
Worst-Case Communication Overhead in a Many-Core

based Shared-Memory Model

Amira Dkhil, Stéphane Louise, Christine Rochange

To cite this version:

Amira Dkhil, Stéphane Louise, Christine Rochange. Worst-Case Communication Overhead in a
Many-Core based Shared-Memory Model. 7th Junior Researcher Workshop on Real-Time Com-
puting (JRWRTC 2013), Oct 2013, Sophia Antipolis, France. pp.53-56, 2013, Proceedings of
7th Junior Researcher Workshop on Real-Time Computing (JRWRTC 2013). <hal-01239714>

HAL Id: hal-01239714

https://hal.archives-ouvertes.fr/hal-01239714

Submitted on 9 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01239714

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12711

The contribution was presented at JRWRTC 2013:

http://jrwrtc.science.uva.nl/

To cite this version : Dkhil, Amira and Louise, Stéphane and Rochange,
Christine Worst-Case Communication Overhead in a Many-Core based
Shared-Memory Model. (2013) In: 7th Junior Researcher Workshop on
Real-Time Computing (JRWRTC 2013), 16 October 2013 - 18 October
2013 (Sophia Antipolis, France).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Worst-Case Communication Overhead in a Many-Core
based Shared-Memory Model

Amira Dkhil
CEA-LIST, Nano-Innov

PC172, F91191
Gif-sur-Yvette Cedex, France

amira.dkhil@cea.fr

Stéphane Louise
CEA-LIST, Nano-Innov

PC172, F91191
Gif-sur-Yvette Cedex, France
stephane.louise@cea.fr

Christine Rochange
IRIT, Université de Toulouse

118 route de Narbonne. 31062
Toulouse cedex 9, France

rochange@irit.fr

ABSTRACT

With emerging many-core architectures, using on-chip shared
memories is an interesting approach because it provides high
bandwidth and high throughput data exchange. Such a
feature is usually implemented as a multi-bus multi-banked
memory. Since predicting timing behavior is key to efficient
design and verification of embedded real-time systems, the
question that arises is how to evaluate the access time for one
memory access of a given task while others may concurrently
access the same memory-bank at the same time. In this paper,
we give the answers for a subset of streaming applications
modeled like CSDF Model of Computation and implemented
in Kalray’s MPPA chip.

Keywords

Access time, Shared memory, Multi-core, CSDF, MPPA chip

1. INTRODUCTION
Predicting timing behavior is key to efficient design and

verification of embedded real-time systems. For embedded
hardware platforms, Multiprocessor Systems-on-Chip (MP-
SoCs) provide a good balance between cost, power efficiency,
and flexibility. Multi-core systems are known to be especially
difficult regarding Worst-Case Execution Times (WCETs),
but the new way to program these many-cores is different
from the way embedded systems used to be programmed
with micro-controllers: Dataflow Models of Computation
(MOCs) are gaining in momentum because some subsets of
the dataflow based model of computation possess good prop-
erties concerning parallelism management [4]. It has been
shown recently that over 90% of streaming applications can
be modeled as acyclic SDF graphs [2]. Cyclo-Static Dataflow
(CSDF), the model we consider, is a generalization of SDF [8]
in which consumption and production rates take the form of
periodic sequences. CSDF is more versatile because it also
supports algorithms with a cyclically changing, but prede-
fined, behavior. It can provably run without locks and for

well-formed applications (detectable at compilation time) in
finite and statically-known memory.

Typically, these applications are partitioned into tasks that
communicate over channels (i.e. FIFO buffer) together form-
ing a Dataflow graph. In order to allow maximum flexibility
at the lowest cost, tasks share storage, computation and
communication resources. This leads to uncertainty about
resource management which can make the system decompos-
able. The temporal behavior of each task becomes dependent
on other tasks and cannot be analyzed in isolation. As sys-
tem runs without locks, what is required to know to calculate
worst-case latencies, in addition to stand-alone WCETs of
individual tasks, is the communication overhead induced by
the interference when several processors want to access nearly
simultaneously to the same bank of shared memory. We will
show that for a class of periodic scheduling schemes called
implicit-deadline periodic schedule, it is possible to compute
worst-case communication overhead in shared memory clus-
ters of Kalray’s MPPA chip [6] for a subset of usual stream
programs with the task resulting from the compilation of the
Sigma-C associated dataflow language [7]. Bamakhrama and
Stefanov [2] proved that Implicit-Deadline Periodic (IDP)
scheduling approach gives the maximum achievable processor
utilization and throughput for large set of dataflow graphs,
called matched I/O rates graphs [2]. These graphs represent
more than 80% of streaming applications [2]. Self-timed
schedule (STS), also known as as-soon-as possible schedule,
was considered the most appropriate for streaming appli-
cations modeled as dataflow graphs [2, 3]. Moreira and
Bekooij [3] established that it is possible to guarantee strictly
periodic behavior of tasks within self-timed implementation.
They have also provided the maximum latency for appli-
cations with periodic, sporadic and bursty sources. In [1],
authors present a complete framework for computing the
periodic task parameters using an estimation of worst-case
execution Time. They assume that each write or read has
constant execution time which is often not true.

Our approach is similar to [1, 2] in using the periodic task
model which allows applying a variety of proven hard-real-
time scheduling algorithms for multiprocessors. However, it
is different in exploring system level in order to get upper
bounds on the communication overhead as close as to the real
values. Ongoing approaches focus on performance analysis
either on task or system level. Especially memory accesses
cannot be accurately captured on a single level alone: consid-
ering both perspectives lead to overly pessimistic estimations.

Figure 1: IDP schedule for CSDF graph

1.1 Motivating Example
We show the possible influence of parallel execution of

actors, under static implicit-deadline periodic (IDP) schedule,
on accesses to memory by means of an example. Figure 1
illustrates a CSDF graph consisting of five actors and six
communication channels. Under IDP schedule, actors are
executed in levels. Actors are assigned to levels according
to the dependency and the minimum number of tokens that
should be present on communication channels before firing.
Aj(n) is the set of actors in j level executing their nth

iteration. Actors in level j start execution at t = (j − 1)× φ.
φ is the global level period [1]. From the example depicted
in Figure 1, at t = 24, actor a5 of level 3 starts execution of
his 1st iteration, actor a1 of level 1 executes his 3rd iteration,
actors a2, a3, and a4 of level 2 execute their 2nd iteration.
The periodic start time t = (j − 1) × φ guarantees that
actors in a given level will have enough data (i.e. from their
predecessors) to start. From [2], authors proved that such
schedule executes with bounded memory buffers. Thus, all
actors of level j can start their execution simultaneously at
t = (j − 1) × φ and surely finish at t = j × φ. Well, it is
simple to observe, from Figure 1, that actors can read or
write memory at the same time. In this example, actors
execute on five processors. A processor can request access
to the shared memory without restriction but not without
penalties, since there is an additional and variable arbitration
cost. It would be trivial to assume that this cost is the same
for all accesses to memory because this will induce a very
pessimistic and maybe unreliable result. For these reasons,
we must look more closely at the access modes of shared
resources so that it will be possible to derive a fairly accurate
estimation.

1.2 Paper Contributions
Given a streaming application modeled as an acyclic CSDF

graph with periodic input streams, determine the maximum
number of overlapping reads and writes when executing

actors as implicit-deadline periodic tasks. For each level
in the CSDF graph, define the worst-case communication
overhead induced by the interference when several processors
want to access simultaneously to the same bank of shared
memory. The communication costs are defined as follows:
1) Arbitration cost: the time needed to arbitrate shared
communication resources at run-time, 2) Synchronization
cost: the time needed to check if all the necessary data is
available for the actor and 3) Transfer delay: The mean-time
needed to transfer input and output tokens from and to the
private memory of processing elements.
The remainder of this paper is organized as follows: Sec-

tion 2 introduces the CSDF model, the system model and the
IDP schedule. Section 3 defines theoretical results. Finally,
in section 4, we present our case study and then we conclude.

2. BACKGROUND

2.1 Cyclo-Static Data-Flow (CSDF)
We use Cyclo-Static Dataflow [9] to model real-time stream-

ing applications. It is a directed graph G = (A,E) , where
A is a set of computation actors and E is a set of commu-
nication channels. Data is transported in discrete chunks,
called tokens, via communication channels implemented as
First-In First-Out (FIFO) queues. An actor is enabled by the
availability of enough tokens on each of its incoming edges.
This is done by means of synhronization mechanisms like
semaphores. An enabled actor can fire and consume/produce
fom/to each of its input/output edges a number of tokens.
Actor firings are free from side effects. Each actor ai ∈ A

is viewed as executing through a periodically-repeating se-
quence of functions [fi(1), fi(2), ..., fi(τi)] of length τi ∈ N

⋆.
P and C are the sets of production and consumption rates.
For example, the jth firing of ai is enabled if there is at least
[ceii (((j−1) mod τi)+1)] on its input channel ei, when fired,
it executes the code of function fi(((j− 1) mod τi)+ 1) and
produces [peoi (((j − 1) mod τi) + 1)] tokens on its output
channel eo.

2.2 System Model
Late last year, two new architectures have emerged: the

SThorm chip from STMicroelectronics (i.e. 64 cores) and
MPPA chip from Kalray [6] (i.e. 256 cores). These chips rely
on a clustered architecture that allows clusters of processors
to share a particular level of the memory hierarchy and this
has the potential to reduce the average memory access time
of parallel applications [5]. A single MPPA cluster consists
of 16 user processors, a controller processor, and a shared
banked memory. It also comprises two DMA engines (one
in and one out) to exchange data with external parts of the
cluster through the NOC interface, but this is out of the
scope of this paper. Each processor has private L1 cache
and communicates with other processors through a shared
banked memory (SRAM) of 2MB. The banked memory is
implemented as a multi-bus approach [6]: it provides the
same functionality as a full crossbar with lower impact on
surface occupation or power consumption. Each memory-
bank has a private controller which manages the requests
sent from each processor in the cluster using a FIFO (first-
in, first-out) equivalent queuing strategy: this will give rise
to extra penalties. The shared memory is a Static RAM
(SRAM), so it is quite feasible to derive some access time:
some time is spent in sending a request to the controller,

and once the request is satisfied, back to the processor, this
time is noted t0. t0 is constant because there is no memory
coherence protocol. But Since we have overlapped accesses,
the overall access time is:

t = t0 + (πj − 1)× tc (1)

tc is the time needed from the controller to access memory
and it costs one RAM cycle [6]. (πj − 1) models the order of
processor requests in the FIFO of the memory-bank controller.
πj is the number of processors executing actors of level j.

2.3 Implicit-Deadline Periodic Schedule
Under IPD static schedule, processors execute a task set

A = [A1, A2, ..., An] of n periodic tasks. In this paper,
we consider that a task cannot be preempted during ex-
ecution. A periodic task Aj ∈ A is defined as a 4-tuple
Aj = (Sj , ωj , λj ,Dj) where Sj is the start time, ωj is the
worst-case execution time, λj is the task period and Dj is
the relative deadline of Aj . The kth invocation of task Aj

is at time instants t = Sj + k × λj ,∀k ∈ N. Aj executes for
ωj time units and his execution time should not exceed Dj .
A task has an implicit deadline if Dj = λj , it follows that
Aj has to terminate before time t = t = Sj + (k + 1)× λj .
The authors in [2] explain the following definitions in more
details: Since actors of CSDF graph G are assigned to levels,
we define φ as the minimum level period and λ as the mini-
mum actor period. These periods are given by the solution
to both equations:

φ = q1λ1 = q2λ2 = ... = qnλn (2)

and
→

λ −
→

ω ≥
→

0 (3)

where
→

q = [q1, q2, ..., qn] is the repetition vector of G and
qj ≻ 0 represents the number of invocations of an actor aj

in a valid schedule of G. G is consistent if there exists a
repetition vector: When each actor is fired the number of

times specified by
→

q , the total number of tokens produced
on each arc is equal to the total number of tokens consumed.

3. WORST-CASE OVERHEAD

3.1 Assumptions and Definitions
A graph G refers to an acyclic consistent CSDF graph.

A consistent graph can be executed with bounded memory
buffers and no deadlock. So, we only consider consistent and
deadlock free CSDFs. Consistency concerns the correspon-
dence between production and consumption rates [11]. For
our analysis, we assume the following hypothesis:

H1- Basic access time of every actor to shared memory
conforms to (1). It is defined as the total time needed to
access memory depending on the order of access to FIFO
controller.

This order can be determined if we have exact knowledge of
each access requesting time which is not feasible in practice.
Under static or dynamic schedules, the order of accesses to
memory cannot be determined, even for fully static schedule
where we assume a very tight estimation of worst-case exe-
cution time of actors. In [12], Khandalia et al. explored the
problem of imposing an ordering of interprocessor commu-
nication operations in statically scheduled multiprocessors.

Their method is based on finding a linear ordering of com-
munication actors at compile time which could minimize
synchronization and arbitration costs, but this would be at
the expense of some run-time flexibility. In this paper, we
do not impose any constraints on communication operations.
Definition1: For a graph G under IDP schedule, the

worst-case overhead Oj of level j depends on the maximum
number of accesses to memory mi,j of actor ai not on the
exact time when a processor requests an access:
Oj = f(mi,j), ∀ai ∈ Aj . Aj is the set of actors of level j.
H2- Reading or writing tokens from/to the memory could

be done at any time. This assumption was derived from sim-
ulation results: during execution, the processor may require
read access when it needs some data and write access when
it finishes a part of the execution.

This last assumption does not affect the considered size of
shared buffers with IDP periodic schedule because reading
and writing in the same shared buffer cannot be done in the
same time as the execution is periodic and ordered in levels.
H4- We assume that we have reasonably tight estimates

of actors computation time. Computation time is the time
needed for computation operations. These estimates can be
obtained by several different mechanisms like those described
in [10].
H5- In [3], synchronization checks are done whenever

processors communicate: the sending processor ascertains
that the buffer it is writing to is not full, and the receiver
ascertains that the buffer it is reading from is not empty.
For IDP schedule, the synchronization cost is equal to zero,
because periodic behavior guarantees that an actor ai will
finish execution before deadline Di.

3.2 Tight overhead under IDP Model
For a simplified problem with only few processors and few

concurrent tasks with few accesses to memory, the worst-case
communication overhead cannot affect so much the worst-
case latency of the application. The non-obvious result is
that for such a configuration when the number of processors
and accesses to a single-bank memory are very high, the mean
access time is deeply impacted by the concurrent accesses. In
this section, we introduce an execution scheme to determine
an upper bound for overhead.

The CSDF graph is denoted Gω = (A,E, ω), ω is the set of
worst-case computation time of actors. Let S = (Gω, β, σ) be
the IDP model applied to Gω. β is the set of levels resulting
from scheduling and σ is the number of levels.
Let β = [β1, β2, ..., βσ] be the set of actors for each level.

βi = [β1
i , β

2
i , ..., β

πi

i] of level i, ∀i ∈ [1, σ] is the set of actors
for each level in each executing processor. πi denotes the
number of processors executing level i.

∀aj such that aj ∈ βi, it is possible to derive the associated
maximum number of accesses to memory (H1). We define
M = [M1,M2, ...,Mσ] the set of memory accesses for all
levels such that Mi = [0,m1

i ,m
2
i , ...,m

πi

i] is the set of total
number of memory accesses in each processor executing level
i. Note that a given processor can have multiple tasks in
each level.

Mi is sorted in this order: ∀i ∈ [1, σ], ∀j ∈ [1, πi] m1
i ≤

m2
i ≤ ... ≤ m

πi

i , such that mk+1

i 6= mk
i ,∀k ∈ [1, πi]. The

new dimension of vector Mi is noted αi. In order to get a
tight overhead estimation, we assume that, for the (πi − 1)
potential concurrent tasks on a single memory bank, the min-
imum number of accesses in a given level have the maximum

overhead (H2). Thus we can guarantee safe estimation. The
worst-case arbitration overhead of level i is given by:
Oi

arb = 0, if πi = 1
Oi

arb = (m1
i − 0)× 1× tc, if πi = 2 , αi = 3

Oi
arb = (m1

i −0)×2×tc+(m2
i −m1

i)×1×tc, if πi = 3 , αi = 4
.
.
.
Where:

O
i
arb =

αi−2∑

δ=1

(mδ+1

i −m
δ
i)× (πi − δ)× tc (4)

Equation 4 implies that the minimum difference in the
number of accesses of processors, for a given level, will get
the maximum overhead and so on. This allows us to get a
tight estimation of worst-case overhead since accesses will
get a variable penalty. Using Equation 4, we can derive the
worst-case overhead of level i by adding the transfer delay:

Oi =

αi−2∑

δ=1

(mδ+1

i −m
δ
i)×(πi−δ)×tc+ max

j=17−→πi

(mj
i ×t0+ωj)

(5)
From (5), Equation (3) becomes:
→

λ −
→

ω −
→

O ≥
→

0
Thus, we can take into account communication overhead

in estimating IDP periods.

4. EXPERIMENTS
We evaluated our proposed temporal analysis scheme on

four programs belonging to the StreamIT Benchmarks: Di-
rect Cosine Transform, Biotonic Sort, Audio Beam former
and Laplace transformation. As architecture platform, we
use the Kalary MPPA multi-cluster multi-core architecture
and the associated shared memory arbitration mechanism.
This paper does not consider the presence of a 2 two-way
instruction and data caches for each processor of the cluster.
The execution time analysis is done in three steps. First,
the application is executed with a set of input data on the
architecture and an execution trace of memory accesses is
generated. Second, we apply the scheduling strategy in order
to delimit the different phases of execution. Finally, we derive
the number of memory accesses and the execution time for
each node in the data-flow graph and use these informations
to compute the worst-case communication overhead. The
simulation time to generate these parameters was in order of
minutes, the longest time was spent to derive the memory
trace of each node in the application graph, because most of
them contains over 60 nodes.

In the case of the MPPA cluster, π is valued between 1 and
16. As a result (πi − j) is bound by 15 cycles, which is the
worst-case overhead associated to a given memory access. t0
costs seven cycles [6]. For the relevant cases, in Figure 2, the
worst-case overhead is between 17% and 23% of the overhead
derived from simulation results.

5. CONCLUSION
The main contribution of this paper is to propose a safe

timing per-cluster access memory model. This is a novel
approach proposed in order to estimate the worst-case com-
munication overhead. It was, as far as we are aware, the first

Figure 2: Measured overhead and Worst-case over-

head

time that a precise estimation of communication overhead
was provided for such an architecture. The evaluations are
also compliant with the experimental results. From the case
study, we conclude that the timing model is very accurate
and significantly improves the precision of worst-case over-
head. We will also apply the same methodology for other
scheduling strategies. We would like also to determine the
communication overhead if accesses are distributed between
the different memory banks in the same time.

6. REFERENCES
[1] M. A. Bamakhrama and T. Stefanov, Managing

Latency in Embedded Streaming Applications under

Hard-Real-Time Scheduling. CODES+ISSS, 2012.

[2] M. A. Bamakhrama and T. Stefanov, Hard-real-time

scheduling of data-dependent tasks in embedded

streaming applications, EMSOFT, 2011.

[3] O.M. Moreira and M.J.G. Bekooij, Self-Timed

Scheduling Analysis for Real-Time Applications, 2007.

[4] S.Sriram and S.S. Bhattacharyya, Embedded

Multi-processors: scheduling and synchronization.
Marcel Dekker, 2009.

[5] A. Erlichson et al. The Benefits of Clustering in Shared

Address Space Multiprocessors: An Applications-Driven

Investigation,1995.

[6] B. D. Dinechin et al., A distributed run-time

environment for the kalray mppa-256 integrated

manycore processor. ICCS Alchemy Workshop, (to be
published), 2013.

[7] T. Goubier et al., ΣC: A programming model and

language for embedded manycores, 2011.

[8] E.Lee and D. Messerschmitt, Synchronous dataflow.
IEEE Proceedings, 1987.

[9] G. Bilsen et al., Cyclo-static dataflow. IEEE trans.
Signal Process, Feb. 1996.

[10] R.Wilhelm et al.. The worst-case execution-time
problem overview of methods and survey of tools, 2008.

[11] E. A. Lee, Consistency in dataflow graphs, 1991.

[12] M. Khandelia et al., Contention-Conscious Transaction
Ordering in Multiprocessor DSP Systems, 2006.

