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Abstract—Composite structures as in UML are a way to

ease the development of complex applications. Composite classes
contain sub-components that are instantiated, interconnected
and configured along with the composite. Composites may also
contain operations and further attributes. Their deployment on
distributed platforms is not trivial, since their sub-components
might be allocated to different computing nodes. In this case, the
deployment implies a split of the composite. In this paper, we will
motivate why composites need to be allocated to different nodes
in some cases by examining the particular case of interaction
components. We will also discuss several options to achieve the
separation and their advantages and disadvantages including
modeling restrictions for the classes.

I. INTRODUCTION

The basic idea behind any component-oriented approach is

that elementary application pieces (i.e. components) can be

composed together in order to achieve the functionality of

a more complex system. Component-oriented approaches are

usually grounded on a design process including component

development or reuse, assembly and deployment.

In the component assembly step, the system under design is

itself considered as a component. It is hierarchically defined

by an assembly of existing components using an Architec-

ture Description Language (ADL), where the assembly is

concretely specified by connections expressed between sub-

components (parts). In the context of this paper, we focus on

UML as modeling language. Sub-components can themselves

be defined as assemblies, resulting in hierarchical systems of

arbitrary depth.

In the deployment specification step, the target execution

platform for the application is considered. The model of the

execution platform usually consists, at least, of an identifi-

cation of the various execution nodes, as well as available

communication paths between them. The deployment specifi-

cation consists of allocating the components of the application

model to execution nodes of the platform (often indirectly

by allocating them to processes or threads which in turn are

allocated to execution nodes, but we simplify this aspect in

the context of this paper). Allocation is usually done taking

into account non-functional requirements of the system under

design, such as execution time constraints, memory footprint,

communication throughput, etc.

It is sometimes necessary to allocate sub-components to dif-

ferent execution nodes which requires a split of the associated

composite. The next section illustrates this problem by means

of a small example, section III provides multiple options

how to split composites. Section IV examines how existing

component frameworks split composites. An evaluation and

comparison of these options is given in section V. Section VI

concludes this article.

II. MOTIVATING EXAMPLE

In this section, we motivate why some composites need to

be split by examining interaction components.

Consider a very simple application with two components,

A and B as shown in Fig. 1. A has a port q with a required

interface MyIntf, B has a port p with a provided interface

MyIntf.
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Figure 1. Simple example system

Now consider that the communication between A and B

is realized by a component that implements the interaction

on top of the operating system’s socket API. We call such

a component an interaction component (also called connector

in the context of the DDS-for-CCM specification [8]). On a

logical level, this component is a single entity that may contain

configuration data such as a port number, connection policies

or a unique identifier (object reference).

If we want to distribute the application onto two nodes, a

and b are allocated to different nodes. Fig. 2 shows the archi-

tecture of the example system. Please note that the composite

structure diagram distinguishes between a role (corresponding

to a kind of instance) and its type, i.e. the socket is not a

nested classifier within the system but a part of the system

on an instance level. Thus, the first component that is split

is the component representing the system itself. However, the



Figure 2. Simple example system with socket and allocation

system component is a particular case, since there exists only

one instance, it has no behavior of its own and there are no

connections from the system boundary to inner parts (called

delegation connectors in UML). Thus, it is a pure assembly

component and basically used to define the instances of a

system and their interconnections.

Fig. 3 shows the internal structure of the socket connector. It

consists of a client and server stub which both access a socket

run-time. The dashed outline of the latter indicates that this

component is shared: it is not instantiated along with the socket

connector but exists independently. The access to a shared

resource within a composite corresponds to a kind of vertical

connection: the communication of the stubs with the run-time

is a communication between different layers, pre-assembled

within the composite.

Since the communication with the interaction component is

a simple local communication, the interaction component itself

needs to be separated. We can further follow local connections

within the connector to determine the allocation of the internal

parts of the connector. The allocations within the socket

connector can thus be derived from the allocations of the

application components: the client fragment of the connector

needs to be co-located with A and the server fragment with

B. An interesting aspect is the socket run-time that is shared

by client and by server fragment. Whereas it exists only once

from a logical viewpoint, it must be present on each node and

thus be allocated to NodeA and to NodeB. Fig. 4 shows the

resulting split of the socket connector.

Figure 3. Internal structure of socket connector

Since a composite can enable distribution, its split should

be authorized under the condition that this split does not

modify the component’s semantics. This is the case, if a

composite does not have a behavior of its own (only delegation

to parts), nor any configuration data. Since the latter is too

strict, the composite may offer virtual configuration attributes

that are effectively realized by its parts. This means that

the configuration attributes of the composite are linked with

configuration attributes in the parts. The same attribute might

appear in multiple parts.

Figure 4. Splitting a composite during distribution

Now consider a slight extension of the example: B also talks

to A, using the same interface, A has an additional port p, B

an additional port q and both are connected, as shown in Fig.

5.

In this case two parts (connAB and connBA) are typed with

the SocketConnector. But, the allocation of the sub-part is

different for the two instances (parts):

Since a is on NodeA, the clientStub part of the instance

connAB must be on NodeA as well to satisfy the co-

localization constraint caused by the assumption of insepa-

rable simple connections. But with the same argument, the

clientStub of instance connBA must be on NodeB, co-localized

with b. Thus, allocation is instance based and it might happen

that two different instances of a composite have different

allocation specifications for their parts. Thus, the split is not

trivial and we will study multiple options how to split the

composite in case of the example in section III.
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Figure 5. Bidirectional communication

III. DIFFERENT WAYS TO SPLIT COMPOSITES

In the sequel, two different options to split composites are

shown by means of the simple example from section II.



a) Option 1 – keep composites: The first option is to

keep a modified variant of the composite that only contains

the subset of parts which are deployed on a certain node. Fig. 6

shows the result for the uni-directional variant of the example:

SocketConnector’ is the variant of the original SocketConnec-

tor. It contains the subset of parts that are allocated on NodeA,

the clientStub and the socketRuntime. Note that splitting is in

general not trivial, since the split must also consider super-

classes. In our case, the ports of the socket are inherited

by an abstract interaction component (aka connector type).

Depending on how the super-class is organized, the composite

only inherits from a subset of super-classes or super-classes

need to be split as well which complicates the design.

Figure 6. Option 1: keep composite, uni-directional example

Please note that it is not the part which is allocated on a

certain node, but the (sub-) instance that is associated with

a part. If there is a second instance whose sub-instances are

allocated in a different way, a second variant of the composite

with a part subset must be created. This is shown in Fig. 7.

The creation of multiple variants implies a certain overhead

which –although small– may be non-acceptable on resource

constraints systems.

Figure 7. Option 1: keep composite, bi-directional example

b) Option 2 – Flatten composite: A composite compo-

nent may disappear in the deployment model, i.e. it is replaced

by its internal structure. The internal assembly connections of

a composite become assembly connections of the containing

composite (the System class in case of the example). The

delegation connections1 refine the final targets of existing

assembly connections in the containing composite.

Fig. 8 shows the example system for NodeA, in which the

socket composite has been flattened. The two parts in the

system typed by a socket implementation have been replaced

by parts that are directly typed with elements of the socket

implementation. The original composition hierarchy may still

be visible via a suitable naming convention for these new parts

1Assembly connectors are connections between inner parts, delegation
connectors connections from the composite to an inner part.

by prefixing them with the original part name, as done in the

example with the prefixes connAB and connBA.

Whereas the transformation towards a model having only

monolithic components and assembly connections2 is rather

straight forward, the resulting system is different, as internal

connections become visible in the system. This may be an-

noying, if the same composite is instantiated more than once

in the original model, e.g. if we have more than one socket

connector. Also note that the internal structure of an interaction

component might be more complex than the simplified socket

connector used for illustration purposes.

This makes it a bit difficult to link it with the original

model, for instance when debugging is done on the level of

the deployed model, but fixes must be made in the original

design model. Other tasks that are affected by this difference

are for instance trace mechanisms (which must translate a trace

specification for a composite into suitable specifications for the

inner parts) and the replacement of a composite implementa-

tion with another one (e.g. in the context of different system

configurations). The advantage is a slightly reduced footprint

and a resolution for the splitting problem.

Figure 8. Option 2: Flatten composite

c) Option 3 – Flatten composite, require explicit frag-

ment sub-components: The third option is a variation of the

second solution. We also flatten the Socket composite, but

require that the composite must contains exclusively specific

sub-components that we call fragments. A fragment encapsu-

lates the parts of a composite that are allocated on the same

node, conversely each fragment within a composite is typically

allocated on a different node. The latter implies a restriction

that is verified by a validation rule: fragments may not be

connected by UML assembly connectors. The modeling of

the socket connector with fragments is shown in Fig. 9.

The resulting system is shown in Fig. 10. The composite has

been flattened; the fragments have become top-level elements.

The result looks very similar as the solution in Fig. 7, ef-

fectively the explicitly modeled fragments replace the derived

subsets of the composite.

The advantage of this solution is that a possible split is

anticipated and explicitly defined by the developer. Since the

2In UML-like languages, connectors are always owned by a composite, i.e.
a “system” composite must be kept.



Figure 9. Option 3: Socket connector with explicit fragments

Figure 10. Option 3: Flatten split composites, require fragments

composite may not have assembly connectors, no additional

connectors are added to the system class (the composite that

contains the split composite).

IV. BACKGROUND AND RELATED WORK

In the sequel, we sketch existing component frameworks

that have a specific support for interaction components, since

these need to address the composite split in a systematic

way. We then show how these frameworks handle composite

splitting.

A. Component models with dedicated interaction components

(connectors)

The connector element that we have used in the motivating

example is supported in multiple component models. As

already mentioned, it has been standardized within the context

of the OMG (Object Management Group) standard CCM

(CORBA component model [6]. More specifically, it is part

of the DDS for CCM [8] specification, enabling component

interactions via OMG’s Data Distribution Service. Within this

specification, the term GIS (generic interaction support) is

introduced. GIS will be part of the upcoming OMG unified

component model [9]. The underlying connector extension

for CCM has been proposed in [11]. Deployment with CCM

is based on the specification deployment and configuration

(D&C) of distributed component-based applications [7]. This

standard describes a so-called deployment plan, a specification

of instances that refer to component implementations, the

interconnections between these instances, their configuration

and their allocation to a node.

Connectors have also been introduced in the context of

Fractal [2]: a binding is defined as a communication path

between component interfaces. Bindings can be primitive or

composite. A primitive binding (direct connector) binds one

client interface and one server interface in the same address

space. A composite binding is a communication path between

an arbitrary number of distributed component interfaces and

is represented as a set of primitive bindings and binding com-

ponents. Binding components are called Fractal connectors,

and are normal Fractal components, whose role is dedicated

to communication.

In SOFA [3], [1], connectors are used to support transparent

distribution of applications. A connector might support a

transport mechanism such as CORBA or bare sockets. In

this context, they are responsible for marshalling and unmar-

shalling and interfacing with the transport layer. But they can

also be used for synchronization or interception. Connectors

are automatically generated.

The FCM [4] (Flex-eWare component model) component

model has the objective to unify the component models of

Fractal and CCM. It extends the UML composite structures

with dedicated interaction components – as the for instance

the socket connector presented in the example – flexible ports

and container services. This component model is supported

by an add-on to the Papyrus3 UML modeler called Qompass

designer. This add-on was first introduced as eC3M (embedded

Component Container Connector Model/Middleware) [10].

Upon deployment, the tool chain executes a model trans-

formation that replaces annotated UML connectors with the

associated interaction components, as shown in the example.

This transformation includes an instantiation of the interaction

component to the context in which it is used (similar to the

generation of in SOFA). A further model transformation pro-

duces a model per node. During the latter, composites within

FCM models are split. The composites that are concerned

are mainly interaction components and the dedicated system

component.

B. Support for splitting composites in existing frameworks

In this section, we study how existing component frame-

work support splitting, mainly in the context of interaction

components.

In the DDS for CCM specification, DDS interaction compo-

nents are not identified as composites, since there are separate

writer and consumer components. This is useful in case of

DDS in which connections are implicitly created by sharing

the same topic, i.e. there is no single component that represents

an interaction. But the generic interaction support enables

explicit point-to-point interactions for which composites would

be useful. D&C supports two kinds of implementations of

software components:

• Monolithic implementations, where the code of the com-

posite component is compiled as a single block.

• Assembly (composite) implementations, including the set

of implementation of all the parts that the composite

component includes. There must eventually be monolithic

implementations at the “leaves” of the hierarchical imple-

mentation. Assembly allows dependent packages to be

deployed on distinct target nodes, enabling flexibility in

composite component instantiation.

3The Papyrus UML modeler – http://www.eclipse.org/papyrus



While the specification allows composites, the composites

have no identity and cannot be reused. This has been ana-

lyzed in [5]. In this article, the authors review and compare

the ability of 13 component models of handling component

composition. They identify the development with D&C as a

“deposit only” repository for composites: a composite com-

ponent that results from the component assembly step can

be deposited in a repository but cannot be retrieved from it,

because it does not have an identity of its own. In the end,

only monolithic components are deployed, i.e. the component

hierarchy is flattened. Note that this does not only apply to

interaction components but to all composite components, even

if they deployed on the same node, i.e. a stronger variant of

the flatten option in section III.

In SOFA, the connector plugging is performed after com-

ponent instantiation using a split of the connector into two

parts: server and client connector units (fragments). Whenever

component interfaces query a connector reference, the corre-

sponding server connector unit is returned (instead of returning

a reference directly to an interface). Similarly, whenever an

interface is being connected to another component, a client

connector unit is created and bound. The connector composite

specifies the parts, into which it is later split explicitly,

corresponding to the fragment option.

In Qompass, interaction components with explicitly identi-

fied fragments are flattened, i.e. the fragment option. Being

based on UML, Qompass must handle the specific case of a

dedicated system component. Such a component is required,

since connections can only be defined in the context of an

enclosing composite (unlike for instance in D&C). Thus, Qom-

pass must also split the system component, if the contained

components are deployed on different nodes. The approach

that has been chosen is to create a specific variant of the

system component on each node, i.e. the keep option. Note

that it is not possible to flatten the system component, since

the UML component model requires an enclosing composite

for defining connections.

V. PRO AND CONS OF EACH SPLIT OPTION

The different options to split composites have different

prerequisites and implications. For instance, flatten is evidently

not possible for a top-level component, as shown in the

preceding section. Splitting is problematic, if a composite is

within an inheritance hierarchy, since it would require splitting

super-classes as well (and thus likely producing a large number

of variants of these classes). In this case, flattening is an

alternative, if all super classes are component types, i.e. only

adding ports and attributes.

An implication of splitting is that it increases the number of

classes whereas flattening makes top-level composites bigger,

since these have to incorporate the contents of a flattened

component (sub-components and their connections) instead of

the component itself.

A measurable implication is the footprint associated with the

different ways to split. The code size of a complete application

code size (bytes) Opt 1 (keep) Opt 2 (flatten) Opt 3 (fragments)

Simple example 13904 12233 13936
Simple bi-direct 14668 13754 14710

Table I
FOOTPRINT OF DIFFERENT DEPLOYMENT OPTIONS

description Opt 1 (keep) Opt 2 (flatten) Opt 3 (fragments)

Debug + o o
Reconfiguration + o +
MW service o - o
Footprint (-) o (-)

Table II
PROS AND CONS OF DIFFERENT DEPLOYMENT OPTIONS

has been measured in case of the simple example and the bi-

directional variant for options 1, 2 and 3, as shown in table I.

The results were obtained on a Linux machine with gcc 4.7

(optimizations disabled). As expected, flattening results in a

slightly smaller footprint compared to the other two.

Table II shows the advantages and disadvantages of the

different options, As said earlier, keeping the original com-

position hierarchy has the advantage that the deployed model

is closer to the original architecture and thus a bit easier to

debug. Re-configuration is also easier: if we want to replace

the socket connector with another interaction component, we

don’t need to remove additional assembly connections from

the system.

VI. CONCLUSION

We have shown that the deployment of composite instances

which are partly allocated on one node and partly on another

can be tackled in several ways with different advantages and

disadvantages. The choice of a suitable split option depends on

properties of the composite that should be split. For instance,

in Qompass designer we keep the composite of the System

component, since this particular component (no inheritance,

single instance) can be split easily and since flattening would

result in multiple top-level components. On the other hand, we

flatten interaction components and require the explicit use of

fragments, since we want to avoid the problems that come with

multiple instances (creating potentially multiple variants of a

split component). The choice depends also on the deployment

goals, e.g. whether an optimized application compared to a

debug-enabled application should be delivered. The options

are rather evident, but –to our knowledge– the task had not

been examined systematically earlier.

The interest of deploying composites with complex alloca-

tion properties is not artificial: a composite definition is a suit-

able choice for interaction components enabling distribution.

In this context, the raised issues concern principally framework

and tool developers, i.e. developers of interaction components

and developers of model transformations associated with the

split of composites. However, the results also apply to a sub-

system modeled by composite classes that need to be allocated



on multiple execution nodes. In this case, system modellers or

designers are concerned since they need to respect restrictions

associated with the split of a composite and should know the

consequences of different split options.
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