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Abstract. To face the advent of multicore processors and the ever
increasing complexity of hardware architectures, programming models
based on DAG parallelism regained popularity in the high performance,
scientific computing community. Modern runtime systems offer a pro-
gramming interface that complies with this paradigm and powerful en-
gines for scheduling the tasks into which the application is decomposed.
These tools have already proved their effectiveness on a number of dense
linear algebra applications. This paper evaluates the usability of runtime
systems for complex applications, namely, sparse matrix multifrontal fac-
torizations which constitute extremely irregular workloads, with tasks of
different granularities and characteristics and with a variable memory
consumption. Experimental results on real-life matrices show that it is
possible to achieve the same efficiency as with an ad hoc scheduler which
relies on the knowledge of the algorithm. A detailed analysis shows the
performance behavior of the resulting code and possible ways of improv-
ing the effectiveness of runtime systems.

Keywords: sparse matrices, multifrontal method, QR factorization, run-
time systems, heterogeneous architectures.

1 Introduction

The increasing degree of parallelism and complexity of hardware architectures
requires the High Performance Computing (HPC) community to develop more
and more complex software. To achieve high levels of optimization and fully
benefit of their potential, not only the related codes are heavily tuned for the
considered architecture, but the software is furthermore often designed as a single
whole that aims to cope with both the algorithmic and architectural needs. If
this approach may indeed lead to extremely high performance, it is at the price
of a tremendous development effort and a very poor maintainability: At which
price in terms of code refactoring can we extend a shared-memory software to
handle distributed memory machines if it has been assumed some contiguity
properties on data in memory at the algorithmic level? How to extend the same
software to handle accelerators efficiently if the numerical algorithm itself has
been designed to match a regular data distribution?



Alternatively, a modular approach can be employed. First, the numerical al-
gorithm is written at a high level independently of the hardware architecture as
a Directed Acyclic Graph (DAG) of tasks where a vertex represents a task and
an edge represents a dependency between tasks. A second layer is in charge of
the scheduling. Based on the scheduling decisions, a runtime system takes care
of performing the actual execution of the tasks, both ensuring that dependencies
are satisfied at execution time and maintaining data consistency. The fourth layer
consists of the tasks code optimized for the underlying architectures. In most
cases, the last three layers need not be written by the application developer.
Indeed, it usually exists a very competitive state-of-the-art generic scheduling
algorithm (such as work-stealing [4], Minimum Completion Time [19]) matching
the algorithmic needs to efficiently exploit the targeted architecture (otherwise,
a new scheduling algorithm may be designed, which will in turn be likely to
apply to a whole class of algorithms). The runtime system only needs to be ex-
tended once for each new architecture. Finally, most of the time, the high-level
algorithm can be cast in terms of standard operations (such as BLAS in dense
linear algebra) for which vendors provide optimized codes. All in all, with such a
modular approach, only the high-level algorithm has to be specifically designed,
which ensures a high productivity. The maintainability is also guaranteed since
the use of new hardware only requires (in principle) third party effort.

The dense linear algebra community has strongly adopted such a modular ap-
proach over the past few years [10,17,1,8] and delivered subsequent production-
level solvers. However, beyond this community, only few research efforts have
been conducted to handle large scale codes. The main reason is that irreg-
ular problems are complex to design with a clear separation of the software
layers without inducing performance loss. On the other hand, the runtime sys-
tem community has strongly progressed, delivering very reliable and effective
tools [6,7,14,5] up to the point that the OpenMP board is reconsidering its task-
ing model 1 with respect to that approach.

This paper evaluates the usability of runtime systems and of the associated
modular approach in the context of complex applications, namely, the multi-
frontal QR factorization of sparse matrices [3], which yields extremely irregular
workloads, with tasks of different granularities and characteristics as well as
a variable memory consumption. For that, we consider a heavily hand-tuned
state-of-the-art solver for multicore architectures, qr mumps [9], we propose an
alternative modular design of the solver on top of the StarPU runtime system [5]
and we present a thorough performance comparison of both approaches on the
architecture for which the original solver has been tuned. The penalty of delegat-
ing part of the task management system to a third party software, the runtime
system, is to be regarded with respect to the impact of the numerical algorithmic
choices; for that purpose, we also discuss the relative performance with respect
to another state-of-the-art multifrontal QR solver for multicore architectures,
the SuiteSparseQR package [11], referred to as spqr.

1 http://openmp.org/wp/presos/SC12/SC12_State_of_LC.2.pdf



2 Multifrontal QR Factorization

The multifrontal method, introduced by Duff and Reid [12] as a method for
the factorization of sparse, symmetric linear systems, can be adapted to the
QR factorization of a sparse matrix thanks to the fact that the R factor of a
matrix A and the Cholesky factor of the normal equation matrix ATA share the
same structure. As in the Cholesky case, the multifrontal QR factorization is
based on the concept of elimination tree [18]. This graph, which has a number
of nodes that is typically one order of magnitude or more smaller than the
number of columns in the original matrix, expresses the dependencies among the
computational tasks in the factorization: each node i of the tree is associated
with ki unknowns of A and represents an elimination step of the factorization.
The coefficients of the corresponding ki columns and all the other coefficients
affected by their elimination are assembled together into a relatively small dense
matrix, called frontal matrix or, simply, front, associated with the tree node.
The multifrontal QR factorization consists in a tree traversal in a topological
order (i.e., bottom-up) such that, at each node, two operations are performed.
First, the frontal matrix is assembled by stacking the matrix rows associated
with the ki unknowns with uneliminated rows resulting from the processing of
child nodes. Second, the ki unknowns are eliminated through a complete QR

factorization of the front; this produces ki rows of the globalR factor, a number
of Householder reflectors that implicitly represent the global Q factor and a
contribution block formed by the remaining rows and that will be assembled
into the parent front together with the contribution blocks from all the front
siblings. A detailed presentation of the multifrontal QR method, including the
optimization techniques described above, can be found in Amestoy et al. [3].

The classical approach to the parallelization of the multifrontal QR factoriza-
tion [3,11] consists in exploiting separately two distinct sources of concurrency:
tree and node parallelism. The first stems from the fact that fronts in separate
branches are independent and can thus be processed concurrently; the second
from the fact that, if a front is big enough, multiple processes can be used to
assemble and factorize it. The baseline of this work, instead, is the paralleliza-
tion model proposed by Buttari [9] in the qr mumps software which is based on
the approach presented earlier in related work on dense matrix factorizations
by Buttari et al. [10] and extended to the supernodal Cholesky factorization of
sparse matrices by Hogg et al. [15]. In this approach, frontal matrices are par-
titioned into block-columns, which allows one to decompose the workload into
fine-grained tasks. Each task corresponds to the execution of an elementary op-
eration on a block-column or a front; five elementary operations are defined: 1)
the activation of a front consists in computing its structure and allocating the
associated memory, 2) panel factorization of a block-column, 3) update of a
block-column with respect to a previous panel operation, 4) assembly of the
piece of contribution block in a block-column in the parent front and 5) cleanup
of a front which amounts to storing the factors aside and deallocating the mem-
ory allocated in the corresponding activation. These tasks are then arranged into
a DAG where vertices represent tasks and edges the dependencies among them.



Figure 1 shows an example of how a simple elimination tree (on the left) can be
transformed into a DAG (on the right); further details on this transition can be
found in the paper by Buttari [9] from which this example was taken.

Fig. 1. An example of how a simple elimination tree with three nodes is transformed
into a DAG in the qr mumps code. Vertical, dashed lines show the partitioning of fronts
into block-columns. Dashed-boxes group together all the tasks related to a front.

The execution of the tasks is guided by a dynamic scheduler which allows
the tasks to work asynchronously. This approach is capable of achieving higher
performance than the classical one thanks to the fact that tree and node types
of parallelism are replaced by a single source, that is, DAG parallelism. This
provides a higher amount of concurrency since dependencies are defined on a
block-column basis rather than a front basis, which for instance allows one to
start working on a front even if its children are not completely factorized. The ex-
ecution mode, moreover, is more suited to multicore based architectures, as also
shown in other related papers [10,15], because, unlike classical approaches [11,3],
it does not suffer from the presence of heavy synchronizations.

3 The Task-Based StarPU Runtime System

As most modern task-based runtime systems, StarPU aims at performing the
actual execution of the tasks, both ensuring that the DAG dependencies are sat-
isfied at execution time and maintaining data consistency. The particularity of
StarPU is that it was initially designed to write a program independently of the
architecture and thus requires a strict separation of the different software layers:
high-level algorithm, scheduling, runtime system, actual code of the tasks. We
refer to Augonnet et al. [5] for the details and present here a simple example
containing only the features relevant to this work. Assume we aim at executing
the sequence fun1(x, y); fun2( x); fun1(z, w), where funi,i∈{1,2} are functions ap-
plied on w, x, y, z data; the arguments corresponding to data which are modified



Fig. 2. Basic StarPU-like example (left) and associated DAG (right). Arguments cor-
responding to data that are modified by the function are underlined. The id1 → id2 de-
pendency is implicitly inferred with respect to the data hazard on x while the id1 → id3

dependency is declared explicitly.

by a function are underlined. A task is defined as an instance of a function on a
specific set of data. Because of possible data hazards [2] (here on x between fun1

and fun2), a so-called superscalar analysis [2] has to be performed to ensure that
the parallelization does not violate dependencies. While CPUs implement such a
superscalar analysis on chip at the instruction level [2], runtime systems imple-
ment it in a software layer on tasks. A task and the associated input/output data
is declared with the submit task instruction. This is a non blocking call that
allows one to add a task to the current DAG and postpone its actual execution to
the moment when its dependencies are satisfied. Although the API of a runtime
system can be virtually reduced to this single instruction, it may be convenient
in certain cases to explicitly define extra dependencies. For that, identification
tags can be attached to the tasks at submission time and dependencies are de-
clared between the related tags with the declare dependency instruction. For
instance, an extra dependency is defined between the first and the third task in
Figure 2 (left). Figure 2 (right) shows the resulting DAG built (and executed)
by the runtime system. Optionally, a priority value can be assigned to each task
to guide the runtime system in case multiple tasks are ready for execution at a
given moment. In StarPU, the scheduling system is clearly split from the core of
the runtime system (data consistency engine and actual task execution). There-
fore, not only all built-in scheduling policies can be applied to any high-level
algorithm, but new scheduling strategies can be implemented without having to
interfere with low-level technical details of the runtime system.

4 Multifrontal QR Factorization Based on StarPU

The execution of the qr mumps software presented in Section 2 relies on a ad
hoc scheduler which is extremely limited in features, relies on the knowledge of
the algorithm and is, as a result, extremely lightweight. Replacing this sched-
uler with a complex, general purpose runtime system such as StarPU is not an
easy task particularly because of several issues. First the DAG associated to the
factorization of medium to large size matrices can have hundreds of thousands
of tasks. Generating the whole DAG by submitting all the tasks to the runtime
system may overload it and may require too much memory (see, for example,
Lacoste et al. [16]). Second because of contribution blocks, different traversals



of the DAG may result in a different memory consumption. For this reason, the
activation tasks have to be carefully scheduled in order to avoid an excessive
memory consumption. Third StarPU automatically infers dependencies among
tasks depending on data hazards. Because, for what said above, it is not possible
to allocate at once the memory needed for all the fronts in the tree, the whole
DAG cannot be submitted entirely unless all the dependencies are explicitly
provided to StarPU, which is largely unpractical.

The first and the third issue can be overcome by submitting tasks progressively
by means of other tasks. Because activation tasks are responsible for allocating
the memory of the associated frontal matrices, in our StarPU based implemen-
tation they will also be in charge of submitting the tasks for their assembly
and factorization i.e., panel, update, assembly and cleanup; this is shown in Al-
gorithm 1 (right). The dependencies among these tasks can be automatically
inferred by StarPU. Activation tasks, instead, are submitted all at once at the
beginning of the factorization and their mutual dependencies explicitly specified
to StarPU as shown in Algorithm 1 (left); because they are limited in number,
the runtime system will not be overloaded. As a result of this technique, the size
of the DAG that the runtime system has to handle is only proportional to the
number of active fronts.

Algorithm 1. Task management

Main code

(submit activation tasks):

1: for all n in pre-computed post-order do

2: for all children c of node n do

3: declare dependency(idn ← idc)
4: end for

5: /* submit activation of front fn */
6: submit task(activation, fn, prio.=−n, id=idn)
7: end for

Code of the activation task

(submit other tasks):

1: allocate(fn)
2: for all children c of n do

3: for all block-columns b of fc do

4: /* submit assembly of b inside fn */
5: submit task(assembly, b, fn, prio.=3)
6: end for

7: submit task(cleanup, fc, prio.=4)
8: end for

9:
10: for all block-columns p in fn do

11: /* submit panel factorization of p */
12: submit task(panel, p, prio.=2)
13: for all block-columns u > p in fn do

14: /* submit update of u wrt p */
15: submit task(update, p, u, prio.=1)
16: end for

17: end for

The second issue, instead, can be overcome by conveniently assigning differ-
ent priorities to the submitted tasks according to the idea that, as long as there
is enough work to do on already activated fronts, no other front should be ac-
tivated. This will keep the memory consumption under control while ensuring
that there are always enough tasks for all the working threads. More precisely,
each activation task is assigned a negative priority, whose value depends on a
specific tree traversal order which, in our specific case, has been computed as
the post-order which minimizes the memory consumption [13]. Cleanup tasks are
given the highest priority because they are responsible for freeing the memory
allocated by activation tasks. The other tasks, instead, are given a fixed priority



which depends on the number of out-going edges in the associated DAG vertex
in order to maximize the degree of concurrency; therefore, assemblies have higher
priority than panels which, in turn, have higher priority than updates.

For the sake of simplicity, in Algorithm 1 we assumed that assembly opera-
tions read a single block-column b but modify an entire front fn but in reality
only a few block-columns of fn are modified. It has to be noted that all the
assembly operations at step 4 of Algorithm 1 (right) are independent from each
other. In fact, even if multiple assemblies write on the same block-column of fn,
their modifications concern disjoint subsets of rows (not necessarily contiguous).
This property is exploited by the qr mumps scheduler, which was designed on
purpose for this algorithm. StarPU, instead, will assume that these assemblies
are dependent from each other. As a result, not only these operations cannot be
performed in parallel but are forced to be executed in the same order as they
have been submitted. As shown by the experimental results of Section 5, this
may entail a slight performance loss.

5 Experimental Results

The native scheduler of the qr mumps software was replaced with the StarPU
runtime system according to the methods described in Section 4, leading to
a software package that will be referred to as qr starpu. This section aims at
evaluating the effectiveness of the proposed techniques as well as the performance
of the resulting code. For this purpose, the behavior of the qr starpu code will
be compared to the original qr mumps one and also, briefly, to the SuiteSparseQR
package (referred to as spqr) released by Tim Davis in 2009 [11].

Table 1. Matrices test set. The operation count is related to the matrix factorization
with COLAMD column permutation.

# Mat. name m n nz op. count # Mat. name m n nz op. count
(Gflops) (Gflops)

1 tp-6 142752 1014301 11537419 277.7 6 Hirlam 1385270 452200 2713200 2401.3
2 karted 46502 133115 1770349 279.9 7 e18 24617 38602 156466 3399.1
3 EternityII E 11077 262144 1572792 566.7 8 flower 7 4 27693 67593 202218 4261.1
4 degme 185,501 659415 8127528 629.0 9 Rucci1 1977885 109900 7791168 12768.1
5 cat ears 4 4 19020 44448 132888 786.4 10 sls 1748122 62729 6804304 22716.6

11 TF17 38132 48630 586218 38209.3

The experiments were conducted on a set of matrices from the the University
of Florida Sparse Matrix Collection2 presented in Table 1. The operation count is
related to the factorization preceded by a COLAMD fill-reducing matrix permu-
tation. The tests were run on the cache coherent Non Uniform Memory Access
(ccNUMA) AMD Istanbul architecture equipped with 24 cores (6×4) clocked at

2 http://www.cise.ufl.edu/research/sparse/matrices



2.4 GHz. The codes were compiled with the GNU v. 4.4 suite and linked to the
Intel MKL sequential BLAS and LAPACK libraries. All the tests were run with
real data in double precision.

Table 2 shows the factorization times (in seconds) for the matrices of the
test set presented in Table 1 using qr starpu, qr mumps and spqr with different
numbers of cores. Both qr mumps and qr starpu clearly outperform the spqr

Table 2. Factorization times, in seconds, on an AMD Istanbul system for qr starpu

(top), qr mumps (middle) and spqr (bottom). The first row shows the matrix number.

Factorization time (sec.)

Matrix 1 2 3 4 5 6 7 8 9 10 11

th.

qr starpu

1 51.8 49.0 97.5 104.8 137.5 417.6 496.1 733.6 1931.0 3572.0 5417.0
12 6.9 6.2 10.9 12.4 16.2 43.4 50.4 92.4 190.3 439.3 525.8
24 5.7 4.4 8.0 8.5 12.4 28.1 32.9 58.0 122.7 336.3 305.9

speedup 9.1 11.1 12.2 12.3 11.1 14.9 15.1 12.6 15.7 10.6 17.7

qr mumps

1 51.5 48.8 96.9 104.6 137.1 410.8 495.2 729.7 1928.0 3571.0 5420.0
12 5.7 5.2 10.2 10.8 14.2 39.5 46.6 69.4 177.9 392.3 479.0
24 5.0 4.3 7.9 8.0 11.0 26.5 30.5 48.8 120.9 337.0 282.0

speedup 10.3 11.3 12.3 13.1 12.5 15.5 16.2 14.9 15.9 10.6 19.2

spqr

1 52.9 49.9 99.5 111.0 123.3 406.3 538.3 687.5 2081 4276 5361
12 17.0 14.5 26.3 33.0 32.5 85.7 90.5 131.6 468 1644 770
24 17.0 12.3 20.7 26.2 27.8 68.6 74.1 114.2 372 1389 589

speedup 3.1 4.0 4.8 4.2 4.4 5.9 7.3 6.0 5.6 3.1 9.1

package by a factor greater than two thanks to the powerful programming and
execution paradigm based on DAG parallelism. On the other hand, qr starpu is
consistently but only marginally less efficient than qr mumps, by a factor below
10% for eight out of eleven matrices and still only below 20% in the worst case. As
a conclusion, the parallelization scheme impacts performance much more than
the underlying low-level layer, validating the thesis that modular approaches
based on runtime systems can compete with heavily hand-tuned codes.

Memory consumption is an extremely critical point to address when design-
ing a sparse, direct solver. As the building blocks for designing a scheduling
strategy on top of StarPU differ (and are more advanced) than what is avail-
able in qr mumps (which relies on an ad hoc lightweight scheduler) we could not
reproduce exactly the same scheduling strategy. Therefore we decided to give
higher priority to reducing the memory consumption in qr starpu. This can-
not easily be achieved in qr mumps because its native scheduler can only handle
two levels of task priority; as a result, fronts are activated earlier in qr mumps,
almost consistently leading to a higher memory footprint as shown in Table 3.
The table also shows that both qr starpu and qr mumps achieve on average the
same memory consumption as spqr. On three cases out of eleven spqr achieves
a significantly lower memory footprint; experimental results (not reported here)
show that by constraining the scheduling qr starpu and qr mumps can achieve
the same memory consumption as spqr while still being faster.
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Fig. 3. Cumulative time for qr starpu (left) and
qr mumps (right) on 24 cores. The qr starpu timings
are normalized with respect to the qr mumps ones.

Table 3. Memory peak for the
factorization of the test matri-
ces on 24 cores

Mat. Memory peak (MB)
qr starpu qr mumps spqr

1 1108.4 1426.5 1954.8
2 970.7 1016.5 1294.6
3 1315.1 1485.1 1344.5
4 1818.8 2040.2 2618.7
5 3111.2 3114.7 1965.6
6 4418.2 5300.9 7107.5
7 3845.1 3800.9 3535.5
8 10031.0 13608.7 6024.5
9 10070.8 8467.9 11898.7

10 54296.0 53636.8 62021.4
11 26212.7 26232.4 14424.9

In order to explain in more details the performance behavior of qr starpu

and qr mumps, a detailed analysis of the execution times is shown in Figure 3
and Table 4. The figure shows the cumulative times spent by all threads in the
three main phases of the execution of both solvers: the time spent in tasks, the
time for scheduling the tasks (this includes computing the DAG in qr starpu)
and the idle time spent waiting for dependencies to be satisfied; these timings
will be referred to as tc(p), ts(p) and ti(p), respectively, p being the number of
threads (24 in Figure 3). The efficiency e(p) of the parallelization can then be
defined in terms of these cumulative timings as follows:

e(p) =
tc(1)

tc(p) + ts(p) + ti(p)
=

el

tc(1)

tc(p)
·

es

tc(p)

tc(p) + ts(p)
·

ep

tc(p) + ts(p)

tc(p) + ts(p) + ti(p)
.

This expression allows us to decompose the efficiency as the product of three
well identified effects: el which measures the impact of data locality issues on the
efficiency of the tasks, es which measures the cost of the scheduler management
with respect to the actual work done and ep which measures how well the tasks
have been pipelined as a result of the scheduling decisions. Table 4 shows the
corresponding values for our matrix collection.

The cumulative tasks times tc(1) (not reported here for the sake of space)
are nearly identical for the two codes and stay the same when the number of
threads increases as shown in Figure 3 and by the fact that the el values in
Table 4 are comparable. The difference in the overall execution time can be
explained by the higher overhead imposed by the runtime system management
and by the idle time. The overhead imposed by StarPU is higher (inducing a
lower efficiency es) because the dependencies between tasks are inferred based
on the data access modes whereas in qr mumps they are all defined explicitly



based on the knowledge of the algorithm. However, the cost of the scheduling
grows moderately with the number of threads and only accounts for a very small
part of the overall execution time, especially for large matrices. The increased
cumulative idle time, and the resulting lower pipeline ep efficiency are due to
two factors. First, the constraints imposed in qr starpu to limit the memory
consumption yield slightly lower concurrency (and, therefore, more idle time).
Second, as explained in the previous section, assembly operations are serialized
in qr starpu; although these tasks only account for a small portion of the overall
execution time, their serialization may induce delays in the pipeline that lead
some threads to starvation. This second issue could be overcome by specifying
to the runtime system that assembly tasks can be executed in any order and,
possibly, in parallel, but this feature is not currently available in StarPU.

Finally, Table 5 shows the maximum number of tasks that the runtime system
handles during the factorizationversus the total number of tasks executed.Thefirst

Table 4. Efficiency measures el, ep, es and e for qr starpu and qr mumps (e = el.ep.es)

qr starpu
Matrix 1 2 3 4 5 6 7 8 9 10 11

th.

e
l 12 0.816 0.779 0.789 0.820 0.809 0.808 0.865 0.828 0.844 0.822 0.885

24 0.711 0.680 0.669 0.730 0.694 0.666 0.768 0.689 0.733 0.752 0.774

e
p 12 0.860 0.856 0.906 0.877 0.876 0.976 0.918 0.797 0.958 0.802 0.952

24 0.621 0.720 0.769 0.744 0.671 0.923 0.792 0.758 0.870 0.575 0.936

e
s

1 0.984 0.985 0.994 0.987 0.987 0.990 0.996 0.987 0.998 0.999 0.997
12 0.915 0.930 0.970 0.951 0.953 0.974 0.977 0.966 0.991 0.997 0.993
24 0.863 0.887 0.938 0.921 0.931 0.965 0.976 0.944 0.983 0.996 0.989

12 0.642 0.620 0.693 0.684 0.675 0.768 0.776 0.637 0.801 0.657 0.837

e

24 0.381 0.434 0.482 0.500 0.433 0.593 0.594 0.493 0.627 0.431 0.716

qr mumps
Matrix 1 2 3 4 5 6 7 8 9 10 11

th.

e
l 12 0.851 0.844 0.844 0.854 0.832 0.862 0.891 0.850 0.882 0.881 0.921

24 0.711 0.661 0.678 0.716 0.690 0.688 0.780 0.695 0.727 0.737 0.808

e
p 12 0.915 0.915 0.898 0.936 0.922 0.977 0.937 0.985 0.963 0.812 0.992

24 0.658 0.727 0.739 0.771 0.747 0.929 0.829 0.880 0.874 0.578 0.957

e
s

1 0.998 0.996 0.999 0.997 0.998 0.999 0.999 0.999 1.000 1.000 1.000
12 0.949 0.973 0.989 0.985 0.963 0.977 0.995 0.982 0.997 0.998 0.997
24 0.939 0.937 0.973 0.963 0.939 0.982 0.990 0.959 0.996 0.996 0.993

12 0.739 0.751 0.749 0.787 0.738 0.823 0.830 0.822 0.847 0.714 0.910

e

24 0.439 0.450 0.487 0.532 0.484 0.628 0.640 0.586 0.633 0.424 0.768

Table 5. Maximum DAG size handled by StarPU during the factorization of the test
matrices when using 24 threads

DAG size

Matrix 1 2 3 4 5 6 7 8 9 10 11

Max. 1640 1899 2023 2969 5063 4442 6965 12773 6846 11592 32978
Total 8610 10202 6058 14901 26579 49013 21192 136412 41023 33211 187101



being between 3 and 11 times smaller than the second, these data prove that the
techniqueproposed inSection4iseffective inreducingtheruntimesystemoverhead.

6 Conclusions and Future Work

The main objective of this work was to evaluate the usability and effectiveness of
general-purpose runtime systems for parallelizing sparse factorization methods
which constitute a complex and irregular workload. This was assessed imple-
menting a new package software, qr starpu, derived from qr mumps by relying
on the StarPU runtime system instead of the original ad hoc scheduler. Due to
the original features of the considered algorithm, special attention had to be
paid to the submission of tasks in order to contain the memory consumption,
to limit the overhead imposed by the runtime system and to circumvent some
limitations of StarPU (common to many other modern runtime environments).
As a result, we managed to achieve an excellent memory behavior (even bet-
ter than the original qr mumps solver) and a very competitive performance, the
overhead on elapsed time being most of the time below 10% and in any case
never higher than 20%. A detailed analysis has revealed that this difference can
be explained with a higher overhead imposed by the runtime system (which,
however, only accounts for a very small part of the total execution time) and a
more conservative scheduling of tasks to achieve a lower memory consumption.

All in all, the marginal performance loss conjugated with the excellent mem-
ory behavior show that general purpose runtime systems are very well suited
for the parallelization of sparse direct methods. These powerful tools, moreover,
provide several features that are likely to offer better performance and porta-
bility on architectures with higher core counts or equipped with accelerating
devices (such as GPUs or MICs). These features has been evaluated in this
paper and their usage is the object of ongoing research. At the same time, this
document provides guidelines for the improvement of both sparse direct methods
and runtime environments. Because, already on 24 cores, a considerable fraction
of time is spent waiting for dependencies to be satisfied, it may be beneficial to
adopt algorithms by tiles [10] for the processing of fronts in order to improve the
amount of concurrency. Runtime systems, instead, can be improved by adding
features that allow to cope with memory-consuming tasks or that allow to infer
dependencies based on the access to memory that has not been allocated yet.

Acknowledgments.We thank Raymond Namyst and Samuel Thibault for their
support with StarPU as well as Mathieu Faverge and Guillaume Sylvand for their
constructive comments on a preliminary version of this document.
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