Demeester, P.: Overall
ICT footprint and green communication technologies. In: 4th International Sym-
posium on Communications, Control and Signal Processing (ISCCSP), pp. 1–6
(March 2010)

2. Rivoire, S., Ranganathan, P., Kozyrakis, C.: A comparison of high-level full-system
power models. In: Proceedings of the 2008 Conference on Power Aware Computing
and Systems HotPower’08. USENIX Association, Berkele, p. 3 (2008)

3. DaCosta, G., Hlavacs, H.: Methodology of measurement for energy consumption
of applications. In: 11th IEEE/ACM International Conference on Grid Computing
(GRID), pp. 290–297 (October 2010)

4. Chen, H., Shi, W.: Power measuring and profiling: the state of art. In: Ahmad, I.,
Ranka, S. (eds.) Handbook of Energy-Aware and Green Computing, pp. 649–674.
Chapman and Hall/CRC, Boca Raton (2012)

5. Witkowski, M., Oleksiak, A., Piontek, T., Wglarz, J.: Practical power consumption
estimation for real life HPC applications. Future Gener. Comput. Syst. 29(1),
208–217 (2013)

6. Cupertino, L.F.: Energy consumption tools web-page (www.irit.fr/∼Leandro.
Fontoura-Cupertino/ectools/) (April 2013)

7. Linux man-pages project: perf event open(2) (February 2013)
8. Cappello, F., Caron, E., Dayde, M., Desprez, F., Jegou, Y., Primet, P., Jeannot,

E., Lanteri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Quetier, B., Richard,
O.: Grid’5000: a large scale and highly reconfigurable grid experimental testbed.
In: The 6th IEEE/ACM International Workshop on Grid Computing, p. 8. IEEE
(2005)

9. Christmann: Description for Resource Efficient Computing System (RECS) (2009)
10. Cupertino, L.F., DaCosta, G., Sayah, A., Pierson, J.M.: Valgreen: an application’s

energy profiler. In: Conference on Soft Computing and Soft Engineering (SCSE)
(2013)

