
Significantly Increasing the Usability of Model Analysis

Tools through Visual Feedback

El Arbi Aboussoror, Ileana Ober, Iulian Ober

To cite this version:

El Arbi Aboussoror, Ileana Ober, Iulian Ober. Significantly Increasing the Usability of Model
Analysis Tools through Visual Feedback. 16th International System Design Languages Forum
(SDL 2013), Jun 2013, Montreal, Canada. 7916, pp. 107-123, 2013. <hal-01226474>

HAL Id: hal-01226474

https://hal.archives-ouvertes.fr/hal-01226474

Submitted on 9 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50531782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01226474

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12667

Official URL: http://dx.doi.org/10.1007/978-3-642-38911-5_7

To cite this version : Aboussoror, El Arbi and Ober, Ileana and Ober, Iulian
Significantly Increasing the Usability of Model Analysis Tools through Visual
Feedback. (2013) In: 16th International System Design Languages Forum (SDL
2013), 26 June 2013 - 28 June 2013 (Montreal, Canada).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Significantly Increasing the Usability of Model

Analysis Tools through Visual Feedback

El Arbi Aboussoror, Ileana Ober, and Iulian Ober

IRIT, Université de Toulouse, 118 Route de Narbonne
F -31062 Toulouse, France

{El-Arbi.Aboussoror,Ileana.Ober,Iulian.Ober}@irit.fr

Abstract. A plethora of theoretical results are available which make
possible the use of dynamic analysis and model-checking for software
and system models expressed in high-level modeling languages like UML,
SDL or AADL. Their usage is hindered by the complexity of information
processing demanded from the modeler in order to apply them and to
effectively exploit their results. Our thesis is that by improving the vi-
sual presentation of the analysis results, their exploitation can be highly
improved. To support this thesis, we define a trace analysis approach
based on the extraction of high-level semantics events from the low-level
output of a simulation or model-checking tool. This extraction offers
the basis for new types of scenario visualizations, improving scenario
understanding and exploration. This approach was implemented in our
UML/SysML analyzer and was validated in a controlled experiment that
shows a significant increase in the usability of our tool, both in terms of
task performance speed and in terms of user satisfaction.

1 Introduction

A plethora of theoretical results are available which make possible the use of
dynamic analysis and model-checking for software and system models expressed
in high-level modeling languages UML [1], SDL [2] or AADL [3]. These results
have the virtue of allowing reasoning at the level of models instead of code,
making possible early verification and validation, while taking advantage of the
abstract nature of modeling languages. Unfortunately, the use of these advanced
techniques is not as widespread as their capabilities could justify. One reason
for this is that such techniques are often inaccessible to modelers with a basic
software engineer training, as it demands advanced knowledge of these techniques
and a high investment in learning the specificities of tools in order to apply them
and to effectively exploit their results. Our thesis is that by improving the visual
presentation of the analysis results, their exploitation by regular users can be
highly improved. To support this thesis, we defined a trace analysis approach
and we integrated it in Metaviz, a model-driven framework for simulation trace
visualization introduced earlier in [4].

The typical functioning of a model-based formal analysis tool, consists in
mapping the semantics of the high-level modeling language into a simpler lan-
guage, more well-suited for formal analysis. Most of the time this language has

a sound formal semantics that allows reasoning on the model and on its prop-
erties, using analysis tools. It is the case of vUML [5] that uses Promela [6], of
IFx-OMEGA [7], that uses IF [8], etc. This change of context is in general not
supported by a bi-directional mapping to and from the formal language, since the
goal is to represent a complex modeling language with a limited set of primitives
available in the formal language. Thus, the structure of a model may be very
different between the two levels, and analysis results such as execution traces
obtained from the lower-level model may be hard to interpret by a user whose
knowledge is limited to the upper-level language and model. The trace analy-
sis method is based on the extraction of high-level semantics events from basic
events of the underlying semantics. It offers the basis for new types of scenario
visualizations, improving the model execution understanding and exploration.

In order to validate these assertions we set up a controlled experiment that
shows a significant increase in our model checking tool usability, both in terms
of task performance speed and in terms of user satisfaction.

The rest of this paper is organized as follows: we start by an overview of
existing methods for executable UML/SysML analysis, and by discussing why
exploiting analysis results is challenging. Then we present the typical analysis
tool integration pattern and finally describe our approach for extending the
verification platform with trace analysis support. The evaluation of the new tool
is detailed and discussed in Section 3.

1.1 Translational Semantics Approaches to Model Analysis

To be useful (not only descriptive) models need to have a well defined semantics.
Among other advantages, formal definition of semantics provides the possibility
to do analysis earlier in the design process. For example non-functional properties
such as performance, schedulability or safety can be analyzed. For this purpose,
mature formalisms and associated analysis techniques and tools already exist
(Petri nets, queuing networks, Markov chains, etc.).

For Model Driven Engineering, the approach usually followed is to:

1. annotate the original models (e.g. UML [9]),
2. generate input artifacts for a formal analysis tool, and finally
3. perform analysis activities on the generated artifacts.

Target analysis formalisms can be process algebra, timed automata, queuing
networks etc. Some examples of tools working in this way are IFx-OMEGA[10],
vUML [5] or OPTIMUM [11].

Even if these model analysis techniques, called translational semantics ap-
proaches, are widely adopted in the industry they still suffer from limitations.
Translational semantics approaches to model analysis bring a new complexity
to the end user. The analysis results (e.g. model checking counterexamples) are
not easily understood by the domain user. This is due to the gap between the
two semantic levels: the original one and the target analysis formalism. Those
results necessitate expertise in the low level analysis semantics. To enable a us-
able approach to model analysis a translation of the low level results to a more
user friendly abstraction should take place in the process.

Fig. 1. Generic approach for analysis results exploitation. The annotated model is
translated to a formal model for analysis. Results are then showed to the end user in
a visual interpreter.

1.2 General Schema for Analysis Tool Integration

Analyzing models is assessing some properties of them. For example UML offers
an extension mechanism, namely profiles that enable building a language to ex-
press non-functional properties. This approach offers a clear advantages like the
reuse of the tools and techniques available for UML. Two well known examples
are SPT and MARTE profiles. UML Profiles are integrated with analysis tools
using the basic architecture described in Fig. 1. In this architecture model trans-
formations are used to fill the gap between UML modeling technical space and
the analysis technical space. This semantic gap is at the heart of the diagnostic
problem described in the previous section1.1.

2 Extending a Verification Platform with Trace Analysis

Support

IFx-OMEGA1 platform integrates a compiler, a simulator and model-checker for
a rich subset of UML and SysML [7]. The toolset relies on the automatic trans-
lation of models into a lower-level language (named IF) based on asynchronous
communicating extended timed automata, and on the use of the extensive toolset
available for this language [8]. The validation acts on a UML or SysML model,
which is first translated to an IF model, and then compiled2 to an executable
program that will be used for automatic verification and interactive simulation.

1 http://www.irit.fr/ifx
2 In some cases, the model can be first simplified using automatic abstraction tech-

niques.

Fig. 2. Generic architecture for extracting high-level events from analysis results using
a Result Converter. It is composed of an Event Adapter for generating relevant events
from an operational semantics and an Event Processor Agent that translates those
events to user level events.

The IFx validation approach has been applied to several industry-grade mod-
els such as Ariane-5 [12], MARS [13] and SGS [10], and has proven to be very
effective in discovering design issues. As an application to this approach we pro-
pose to extend the IFx-OMEGA platform. The extension transforms low-level
semantics analysis result. Figure 2 shows the architecture of this extension. The
automatic verification and the simulation activities generates execution scenarios
as analysis results. Those scenarios are expressed using the low-level semantics
used by the IF model checker. The extension we propose translates the relevant
information from the scenarios into a high-level like formalism syntax. To ex-
tend the IFx-OMEGA platform with result analysis facility we follow the generic
architecture proposed in [14] and depicted in Fig. 1.

2.1 Extracting Execution Events Using Model Differences

The generic architecture has to be refined to enable a flexible and extensible im-
plementation. We choose to take an event based approach to report the analysis
results. The design rationale behind this choice is the decoupling introduced by
this approach and its adequacy to our context. Indeed an event reports changes
in monitored states [15] and since we are in the context of translating UML
models to an operational semantics we have this notion of state changes within
the execution model. Those state changes are captured using a model difference
mechanism [16] and the difference model is then transformed into a set of events

by an event generator. Those events report what has occurred in the analy-
sis results (e.g. state changes, message passing, . . .). An example is shown in
Fig. 3. This figure shows an original trace on the left (an XML file loaded in an
tree-based view) alongside the extracted event. The event showed on the right
correspond to the computed difference between two configurations of the system
in the trace. In the example the difference between the system configurations
(from step 15 to 16) is a state change of the Model_EVC instance from Waiting

status to Started.

Fig. 3. Extracting execution events using model differences. State changes are captured
using a model difference mechanism, the difference model is transformed into a set of
events by an event generator.

2.2 Abstracting Execution Events to High-Level Semantics Events

Once the relevant execution events are extracted we have a clear view on what
has changed in the execution semantics. But still, we needed a translation step to
make the analysis results expressed in the high-level semantics. For this step we
use an Event Processor Agent [15] implemented as a model transformation from
low-level analysis results to a high-level set of events. Those events can be easily
understood by the user and embed relevant concepts from the high-level design

model. High-level events can constitute a base for reporting the analysis results
directly into the user models or for animating a part of the original specification.
The two transformation rules in Listings 1.1 and 1.2 show an excerpt of the ATL
transformation that abstracts execution events to high level events. The first rule
transforms each IF process state change event into an OMEGA state enter event.
The second rule extracts OMEGA send events from IF enqueue events.

StateChangeEvt2StateEnterEvent extends TraceEvent2OmegaEvent {
from

sEvt : IFTraceEB ! StateChangeEvt
to

tEvt : OmegaTraceEB ! StateEnterEvent (
className <− sEvt . i n s t an c e . type ,
name <− sEvt . i n s t an c e . pid . name ,
stateName <− sEvt . newState . name ,
oldStateName <− sEvt . o ldS tat e . name

)
}

Listing 1.1. ATL rule for extracting OMEGA object state entering events

rule EnqueueEvt2SendEvent extends TraceEvent2OmegaEvent {
from

sEvt : IFTraceEB ! EnqueueEvt
us ing {

mes : IFTraceEB ! Message = sEvt . messages −> f i r s t () ;
}
to

tEvt : OmegaTraceEB ! SendEvent (
s i g n a l <− mes . signalType ,
by <− thisModule . p id2Object (mes . " from")
. . .

}

Listing 1.2. ATL rule for extracting OMEGA message sending events

2.3 Interpreting High-Level Semantics Events

After abstracting execution events we get a set of high-level semantics events.
High-level events gather state changes that can be easily understood by the user.
The last step in the proposed process is the visual interpretation of the analysis
results that is now transformed into high-level events. End user visualizations
has to be carefully designed to help the user grasping the event information
without visual effort. More on this point can be found in our previous work [4].
Figure 4 shows graphical rendering of OMEGA state enter event extracted from
IF process state change event.

Fig. 4. Graphical rendering of high-level events. The Event Visual Interpreter executes
a model transformation to generate the input model for the visual renderer.

3 Evaluation

In order to assess the advantages and limitations of the new visualization, we
need to evaluate its usage. Several techniques can be used for such an evaluation.
Some of these are purely subjective, while others use an objective and quantita-
tive approach [17]. Moreover, evaluation techniques can be categorized accord-
ing to the stakeholders: techniques such as cognitive walk-through or heuristic

evaluation involve human factors experts, while observational or experimental

techniques rely on user participation.
The premier goal in our study is to make our model analysis tool more ac-

cessible to a wider audience. Today, the overwhelming majority of modelers are
not familiar with analysis techniques such as model checking. In order to assess
whether we have achieved our premier goal, we need to evaluate the approach on
a sample of users compliant with this profile. Therefore, due to its objective and
quantitative orientation, we decided to use a controlled experiment that involves
user participation. However, since this technique does not provide a detailed
user impression and satisfaction overview, we complement our validation with a
subjective approach, by means of a questionnaire technique based on the System
Usability Scale [18].

3.1 Defining Formal Methods Usability

Before defining the hypothesis and designing an experiment, we need to under-
stand the notion of usability in the context of formal analysis techniques. The
ISO standard definition [19] for usability, defines it as:

“the extent to which a system, product or service can be used by
specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use.”

To customize the usability definition in our context, we need to set its three
characteristics - effectiveness, efficiency and satisfaction - in the context of formal
methods:

– Effectiveness is the ability of users to understand, find and correct errors
reported by the analysis process.

– Efficiency is the time and cognitive effort needed to perform each of the
three above-mentioned tasks.

– Satisfaction is the subjective impression the users get after using the inte-
grated tool suite that supports the three task.

3.2 Hypotheses Formulation

As mentioned above, our goal is to increase analysis tools usability. To achieve
this goal, we propose to enhance tools with visualization techniques. Thus we
can formulate the following hypothesis:

H. Effectively supporting the user in understanding model analysis results,

will increase the analysis tool usability.

The notion of analysis tool usability was defined in the previous section. Based
on this, our hypothesis H can be further refined:

H1. Participants using the new tool extension will spent less time understand-
ing the trace.

H2. Participants using the new tool extension will have a better understanding
of the trace.

H3. Participants using the new tool extension will spent less time locating the
error in the trace.

H4. Participants using the new tool extension will locate the error in the trace
with more precision.

H5. Participants using the new tool extension will spent less time understand-
ing the error cause(s).

H6. Participants using the new tool extension will have better understanding
of the error cause(s).

These refined hypothesis will allow more insights into the experiment results.

3.3 Experiment Design

In this section we will go further with the experiment design, by defining several
of its characteristics. The terminology used in this section is the one defined
in [20].

Participants. Participants were chosen from Master and PhD students from
the University of Toulouse. The experiment was conducted with 10 subjects
distributed in two groups, the experimental group (group A in next sections)
and the control group (group B). All the participants were already familiar
with UML, two of them have already used a formal analysis tool, but none of
them has used ours. In order to assess their adequacy with the user population,
participants were asked to fill a questionnaire. The questionnaire has 7 parts and
12 questions such as education level, experience with modeling, and verification
techniques abilities. In the first group technical experience median is 4, mean
is 4,4 and standard deviation is 1.67. In the second group mean is 4.6 with a
median 4, the standard deviation is 1.52.

Experimental Unit. Participants were asked to visualize the execution trace
of a small OMEGA UML model representing an Electronic Valve Controller.
A timed constraint was set on the model. The OMEGA model is then used as
input for the IF Model Checker. Since the model was intentionally violating
the constraint, the model checker generated a counterexample. The model was
built to get a representative counterexample of what a modeler would get from
using the IFx-OMEGA toolbox. Participants will explore this counterexample
and perform some well defined tasks.

Experimental Variable. It corresponds to the software product used by the
participant to explore the analysis results. We consider the Metaviz [4] tool being
the experimental unit. It offers support for IF traces exploration alongside with
elaborate visualizations. Figure 5 presents a screen shot of the trace analysis
support. The right panel contains the error trace browser, which is similar to
what is available in other analysis tools. The middle panel contains the trace
visualization feature that we added.

Factors. Also called independent variables, are those we are going to manipulate
in the participants environment to see how other variables (response variables)
are affected. Our experiment has the goal to analyze how a better support for the
users would affect their understanding of the model analysis results. Thus we run
the experiment with a two-level factor: Metaviz with elaborate trace visualization
support activated and deactivated. Consequently we have the following levels:

level 1: only basic Metaviz views are activated
level 2: advanced visualization is activated

Response Variables. They correspond to the experimental aspects impacted.
To investigate their quantitative values we have designed a set of user tasks dis-
tributed in three categories. Each category corresponding to a response variable.
The categories are related to the following cognitive tasks:

Fig. 5. Metaviz with the full support for trace analysis

– understanding the trace;
– locating the error;
– understanding the error’s cause and fixing the model.

For each category we assess two characteristics: the speed and the quality.

Tasks. The set of tasks each participant has to perform was designed to cover the
understanding of the trace, the error and its cause. Each participant was given a
set of 7 tasks to perform using the trace analysis tool. Additionally, the time spent
by each participant performing a task is monitored with an external stopwatch
application. We do not take into account the time spent by the participant
writing down the answers. The table 1 gives an overview of the tasks.

Table 1. Task per each cognitive category. Participants were asked to perform a set
of tasks that spans three cognitive task types.

Cognitive Types Tasks
Trace Understanding 1. What are the instances created during

this execution and at what step
2. What are the exchanged messages,
at what step and between which instances
3. At which step of the trace, the instance
Model_Valve enters the state Closed

Error Locating 4. Find in which step the property is
violated

Cause Understanding 5.Which diagram should be modified to
satisfy the property ?
6. Explain informally (in English) what
modification you want to do
7. Fix the error in the model (syntax is free).

3.4 Results

The goal of our experiment is to see whether extending an analysis tool with
the event-based visualization mechanism described previously would improve
analysis results exploitation. Figures 6 and 7 show the results for each task,
in terms of time and success rate. Participants that use the Metaviz extension
belong to the group A (experimental group) , while group B (control group)
corresponds to participants using the basic version of the tool (i.e. without the
Metaviz extension).

Time Spent in Each Task. Results for tasks T1 and T2 show that partic-
ipants in the group A perform 5 times faster than the group B participants.
For task T3 they perform 8 times faster, while for the last set of tasks T5

to T7 they perform 2 times faster. The overall unbalanced improvement rate is

Fig. 6. Time (in secondes) to perform each task. Participants that use an elaborate
visualization perform tasks 4 times faster.
A: experimental group, uses an elaborate visualization
B: control group, uses a basic visualization

therefore of 400%. This important increase in task performance speed is due to
the cognitive nature of each task category. For instance, one can notice that the
experimental group group A was 8 times faster in performing the task T3. This
task is the most demanding in cognitive workload for the participants. Indeed, it
asks participants to find the step in the trace where a certain instance enters a
particular state. The participant has to recall the instance and state names while
he goes step by step through the whole trace. This is where we can see the power
of having a visualization that presents only what has changed in the trace. The
Metaviz visualizations focus on the state change of the relevant instance and filter
other irrelevant information. Figure 5 shows the basic visualization alongside the
elaborate one. The visual vocabulary used is highly intuitive and thus enabled
the control group to perform the task T3 8 times faster.

Quality. Concerning success rates, results revealed an increase of the par-
ticipant’s answers quality. Results for understanding the trace (task T1 to T3)
show that understanding of the instances interactions (i.e. message passing) is
25% better. For locating the error (task T4) the improvement is about 9%. For
the last cognitive category, namely understanding the cause the improvement is
of 40%. Figure 7 shows the success rate for each task.

Fig. 7. Success rate for each task.Participants that use an elaborate visualization pro-
duce task outputs of a better quality.
A: experimental group, uses an elaborate visualization
B: control group, uses a basic visualization

To complement our analysis we have run a questionnaire based evaluation.
This evaluation assessed the user satisfaction. For this purpose we relied on the
System Usability Scale test[18]. We have chosen this analysis method since it is
lightweight and reliable [21]. Results for user satisfaction are slightly higher for

Table 2. Statistical results by cognitive category. Results show means and Student’s
t hypothesis tests for each cognitive category of tasks.

Trace Error Cause
Understanding Understanding Understanding

(T1 to T3) (T4) (T5 to T7)

Success Timing Success Timing Success Timing

Group A 5 44.33 5 18 5 35
5 27.33 5 21 4.33 55.67
5 27 5 59 5 30.67
5 8.33 5 51 3.33 62.67
5 29.67 4 55 3.67 110

Group B 5 103 5 20 3 100
3.17 325 5 540 0 600
5 183.33 5 27 5 90.33
5 120.67 5 32 5 23.33

1.67 238 2 267 2.33 94.33

t 0.16 0.004 0.54 0.22 0.26 0.28

the experimental group (group A) with 68% versus 61% for the control group
(group B). The results presented in table 2 show an increase of about 11% of
the user satisfaction.

3.5 Hypothesis Tests

The null hypothesis corresponding to each hypothesis formulated previously can
be summarized by there is no difference between participants that use the elabo-

rate visualization and those who use the basic one in performing the tasks from

the category CTx. Were CTx is one of the three cognitive task categories listed
in 1. As mentioned previously task performance is measured with the speed and
quality of three cognitive task types (i.e. understanding a trace, locating an error,
understanding its causes). As we describe in section 3.3 the standard deviation
can be considered equal and we can test the null hypothesis using the Student’s
t test. We applied a two-tailed Student’s t test to the six null hypothesis. The
results are showed in table 2. The experiment was run with five participants in
each group, that gives us 8 degrees of freedom and a value for t0.99 of 3,355.
All the values of t are under the value of t0.99, we can then reject the null hy-
pothesis. For the user satisfaction results showed in table 3 are also statistically
sound (t value of 0,7) and shows that the null hypothesis corresponding to user
satisfaction can also be rejected. Initial hypotheses are thus accepted, meaning
that effectively supporting the user in understanding analysis results increases

analysis tool usability.

Table 3. Usability tests using the System Usability Scale[18]. Results show an increase
of 11% in usability for the experimental group (group A). Results are statistically sound
according to the Student’s t test.

System Usability Scale

Group A 67.7

Group B 61.0

t 0.71

3.6 Threats to Validity

Threats related to the conclusion. We have used statistical test, namely Student’s
t test. Our samples has the same number of individuals and similar variances
which ensure the soundness of the test conclusions. Construct threats. The role
of the trace abstractions is to reduce the amount of data to a relevant set of
information for a specific user task, this avoid the cognitive overload. The vi-
sualization has a different role. It brings to the user these relevant information
in a domain oriented way, that is, in terms of concepts already known by the
user. No additional effort is needed from the user to understand the notations
and semantics of the visualization constructs (perception overload). The visu-
alization alone is not enough, this is why the control group (that uses a basic
visualization of the low-level traces) has the worst results. The huge amount of

data gathered to the user in a basic view (without abstraction) is cognitively
demanding and time consuming. Internal threats : The statistics shown in the
section 3.3 ensures that there’s is no significant difference in the participants
technical level. External threats : While used with a small model, the technique
is more likely to accelerate user exploring and understanding for bigger models.
We think that for experts, the results may not be as significant as for users with
average technical background. But we should be careful of this generalization,
the expertise reversal effect as coined by Sweller [22] may arise. Thus, further
experiments should be conducted to assess the results for expert users.

4 Related Work

Early work in analyzing UML models like [8,9] set among others the foundations
of model-driven analysis. Recent work on the MARTE profile [11] introduces the
use of user feedback in an integrated MDE approach. Results of MARTE [23]
models analysis is used to annotate back the original user models. The RT-Simex
research project [24] tackles the problem of user feedback with an elaborate
user interface. This is very similar to our approach but the work focuses on
clock reconciliation between independent traces and no controlled experiment is
conducted to assess the effectiveness of the user feedback. In the work of [25] an
emphasis is put on the lack of user friendly interfaces in model checkers. They
effectively address the problem of understanding analysis results but directly at
the low level semantics. A broader view to the issue of designing SE notations
is addressed by Moody [26]. He emphasizes the lack of foundational work on the
syntax of software engineering visual notation. Combemale et al. adressed the
problem of extracting high-level traces from low-level executions in [27]. They
show how to extract high level trace from low level traces. They also assume
an existing execution model for the high-level formalism and editors. Our work
emphasize the importance and the effectiveness of the user feedback but go
further by validating the added value in a controlled experiment.

5 Conclusion and Future Work

Today’s integrated development environments offer many debugging facilities,
that allow the developer to follow closely the code execution, to debug it and
to understand it. While modeling languages aim at raising the level of abstrac-
tion in software development and could support much more powerful analysis
techniques, the tools existing to support them are still difficult to use [28]. Us-
ing languages such as UML, SysML, SDL, to model the software, performing
model-based analysis on these models and understanding the analysis results
is still a challenging task. Improving the existing tools and mechanisms for ex-
ploring and understanding model based analysis results is greatly needed for a
larger adoption of formal methods. This paper presents our contribution in this
direction. Our approach provides a semi-automatic technique to implement a
feedback mechanism in a SysML/UML translational semantics approach. Based

on an existing SysML/UML tool that offers the possibility to perform verifica-
tion, we develop an advanced and flexible trace analysis support mechanism. As
described in this paper, this mechanism allows the analyst to reason at model
level on the model execution, in terms of easily understandable high-level events.
The pertinence of our approach is assessed through an evaluation, based on well
established evaluation mechanisms (Usability Scale System, ISO notion of us-
ability, etc). In order to perform such an evaluation, we needed to adapt the
notion of usability to the context of formal methods usability, and to adapt
the evaluation process to our setting. The goal of this experiment was to see
whether extending analysis tools with a well designed event-based visualization
would improve analysis results exploitation and the results are meeting our ex-
pectations. Several directions could be taken for future work. Beyond improving
the existing approach/toolset, we intend to add new visualization techniques,
based on specific tasks to be performed during the analysis (variable change
impact, queue size evolution, etc), to identify new kinds of user profile based
visualizations that may assist the user, depending on its level of expertise, to
perform new experiments with different user profiles, etc. We strongly believe
that by facilitating the access to analysis tools by regular users, the interest in
using modeling techniques could significantly increase and the much advertised
advantages of these techniques could finally get accessible to a larger panel of
users.

Acknowledgments. We thank Anke Brock and Antonio Serpa for their sup-
port, the volunteer participants to the experiment, and the reviewers for their
valuable suggestions.

References

1. Object Management Group: Unified Modeling Language, http://www.uml.org/
2. International Telecommunication Union: ITU-T Recommendation Z.100 (12/11)

– Specification and Description Language – Overview of SDL-2010 (2011),
http://www.itu.int/rec/T-REC-Z.100-201112-I/en

3. SAE International: SAE Architecture Analysis & Design Language (AADL)
AS5506 Rev.B (2012), http://standards.sae.org/as5506b/

4. Aboussoror, E.A., Ober, I., Ober, I.: Seeing Errors: Model Driven Simulation Trace
Visualization. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MOD-
ELS 2012. LNCS, vol. 7590, pp. 480–496. Springer, Heidelberg (2012)

5. Lilius, J., Paltor, I.P.: vUML: A tool for verifying UML models. In: 14th IEEE
International Conference on Automated Software Engineering (ASE 1999), pp.
255–258. IEEE Computer Society (1999)

6. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall (1991)
7. Ober, I., Dragomir, I.: OMEGA2 – A new version of the profile and the tools. In:

15th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS 2010), pp. 373–378. IEEE Computer Society (2010)

8. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF toolset. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 237–267. Springer,
Heidelberg (2004)

9. Espinoza, H., Dubois, H., Gérard, S., Medina, J.L., Petriu, D.C., Woodside, C.M.:
Annotating UML Models with Non-Functional Properties for Quantitative Anal-
ysis. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 79–90. Springer,
Heidelberg (2006)

10. Conquet, E., et al.: Formal Model Driven Engineering for Space Onboard Software.
In: Embedded Real Time Software and Systems (ERTS2) (2012),
http://www.erts2012.org/Site/0P2RUC89/7B-4.pdf

11. Mraidha, C., Tucci-Piergiovanni, S., Gerard, S.: Optimum – a MARTE-based
Methodology for Schedulability Analysis at Early Design Stages. SIGSOFT Soft-
ware Engineering Notes 36(1), 1–8 (2011)

12. Ober, I., Graf, S., Lesens, D.: Modeling and Validation of a Software Architecture
for the Ariane-5 Launcher. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006.
LNCS, vol. 4037, pp. 48–62. Springer, Heidelberg (2006)

13. Ober, I., Graf, S., Yushtein, Y., Ober, I.: Timing Analysis and Validation with
UML – the case of the embedded Mars bus manager. Innovations in Systems and
Software Engineering 4(3), 301–308 (2008)

14. Official reference MARTE Tutorial,
http://www.omg.org/omgmarte/Tutorial.html

15. Etzion, O., Niblett, P., Luckham, D.: Event Processing in Action. Manning (2010)
16. Lin, Y., Gray, J., Jouault, F.: DSMDiff – a differentiation tool for domain-specific

models. European Journal of Information Systems 16(4), 349–361 (2007),
http://dx.doi.org/10.1057/palgrave.ejis.3000685

17. Dix, A.: Human-Computer Interaction. Pearson/Prentice-Hall (2004)
18. Brooke, J.: SUS – A quick and dirty usability scale (1996),

http://hell.meiert.org/core/pdf/sus.pdf
19. International Standards Organisation: ISO 9241-11:1998 Ergonomic requirements

for office work with visual display terminals (vdts) part 11 – Guidance on usability,
http://www.iso.org/iso/home/store/

catalogue_tc/catalogue_detail.htm?csnumber=16883
20. Juzgado, N.-J., Moreno, A.-M.: Basics of Software Engineering Experimentation.

Springer (2001)
21. Stanton, N., et al.: Human Factors Methods – A Practical Guide for Engineering

and Design. Ashgate (2005)
22. Sweller, J.: Evolution of human cognitive architecture. Psychology of Learning and

Motivation 43, 215–266 (2003)
23. The UML Profile for MARTE, http://www.omgmarte.org/
24. DeAntoni, J., et al.: RT-SIMEX – Retro-analysis of execution traces. In: Proceed-

ings of the Eighteenth ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE 2010), pp.377–378. ACM (2010)

25. Yokoyama, S., Sato, H., Kurihara, M.: User-friendly GUI in Software Model Check-
ing. In: Proceedings of the 2009 IEEE International Conference on Systems, Man
and Cybernetics (SMC 2009), pp. 468–473. IEEE Press (2009)

26. Moody, D.L.: The "Physics" of Notations: Toward a scientific basis for constructing
visual notations in software engineering. IEEE Transactions on Software Engineer-
ing 35(6), 756–779 (2009)

27. Combemale, B., Gonnord, L., Rusu, V.: A Generic Tool for Tracing Executions
Back to a DSML’s Operational Semantics. In: France, R.B., Kuester, J.M., Bor-
dbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 35–51. Springer,
Heidelberg (2011)

28. Hutchinson, J., et al.: Empirical Assessment of MDE in Industry. In: Proceedings
of the 33rd International Conference on Software Engineering (ICSE 2011), pp.
471–480. ACM (2011)

