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Chapter 2

High-dimensional clustering

Christophe Biernacki and Cathy Maugis- Rabusseau

2.1 Introduction

High-dimensional (HD) data sets are now frequent, mostly motivated by tech-
nological reasons which concern automation in variable acquisition, cheaper
availability of data storage and more powerful standard computers for quick
data management possibility. All fields are impacted by this general phe-
nomenon of variable number inflation, only the definition of “high” being do-
main dependent. In marketing, this number can be of order 102, in microarray
gene expression between 102 and 10%, in text mining 10% or more, of order
106 for single nucleotide polymorphism (SNP) data, etc. Note also that some-
times much more variables can be involved, what can be typically the case with
discretized curves, for instance curves coming from temporal sequences.

Here are two related illustrations. Figure 2.1(a) displays a text mining ex-
ample!. It mixes Medline (1033 medical abstracts) and Cranfield (1398 aero-
nautical abstracts) making a total of 2431 documents. Furthermore, all the
words (excluding stop words) are considered as features making a total of 9275
unique words. The data matrix consists of documents on the rows and words
on the columns with each entry giving the term frequency, that is the number of
occurrences of corresponding word in corresponding document. Figure 2.1(b)
displays a curve example. This Kneading data set comes from Danone Vitapole
Paris Research Center and concerns the quality of cookies and the relationship
with the flour kneading process (Lévéder et al. [2004]). It is composed by 115
different flours for which the dough resistance is measured during the kneading
process for 480 seconds. We notice that the equispaced instants of time in the
interval [0; 480] (here 241 measures) could be much more large than 241 if
measures were more frequently recorded.

I This data set is publicly available at £tp://ftp.cs.cornell.edu/pub/smart.
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Figure 2.1: Examples of high-dimensional data sets: (a) Text mining:
n = 2431 documents and the frequency that d = 9275 unique words occurs in
each document (a whiter cell indicates a higher frequency); (b) Curves:
n = 115 kneading curves observed at d = 241 equispaced instants of time in
the interval [0; 480].

Such a technological revolution has a huge impact in other scientific fields,
as societal or also mathematical ones. In particular, high-dimensional data
management brings some new challenges to statisticians since standard (low-
dimensional) data analysis methods struggle to directly apply to the new (high-
dimensional) data sets. The reason can be twofold, sometimes linked, involving
either combinatorial difficulties or disastrously large estimate variance increase.
Data analysis methods are essential for providing a synthetic view of data sets,
allowing data summary and data exploratory for future decision making for
instance. This need is even more acute in the high-dimensional setting since on
the one hand the large number of variables suggests that a lot of information
is conveyed by data but, in the other hand, such information may be hidden
behind their volume.

Cluster analysis is one of the main data analysis method. It aims at parti-
tioning a data set x = (x1,...,Xy,), composed by n individuals and lying in a
space X of dimension d into K groups (71, ...,Gg. This partition is denoted
by z = (z1,...,2,), lying in a space Z, where z; = (2;1,...,2ix) is a vector
of {0, 1}% such that z;, = 1 if individual x; belongs to the kth group Gy, and
zi = 0 otherwise (i =1,...,n, k=1,...,K). Figure 2.2 gives an illustration
of this principle when d = 2. Model-based clustering allows to reformulate
cluster analysis as a well-posed estimation problem both for the partition z
and for the number K of groups. It considers data x1,...,x, as n i.i.d. real-
izations of a mixture pdf f(-;0x) = Zszl 7 f(; ar), where f(-; ay) indicates
the pdf, parameterized by ay, associated to the group k, where 7 indicates
the mixture proportion of this component (Eszl 7 = 1, m; > 0) and where
Ok = (7, ar, k =1,..., K) indicates the whole mixture parameters. From the
whole data set x it is then possible to obtain a mixture parameter estimate Ox
to deduce a partition estimate # from the conditional probability f(z|x;60x).
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It is also possible to derive an estimate K from an estimate of the marginal
probability f(x|K). More details on mixture models, related estimation of Oy,
z and K are given throughout Chapter ?7.

X = (X1,...,%p) —  z2=(21,...,2,), K =3

Figure 2.2: The clustering purpose illustrated in the two-dimensional setting.

Beyond the nice mathematical background it provides, model-based clus-
tering has led also to numerous and significant practical successes in the “low-
dimensional” setting as Chapter ?? relates, with references therein. Extending
the general framework of model-based clustering to the “high-dimensional” set-
ting is thus a natural and desirable purpose. In principle, the more information
we have about each individual, the better a clustering method is expected to
perform. However the structure of interest may often be contained in a subset
of the available variables and a lot of variables may be useless or even harmful
to detect a reasonable clustering structure. It is thus important to select the
relevant variables from the cluster analysis view point. It is a recent research
topic in contrast to variable selection in regression and classification models
(Kohavi and John [1997]; Guyon and Elisseeff [2003]; Miller [1990]). This new
interest for variable selection in clustering comes from the increasingly frequent
use of these methods on high-dimensional data sets, such as transcriptome data
sets.

Three types of approaches dealing with variable selection in clustering have
been proposed. The first one includes clustering methods with weighted vari-
ables (see for instance Friedman and Meulman [2004]) and dimension reduction
methods. For this later, McLachlan et al. [2002] use a mixture of factor analyz-
ers to reduce the extremely high dimensionality of a gene expression problem. A
suitable Gaussian mixture family is considered in Bouveyron et al. [2007] to take
into account the dimension reduction and the data clustering simultaneously.
In contrast to this first method type, the last two approaches select explicitly
relevant variables. The so-called “filter” approaches select the variables before a
clustering analysis (see for instance Dash et al. [2002]; Jouve and Nicoloyannis
[2005]). Their main weakness is the influence of independent selection step of
the clustering results. In contrast, the so-called “wrapper” approaches combine
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variable selection and clustering. For distance-based methods, one can cite
Fowlkes et al. [1988] for a forward selection approach with complete linkage
hierarchical clustering, Devaney and Ram [1997] who propose a stepwise algo-
rithm where the quality of the feature subsets is measured with the COBWEB
algorithm or the method of Brusco and Cradit [2001] based on the adjusted
Rand index for K-means clustering. There exists also wrapper methods in
the model-based clustering setting. When the number of variables is greater
than the number of individuals, Tadesse et al. [2005] propose a fully Bayesian
method using a reversible jump algorithm to simultaneously choose the num-
ber of mixture components and select variables. Kim et al. [2006] use a similar
approach by formulating clustering in terms of Dirichlet process mixtures. In
Gaussian mixture model clustering, Law et al. [2004] propose to evaluate the
importance of the variables in the clustering process via “feature saliencies” and
use the Minimum Message Length criterion. Raftery and Dean [2006] recast
the problem of comparing two nested variable subsets as a model comparison
problem and address it using Bayes factor. An interesting aspect of their model
formulation is that irrelevant variables are not required to be independent of
the clustering variables. They avoid thus the unrealistic independence assump-
tion between the relevant and irrelevant variables for the clustering, considered
in Tadesse et al. [2005], Kim et al. [2006] and Law et al. [2004]. In their model,
the whole irrelevant variable subset depends on the whole relevant variables
through a linear regression equation. However, some relevant variables are not
necessarily required to explain all irrelevant variables in the linear regression
and their introduction involves additional parameters without a significant in-
crease of the loglikelihood. The related extensions proposed by Maugis et al.
[2009a,b] follow this remark.

Many model proposals already exist, including associated parameter esti-
mation and, sometimes, specific model selection strategies. We will divide
these models into canonical and non-canonical ones, indicating if parameter
constraints are respectively defined relatively to the initial data space or rel-
atively to a transformation (a factorial mapping typically). Before presenting
such models, and their related model selection process, we draw what are the
pros (blessing) and the cons (curse) of having many variables for performing a
cluster analysis process.

2.2 HD clustering: Curse or blessing?

2.2.1 HD density estimation: Curse

In the previous section, we provided some examples of high-dimensional data
sets. In the present section, the aim is to give a somewhat more theoretical
definition of what a high-dimensional data set should be in a density estimation
setting. Such a definition will dramatically depends on the non-parametric and
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on the parametric cases. It also relies on some asymptotic arguments. Remind
that we consider a data set x = (x1,...,X,), X; being described by d variables.

Non-parametric case

In the non-parametric situation, usually x; is considered to rely in a high-
dimensional space as soon as n = o (e?), thus as soon as the logarithm of the
sample size, Inn, is negligible beside the space dimension d. A first justification
of this claim is given by Bellman [1961]: To approximate within error € > 0
a (Lipschitz) function of d variables, about (1/€)? evaluations (provided by
the sample size n...) on a grid are required. A second justification is also
given by Silverman [1986]: Approximating a Gaussian distribution with fixed
Gaussian kernels and with approximate error of about 10% requires a sample
size log;on(d) ~ 0.6(d — 0.25). For instance, with d = 10, n(10) ~ 7.10°,
implying already a huge sample size for a quite moderate dimensional setting.

Parametric case

In the parametric situation, let Sy, be a model described by Dy, continuous
parameters, likely depending on the dimension d. In such a case, the data set
x is said to rely in a high-dimensional space as soon as n is small in comparison
to a particular function g of Dy,, namely n = 0(g(Dm)). As an illustration
for g, we consider the heteroscedastic Gaussian mixture with true parameter
0* and K components. We note 8y the Gaussian MLE with K components.
In that situation, g is a linear function from the following result (Maugis and
Michel [2012]): It exists positive constants x and A such that

Bald (7(56°).£(165))] < [KL(/(567) £(30x) + pent )} + -

where dp denotes the Hellinger distance, KL the Kullback-Leibler divergence
and D D
pen(K) > Phtis {2Alnd+ 1—-In (1 A [—KAlnd}) } .
n n
Thus the HD non-parametric and parametric situations are drastically dif-
ferent in magnitude. However, in practice, Dy can be high since Dx ~ d?/2 in
this Gaussian situation, combined with potentially large constants. For high-
lighting this fact, consider the following two-component multivariate Gaussian
mixture:

. X4|Z1=1~N(0,I), X;|Z1p=1~N(1,T), (2.1)

T = Ty =

N~

with a = (a...a)" a real vector of size d. An illustration of this setting is
displayed in Figure 2.3(a). Note that the two components are more and more
separated when d grows since |1 — 0|y = v/d. However, the quality of the
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mixture density estimate degrades (the Kullback-Leibler divergence increases)
when dimension increases as it is illustrated in Figure 2.3(b) with a homoscedas-
tic model and with equal mixing proportions.

X2
Kullback-Leibler

Figure 2.3: HD curse in the parametric density estimation context: (a) A
bivariate data set example with isodensity of each component and (b) the
Kullback-Leibler divergence of the density estimate when d increases.

2.2.2 HD clustering: A mix of curse and blessing

Contrary to density estimation where increasing dimension has a clear negative
effect, dimension may have both positive and negative effects on the cluster-
ing task. We distinguish now which factors favor such “blessing” or “curse”
outcomes.

Blessing factors

We retrieve the model design (2.1). We display again a corresponding sample
in Figure 2.4(a). We have already mentioned that the two components are
more and more separated when d increases. The reason is that each variable
uniformly provides its own separation information such that the associated
theoretical error decreases when d grows. Indeed, this error is equal to erripe, =
®(—+/d/2), where ® is the cdf of N(0,1). We can see this decrease with d by a
dash line in Figure 2.4(b). An interesting consequence is then that the empirical
error rate decreases also with d as it could be noticed in continuous line in
Figure 2.4(b). It means that increasing dimension may have a positive effect
on the clustering task as soon as all variables convey meaningful information
on the hidden partition.

We propose now to illustrate more drastically this positive effect through a
simple factorial mapping visualization. We consider the three following Gaus-
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w— Empirical
= = = Theoretical

X2

Figure 2.4: HD blessing in the clustering context when most variables convey
independent partitioning information: (a) A bivariate data set example with
isodensity of each component and (b) the theoretical (dash line) and the
empirical (continuous line) error rate when d increases.

sians, all more and more separated when d increases:

—

T = T2 =73 = 3,

X1|Zi1 =1~ N(0,I), Xi|Zi2=1~N2Z1I), Xi|Zi3=1~ N(-2,I),

Then Figure 2.5(a)-(d) displays a related sample of size n = 1000 for differ-
ent dimensions on the main two axes of the Factorial Discriminant Analysis
(FDA) mapping. It clearly appears that components are more and more easily
recognized when dimension increases, although it is a simple visualization pro-
cess. At the limit, no complex clustering algorithm would be enough to identify
clusters. ..

Curse factors

In fact, increasing dimension may have a positive effect on clustering retrieval
only if variables inject some partioning information. In addition, such informa-
tion has to be not redundant. We illustrate now these two particular features.

Firstly, we consider many variables which provide no separation information.
We retrieve the same parameter setting as (2.1) except that the components
are not more separated when d grows since |2 — g1l = 1, where g = 0 is
the center of the first Gaussian and where ps = (1 0 ... 0)’ is the one of the
second, thus (k =1,2)

Xi1|Zik =1 ~ N(py, I). (2:2)

A sample is displayed on Figure 2.6(a). Figure 2.6(b) shows in dash line that
the theoretical error rate is constant (it corresponds to errpe, = @(—%)) when
the dimension increases, as expected. Consequently, the empirical error rate
degrades in this situation (continuous line of the same figure).
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d=2 d=20

2nd axis FDA
2nd axis FDA

s 0 05
1st axis FDA

(b)

d=400

2nd axis FDA
2nd axis FDA

5 0 - 05
1st axis FDA

(c) (d)

Figure 2.5: Factorial Discriminant Analysis (FDA) on the main two factorial
axes of three Gaussian components more and more separated when the space
dimension increases: (a) d =2, (b) d = 20, (c) d = 200 and d = 400.

s o 05
1st axis FDA

Secondly, we consider a case where many variables provide separation, but
redundant information, in the following sense: It is the same parameter setting
as before for the first dimension except for all other ones

Xi; = X1 +¢5, where Ej%lN(O,l) (]:2,,d) (23)

See a data example in Figure 2.7(a). Thus, components are not more separated
when d grows since |2 — p1]]s = 1, ¥ denoting the common covariance matrix
of each Gaussian component, and gy denoting the center of the component
k = 1,2 (note that both gy and 3 could be easily computed from Equation (2.2)
and (2.3)). Consequently, errye, = fb(—%) is constant and the empirical error
increases with d, as illustrated in Figure 2.7(b) with previous conventions.

2.2.3 Intermediate conclusion

In case where variables have important blessing consequences for the clustering
performance, it is important to perform the clustering task in the whole data
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X2

w— Empirical
036t "
= = = Theoretical

Figure 2.6: HD curse in the clustering context when variables convey no
partitioning information: (a) A bivariate data set example with isodensity of
each component and (b) the theoretical (dash line) and the empirical
(continuous line) error rate when d increases.

X2

w— Empirical
= = = Theoretical

Figure 2.7: HD curse in the clustering context when variables convey
redundant partitioning information: (a) A bivariate data set example with
isodensity of each component and (b) the theoretical (dash line) and the
empirical (continuous line) error rate when d increases.

space. In particular, “filter” methods performing variable selection before the
clustering task have to be excluded, the risk of removing discriminant features
being too large. The remaining question is then which “wrapper” methods to be
used? Such methods should “manage” with priority the fact that some variables
have negative effects for clustering. The general answer is to design specific
parsimonious models for clustering, the most emblematic ones relying on some
variable selection principle. We will see also several alternative strategies, in
particular variable clustering (to not be mingled with individual clustering, our
primary task), aiming at assigning different roles (“clusters”) to the variables.
Such a principle is quite widespread in fact (in the canonical data space or in
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a transformed space) even if it is not often initially described with this point
of view.

Behing this model design which is the first step of high-dimensional model-
based clustering, the question of model selection is then asked. In some situa-
tions, traditional model selection criteria could be directly applied. However, in
many cases, two kinds of difficulties may happen. Firstly, the number of com-
peting models avoids to enumerate all possible models which compete. Typi-
cally, in a variable selection context the number of possibilities is combinatorial.
In such a case, strategies for designing an intelligent path in a relevant subset
of models is a possible answer. Secondly, validity of traditional model selection
criteria themselves can be challenged, requiring some original proposals.

In the rest of this chapter, we will give an overview of the main high-
dimensional clustering methods. We will systematically highlight novelty of
the proposed models, possible connections between them (variable selection or
variable clustering, initial space or non-canonical space) and issues for model
selection (criteria and strategies of use).

2.3 Non-canonical models

As discussed previously, models designed for high-dimensional clustering rely
on parsimonious definition of related parameters. In this section, we focus
on situations where parsimony is injected through parameters defined in a
transformed feature space, called here non-canonical feature space. We consider
this case before the canonical feature space situation (next section) since it is
somewhat related to the pioneering idea of filtering. Indeed, factorial analysis
(for instance principal component analysis in the continuous case) was first
conducted for selecting (new) variables before applying any clustering method
on them. Here, ideas are related but with a wrapper point of view. Most
situations address continuous features.

2.3.1 Gaussian mixture of factor analysers

In Gaussian model-based clustering, increasing the number of variables has
its main effect on the number of parameters included in the covariance ma-
trices X, since it is of quadratic order. Consequently, most methods aim at
introducing parsimony first on 3. History and details could be found in Bou-
veyron and Brunet [2014]. In particular, Ghahramani and Hinton [1997] and
McLachlan [2003] design the following reparameterization of 3j:

X = BkB;g + wr A

where By, is a loadings d x ¢ non-square real matrix (1 < ¢ < gax, ¢max < d),
wy, is a positive real number and Ay is a d x d diagonal positive definite matrix
such that |Ag| = 1. For a well understanding of the underlined motivation,
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it is equivalent to assuming X; € R? to be generated by the following latent
variable Y; € RY lying in a smaller (latent) space than R?

Xi|Y1,Z1, =1=Br Y1 + pi, + €

where Y7 L e (L denoting independence), Y1 ~ N(0,I) and e ~ N(0, wrAy).
In this layout, Y7 is called the factor, by straightforward analogy to factor
analysis methods. Estimation is performed through an alternating expectation-
condition maximization (AECM) algorithm (Meng and van Dyke [1997]).

Complexity of such a model is equal to Dy, = (K — 1)+ Kd + Kqld — (¢ —
1)/2] + Kd, where it can be seen that the quadratic part has vanished. In fact,
it corresponds to the most complex model of a whole family, McNicholas and
Murphy [2008] having defined 12 associated parsimonious versions, including
for instance inter-class equality between By, identity of Ay = I, etc. Finally,
models in competition (Sm)mem gather the combinations non only of these
12 parsimonious versions but also of the couples (g, K) of the latent dimension
and of the number of components. In practice, gmax is expected to be quite
low for parsimonious reasons and thus the cardinal of M is not excessively
high. Traditional model selection criteria (as BIC) can then be directly applied
on this collection. The R package PGMM? provides an implementation of this
method.

2.3.2 HD Gaussian mixture models

Bouveyron et al. [2007] propose another way for obtaining parsimony on the
covariance matrices 3. It relays on the following spectral decomposition

¥, = DyA,D),

where Dy, is the orthogonal matrix of the eigenvectors of 3 and Ay is a
diagonal matrix containing the related eigenvalues. They impose Ay to follow
the parsimonious structure

ar1 0

ag
Ak — qk

b 0
0 (d—qr)
0 by

with ap; > by > 0, for j = 1,...,¢qx and ¢ < d. Such an assumption can
be somewhat related to a kind of principal component analysis per Gaussian
group. It could also be viewed as a kind of variable clustering selection, the

2http://cran.r-project.org/web/packages/pgmm/index .html
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d — qr, remaining variables of Ay, corresponding to a group of “noisy” features.
Figure 2.8 illustrates a three dimensional (d = 3) and two components situation
(K = 2) where both subspace dimensions ¢; and g2 are equal (g1 = g2 = 2) but
differ in orientation. Estimation can easily performed through an EM algorithm
for instance.

Figure 2.8: Illustration of the HD clustering mixture Gaussian model in a two
components situation (provided by Bouveyron et al. [2007]).

Complexity of such a model is given Dy, = (K — 1) + Kd + Ele qrld —
(g +1)/2] + Zszl gr + 2K. In addition, Bouveyron et al. [2007] propose
eight parsimonious versions by imposing for instance equality between sub-
space dimensions (qx = ¢, for all k), etc. Finally, the whole model family
(Sm)menm includes couples ((q1,...,qx), K) of subspace dimension and num-
ber of components, combined with the eight models. Since gx may depend on
the component, contrary to the Gaussian mixture of factor analysers described
in the previous section, the number of models becomes combinatorial. Then, it
may be difficult in the HD setting to browse all models for applying a BIC-like
criterion for instance. Consequently, Bouveyron et al. [2007] propose a kind of
rule of thumb criterion for selecting each g, looking for a break in the eigen-
value scree of the empirical covariance matrix for each group component, the
so-called scree test of Cattell [Cattell, 1966]. The RMIXMOD package® (Lebret
et al. [2015]) implements these models.

2.3.3 Functional data
Functional and discretized data

Strictly speaking, real functional data (Ramsay and Silverman [2005], Ferraty
and Vieu [2006]) correspond to i = 1,...,n curves which are realizations of
n random variables linked to n L2-continuous real-valued stochastic processes
Y; = {Yi(t) € R,t € [0,T]} taking values in a Hilbert space H of functions
defined on the (time) interval [0,7]. Thus, it corresponds to an infinite di-
mensional space. Since most functional data are longitudinal, we adopt here

3http://cran.r-project.org/web/packages/Rmixmod/index . html
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the convention of parameterizing models in terms of time. However, it applies
equally well with any other features as angle, length, etc. In addition, exten-
sions are possible for multivariate curves, it means that individual ¢ is described
by several curves (see for instance James and Sugar [2003] or Jacques and Preda
[2014Db]).

In practice, each Y is unobserved for two, essentially technological, reasons.
Firstly, the n curves Y; are discretized each in m; time-points {Y;(t;5),0 < s <
m;,tis € [0,T]}. Secondly, an error on observation is usually present such
that only m; ordered time-points {X;(tis),0 < s < my,t;s € [0,T]} (i =
1,...,n) are available for each curve. For instance, the following relationship
between discretized (unobserved) values Y;(t;s) and noisy (observed) values
X;(t;s) could be assumed:

Xi(tis) = Yi(tis) + €is, (2.4)

where €;, has zero mean and is uncorrelated with each other and Y;(t;s). Other
assumptions are possible as we will see below.

We refer to Jacques and Preda [2014a] for a general review on clustering for
functional data, including the model-based one. Difficulty of performing unan-
imous clustering on generative distributions comes from the fact that, contrary
to the finite-dimensional setting, the notion of density probability is generally
not defined for functional random variable (Delaigle and Hall [2010]). Con-
sequently, related techniques require defining density probabilities in a finite-
dimensional space, leading to multiple and different implementations.

In this chapter, we divide model-based clustering techniques into two differ-
ent categories: these ones where the generative model is explicitly defined on
the observed values X; = {X(t;5),0 < s < m;,t;s € [0,T]},i=1,...,n, and
these ones for which it is not the case. Indeed, this split will have important
consequences for some aspects concerning model selection.

Clustering with no ezplicit distribution on X;

Usually, the first step before a clustering method is to reconstruct the initial
functional form of data. It can then be viewed as a preprocessing step (“filter-
ing” method). It often relies on the assumption that the unobserved curve Y;
can be expressed in a basis of d functions {¢;};=1, .4, for instance B-splines
or wavelets, in the following form:

d
Yi(t) =) 75 (6)-
j=1

Using then the regression (2.4) hypothesis, traditional least squared coefficients
estimates are obtained by

Fi = (@9 ' @X,
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where ®; = (¢;(t;s)) is a m; x d matrix gathering the value of each basis func-
tion for each time discretization knot. Finally, standard model-based clustering
techniques (typically multivariate Gaussian mixtures, eventually HD variants
previously described in Sections 2.3.1 and 2.3.2) can be directly applied on
the estimated coefficients 4;. The partition on individuals X; is obtained as a
simple by-product, being the same as this one of individuals 4;.

Instead of partitioning the basis coefficients 4;, a model-based clustering
technique can be alternatively applied to some principal component scores
resulting from functional principal component analysis (FPCA) of the pre-
vious reconstructed curves. In practice, the computational process for im-
plementing FPCA consists of performing a standard (centered) PCA to the
matrix TWT'T, where T = (¥;;) is the n x d matrix of estimated coefficients,
T = %I is the n x n matrix of weights for curves, I' is the n x d matrix of
centered coefficients of T' and W is the d x d matrix of the inner products
wij = fOT () (t)dt (1 < j,7° < d) (it acts like a metric). Thus, the jth
principal component score C; is the jth eigenvector associated to the largest
jth eigenvalue:

T'WI'TC, = o;C;.

As usual with PCA, FPCA performs a kind of variable ordering. Finally,
clustering is performed on a truncating principal component scores Cy, ..., Cg,
with ¢ < d.

From a model selection point of view, both previous methods allow to use
some information criteria like BIC for selecting the number K of components.
However, it is not really possible to use them for selecting other parts of the
model which are the functional basis {¢;},=1....,4¢ and, specifically to FPCA,
the truncation of order q.

Clustering with explicit distribution on X;

Ideally, for beneficing from the whole mathematical statistics corpus, model-

based clustering techniques would require a distribution on all X; = (X;(t;s),0 <
s <my,tis €10,T]),4=1,...,n. First of all, it is important to notice that per-

forming the clustering task directly with observed values X;’s as if they would

correspond to classical multivariate values is not desirable, even if it could meet

this goal. The first reason is that each X; does not necessarily rely in the same

space dimension (here m; for each), even if in practice it could be often the

case. The second and the most important reason is that working with such raw

data wastes order information on them.

Contrary to the raw data case, several techniques propose distributions on
X; which take all the functional data specificity into account. Jacques and
Preda [2013] perform FPCA by group, leading to principal components per
group noted Cjjx. In addition, they assume a Gaussian distribution of the C;jy,
leading to conditional independence of them since being already uncorrelated.
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It leads to the following Gaussian mixture model, relying on a truncation of
order 1 < ¢ < d for each component:

K qk
Fxi;0) = > m [ [ 6(Cijis 0, )
k=1 j=1

where ¢(+;0, ajx) is the univariate Gaussian density of mean zero (scores Cjj,
are centered) and variance ag; (corresponding also to eigenvalues). Then, pa-
rameter estimation is provided through an EM-like algorithm for maximizing
the (pseudo) log-likelihood, where both steps are the following:

E-step Compute conditional probabilities t;; oc Hg—":l &(Cijk; 0, ag;) as usual.

M-step First, principal scores are updated. Notice that weights T} depend
now on t;;’s, I'y, too. Second, perform the gj truncation order selection
by detecting a kind of elbow in the eigenvalues by the scree test of Cat-
tell (Cattell [1966]). Finally, parameters 7 are computed as usual and
parameters oy, are already given from previous conditional FPCA.

This process is implemented in the R FUNCLUST* package. As an illustration,
this package is applied to kneading curves, which are described in Section 2.1,
in Figure 2.9. From a model selection point of view, there are some important
remarks. Strickly speaking, it is just a pseudo likelihood method since data
Cij; are changing at each iteration step of EM. Consequently, using selection
criteria like BIC could be hazardous for choosing K, ¢i or the functional basis.
However, in practice, BIC works well for choosing K. However, it is not used
for selecting g, as previous said, for limiting computing time. No attempt for
choosing the basis is performed.

600

Dough resistance
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Figure 2.9: n = 115 kneading curves observed at d = 241 equispaced instants
of time in the interval [0; 480]: (a) raw curves, (b) three groups partioning
curves with the FUNCLUST package.

Alternatively, James and Sugar [2003] consider randomness directly on the
basis coefficients «;. They assume that -; arises from a homoscedastic Gaussian

4http://cran.r-project.org/web/packages/Funclustering/index.html
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multivariate model which, coupling with (2.4), provides the following regres-
sion model, conditionally on the ith curve belonging to the kth cluster (so
conditional to Z;, = 1) :

X =®;(pr +€) + e,

where €; ~ N(0,X) and €; ~ N(0, 0%I). Also, some parsimonious assumptions
are made on centers pg. Then, an EM algorithm allows to estimate all param-
eters. Contrary to the model of Jacques and Preda [2013] described just above,
we are now faced to an unambiguous generative approach allowing straightfor-
ward model selection with any classical criterion for choosing every quantity
of interest (the number K of clusters, the basis {¢;} and the parsimony of
all means py), even if the authors prefer to use a so-called “distortion func-
tion” criterion for selecting K faster since avoiding EM computations for all K
values.

In the same spirit as James and Sugar [2003], Samé et al. [2011] give an-
other regression model providing a full generative, flexible and parsimonious
distribution on the X;’s. They assume that the curves arise from a mixture
of regressions on a basis of polynomial functions (the order to be given by
model selection), with possible changes in regime at each instant of time. The
mixing proportions are defined by logistic functions for allowing segmentation
in time. An EM procedure is performed for estimation and several parsimo-
nious versions are described. This full generative distribution allows again full
model selection (number of clusters, polynomial order of the basis function and
number of regime changes) in any standard way. However, as in many pre-
vious settings, the number of competing models can increase drastically. For
instance, the basic functions can change by regime, multiplying combinations.

2.3.4 Intermediate conclusion

Many parsimonious modelling solutions exist for dealing with HD data, con-
cerning as well independent and functional data, even if some gaps remain to
be filled like categorical functional data or also mixed (continuous and cate-
gorical typically) multivariate functional data. Most of existing models rely
on a generative distribution on the data space, allowing direct use of standard
selection criteria. However, the crucial question is focused on the multiplicity
of models to be compared. It is the reason why some authors favor some more
empirical, but fast, rules for model selection.

We guess that future researches should address new advances for fast selec-
tion of multiple models in a short allocated time. In the next section, devoted
to canonical model setting, we will see early several attempts for this purpose,
for instance by designing a particular strategy in the model space, avoiding all
model evaluation.
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2.4 Canonical models

We address now models for HD data which position parsimony assumptions
directly on the initial (or canonical) variable space. Advantage of such ap-
proaches, beside non-canonical ones, is a great model readibility for the prac-
titioner. Indeed, this one is usually more accustomed to his variable set than
to a somewhat more artificial set, as the factorial features could be sometimes.

In this context, this chapter tackles important notions: variable selection,
variable clustering, model selection validity and also strategies for dealing with
model multiplicity.

2.4.1 Parsimonious mixture models

Classical mixture models have already been presented in Chapter 7?7, Sec-
tion 77. It gathers in particular the Gaussian mixture model for the continuous
case and the latent multinomial mixture model for the categorical case, includ-
ing also many parsimonious variants. Dealing with HD data impose to consider
essentially some of the most parsimonious ones thus there is a need to provide
more details in this section. Then, extension to the mixed case (merging con-
tinuous and categorical features) is presented as a straightforward extension.
All these models are implemented in the R package RMIXMOD?®. Finally, we will
present a new attempt for variable selection in the continuous, categorical and
mixed situations.

Spherical and diagonal Gaussian mixtures for continuous variables

We consider data sets x = (x1,...,X,), with x; € R<¢. The most parsimonious
Gaussian mixture models defined by Celeux and Govaert [1995] belong to the
so-called spherical and diagonal families. An example of diagonal model is given
in Figure 2.10. Using notations already provided in Section ?? of Chapter 77,
their most complex versions respectively correspond to constraints X, = Al
and X, = A\;Bj on the covariance matrix 3j of the kth component, where
M = |Zg|4 and By diagonal with |By| = 1. Including some parsimonious
versions, which allow some parts to vary or not between components, a total
of two spherical and four diagonal models are available. All models, and their
respective number of parameters, are displayed in Table 2.1. Model selection
can be easily performed by traditional criteria, like BIC.

Latent class model for categorical variables

We consider now data sets x = (x1,...,Xy), each x; containing d categori-
cal variables, the jth having m; response levels. The coding x; = (27

i

h, ;o _
7.7_

Shttp://cran.r-project.org/web/packages/Rmixmod/index.html
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Figure 2.10: Isodensity of a two-components diagonal Gaussian mixture in
the three-dimensional space.

Family Model Number of parameters
[AB] dim(w) + Kd + d
diagonal [A:B]  dim(w) + Kd+d+ K -1
[ABg] dim(w) +2Kd — K +1
[A:Bg] dim(w) + 2Kd
spherical M) dim(w) + Kd+ 1
[AeI] dim(w) + Kd+ K

Table 2.1: Some characteristics of the two spherical and the four diagonal
models. We have dim(7) = K — 1 in the case of free proportions and
dim(7r) = 0 in the case of equal proportions.

1,...,d;h =1,...,m;) indicates that 2" = 1 if 7 has response level h for vari-
able j and 27" = 0 otherwise. The standard model for clustering observations
described through categorical variables is the so-called latent class model (see
for instance Goodman [1974]). Data are assumed to arise independently from
a mixture of K multivariate multinomial distributions with pdf

3

K J o
Fxii0) = m [T [[ (e (2.5)
1

d
k=1 j=1h

where 8 = (7, &) denotes the vector parameter of the latent class model to be
estimated, with & = (g, ..., ak) and o, = (afﬂh;j =1,....,d;h=1,...,m;),
aih denoting the probability that variable j has level h if object ¢ is in cluster
k. Thus, the latent class model assumes that the variables are conditionally
independent knowing the latent groups.
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Lebret et al. [2015] propose four parsimonious versions, with thus a to-
tal of five models. They correspond to an extension of the parameteriza-
tion of Bernoulli distributions used by Celeux and Govaert [1991] for clus-
tering and also by Aitchinson and Aitken [1976] for kernel discriminant anal-
ysis. The basic idea is to impose the vector ai = (ail, RN aimj) to take the
form (B,...,80,7, 8%, L) with 7 > B]. Since Y3, o] = 1, we have
(mj —1)B] +j, = 1 and, consequently, 3], = (1 —])/(m; —1). The constraint

vi > B} becomes finally 7; > 1/m;. Then, the vector a, can be broken up

into the two following parameters:

. ai = (ail, e aimj) where aih = 1 if h corresponds to the rank of fy,i (in

the following, this rank will be noted h(k, 7)), 0 otherwise;

e ¢} = 1—~] which corresponds to the probability that the data x; arising

from the kth component are such that 27" %7 £ 1.

In other words, the multinomial distribution associated to the jth variable
of the kth component is reparameterized by a center aj and the dispersion
g7, around this center. Thus, it allows us to give an interpretation similar to
the center and the variance matrix used for continuous data in the Gaussian
mixture context. Finally, the relationship between the initial parameterization

and the new one is given by:

ih_ 1—¢ if h = h(k,j) 06
U { e7./(m; —1) otherwise. (26)

In the following, this model will be denoted by [sfc] In this context, three other
models can be easily deduced. We note [ej] the model where si is independent
of the variable j, [¢7] the model where si is independent of the component &
and, finally, [¢] the model where si is independent of both the variable j and
the component k. In order to maintain some unity in the notation, we will
denote also [5{?] the most general model initially introduced. The number of
free parameters associated to each model is given in Table 2.2. Again, model
selection can be easily performed by traditional criteria, like BIC.

Mixed data models

It is frequent in practice to mix continuous and categorical data. Thus the
ith individual is composed by two parts, x; = (x¢"f x§%t), x¢" and x§**
designing the continuous and the categorical ones respectively. In that case, it
is easy to combine (diagonal) parsimonious Gaussian mixture and latent class

model by conditional independence [Moustaki and Papageorgiou, 2005]:

f(X; ak) — f(xcont; agont) X f(Xcat; agat)
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Model Number of parameters
[€] dim(7) + 1
[€7] dim(w) +d
[ek] dim(7) + K
A dim(m) + Kd
€] dim(m) + K375 (m; — 1)

Table 2.2: Number of free parameters of the five multinomial models. We
have dim(7) = K — 1 in the case of free proportions and dim(s) = 0 in the
case of equal proportions.

with ay, = (o™, a ) (see also Section 77 in Chapter ??). Then, the previous

six Gaussian mixture models and the five multinomial mixture models can be
combined, defining straightforwardly 30 new mixed models. Classical criteria
can be used for selecting them, with also the number of clusters K.

Although previously described models, in the continuous, categorical or
mixed data situations, are the most parsimonious ones in their respective fam-
ilies, they are not really designed for realistic HD situations involving several
thousands of variables for instance. Indeed, their parameter number remains
too high in such cases.

Variable selection has always been a natural answer for HD clustering as
already discussed in the beginning of this chapter. Typically, filtering methods
relying on a preliminary factorial analysis step then cut the number of factorial
variables to be retained. However, in model-based clustering involving a full
wrapping approach, the difficulty is to integrate properly this selection step
in the model itself. Thus, we discuss now more suitable methods for the HD
situation.

2.4.2 Variable selection through regularization

In this section, we focus on the variable selection problem in the Gaussian
mixture clustering context.

{1-penalization procedures

Inspired by the success of the Lasso regression, Pan and Shen [2007] propose to
take advantage of the sparsity property of ¢;-penalization of the likelihood to
perform automatic variable selection for high-dimensional model-based cluster-
ing. Their procedure, called PS-Lasso in the sequel, consists of using a Lasso
method to select relevant clustering variables and estimate mixture parameters
in the same exercise. The covariance matrices are assumed to be identical and
diagonal (), = V = diag(c?,...,02)) and an ¢; penalty is considered on mean
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parameters. For any K € N*| the following function has to be maximized:

BK Hiln

=1

K K
Zw(ii;uk’V)l =AY el (2.7)
=1 k=1

d
where O = (m, p1,- ., o, V), wnlly =X |uwg|s %i = (215 — %j)1<5<p with
j=1

X; = %Z?:l xij, A is a non-negative regularization parameter and ¢(-; p, X)
denotes the multivariate Gaussian density of center pu and covariance matrix
3. An EM-algorithm is proposed to solve this parameter estimation problem.
Next, a modified BIC criterion is used to select K and A:

n K
BIC(x ) = —2In HZWW(Xi;Hk,V) +In(n)D (g
i=1 k=1

where Dk ») = (K — 1)+ Kd+d — g, g denoting the number of the maximum
penalized likelihood estimate mean components that are equal to 0.

This approach was successively extended in Zhou et al. [2009] (Gaussian
mixtures with diagonal covariance matrices) and finally in Zhou et al. [2009].
In this last paper, a regularized Gaussian mixture model with unconstrained
covariance matrices is proposed. They employ a ¢; penalty on mean parameters
and on covariance matrices as follows:

n K
0 — Zln [Z Tk (Xi; Bk, 2k)
k=1

K K
=AY sl = 1=, (28)
k=1 k=1

=1
where
d d
leelly =D s 120 = D0 1B
j=1 7,3’ =1
i#i’

and where A and p are two non-negative regularization parameters. This pa-
rameter estimation problem is solved using an EM algorithm where the so-called
glasso algorithm (Friedman et al. [2007]) is used to estimate sparse precision
matrices 2;1.

Lasso-MLE procedure

In Meynet [2012] and Meynet and Maugis-Rabusseau [2012], they highlight
that the ¢;-penalization induces shrinkage of the coefficients and thus biased
estimators with high estimation risk. Moreover, the use of a BIC-type cri-
terion for the model selection can be unsuitable for high-dimensional data.
Consequently, they propose to only use an ¢1-penalized likelihood approach to
determine potential sets of relevant variables. This allows to efficiently con-
struct a data-driven model subcollection with reasonable complexity, even for
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high-dimensional situations. The evaluation of the MLE rather than the ¢;-
penalized estimator for each model is considered to avoid estimation problems
due to ¢;-penalization shrinkage. More precisely, the data x = (x1,...,X,)
are assumed to have a null expectation (in practice, empirical centering of the
data is performed to ensure this assumption) and their unknown density f is
estimated by a finite spherical Gaussian mixture. The clusters are character-
ized by the mean parameters (ux)1<k<x and a variable j is called irrelevant
for the clustering if u; = 0 for all k =1,..., K; otherwise it is called relevant.
The relevant variable subset (resp. irrelevant variable subset) is denoted by J,.
(resp. JE = {1,...,d}\ J;). Consequently, the variable selection problem is
recast into a model selection problem, where the model collection is (S(k, ,))
with
K e

x; R f(x50) = | S 0 d(x); pg, 021) qS(x;]T;O,ozI)
S(K7JT) = k=1 s

0= (1., T 1, i, 02) € T x (RIS 5 R

x;jr denoting the restriction of x; on J,., |J;| corresponding to the cardinal
of J, and Ik denoting the simplex related to parameters (71,...,7x). The
dimension of amodel Sk j,) corresponds to the total number of free parameters
estimated in the model: Dk 5y = K(1+ |J,]).

The so-called Lasso-MLE procedure proposed in Meynet and Maugis-Rabusseau
[2012] is decomposed into three main steps. In the first step, as Pan and Shen
[2007], an ¢1-approach is considered: For each (K, \) € N* x G (G, is a given
grid on A), the Lasso estimator O(LK, ») 18 computed by maximizing (2.7) and
the associated relevant variable subset is

J(K)\) ={je{l,...,d}: Ik e{l,...,K} such that i #0}.

Thus a random model subcollection {S(x 5,y : (K,J.) € MF} is obtained,
where
ME={(K,J,): KeN,J. € | Tl
PYSIEN

The second step consists of computing the MLE é( K,J,) using the standard
EM algorithm for each model (K,J,) € M. The third step is devoted to
model selection. As in Maugis and Michel [2012], a non asymptotic penalized
criterion is proposed to solve the model selection problem. By extending the
general model selection theorem of Massart [2007] (Theorem 7.11) (see also

Section ?? in Chapter??) (demander ref a Pascal dans le book), Meynet [2012]
proves that the penalty is
e (5]
pen =Kr1———= |1+ Koln , 2.9
(K.J,) - Do (2.9)

where k1 and ko are two unknown constants. As expected, the penalty is
proportional to the model dimension. The logarithmic term quantifies the
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model collection complexity by taking into account the possible large number
of models with identical dimension. Nevertheless this logarithm term becomes
unnecessary if the number of models with the same dimension is small enough.
For instance, for finite Gaussian mixture models in a low-dimensional setting,
a penalty proportional to the dimension is sufficient to select a model close
to the oracle (Maugis and Michel [2011]). But in the high-dimensional con-
text, the number of models having the same dimension is expected to grow.
Nonetheless, thanks to the random preselection of relevant variables subsets, a
complete variable selection is not performed here. Thus, if the random model
subcollection is much poorer than the whole model collection and contains few
models with the same dimension, a penalty proportional to the dimension

Dk,

n

pen g, g,y = (2.10)
might be sufficient to select a model with proper dimension. Next, the penalty
depending on unknown multiplicative constants is calibrated using the so-called
slope heuristics [Birgé and Massart, 2007; Baudry et al., 2012].

Comparing PS-Lasso and Lasso-MLE

To compare the Lasso-MLE and PS-Lasso procedures, the following simulated
example is proposed in Meynet and Maugis-Rabusseau [2012]. The data set
consists of n = 200 observations described by d = 1 000 variables. The data are
simulated according to a mixture of two Gaussian distributions m ¢(-; 0g,I) +
(1 = m1)é(; po,I) where po = (1.5,...,1.5,0950) and 7m; = 0.85. The relevant
variables are the first fifty variables (J = {1,...,50}). 20 simulations of the
data set are performed. For each simulation, models with K € {1, 2, 3} clusters
are considered. The results are summarized in Table 2.3. Table 2.3 shows that

Procedure  Estimator TR FR 1 I; 3 ARI
S Laseo oracle  50.3 (0.2) 214.6 (79.0) 0 16 4 0.90 (0.03)
BIC  49.7(0.8) 143 (34) 0 18 2 0.86(0.02)
oracle  50.0 (0.0) 02(02) 0 20 0 0.5 (0.02)
AIC  50.0(0.0) 17.1(42) 0 14 6 0.90 (0.04)
Lasso-MLE  pro 498 (0.4) 44(22) 0 20 0 0.92(0.02)
DDSE  50.0 (0.0) 24(1.7) 0 20 0 0.94(0.02)

Table 2.3: Averaged number of true relevant (TR) and false relevant (FR)
variables (£ standard deviation); number of times a clustering with K=1,2
and 3 components is selected; Averaged ARI (£ standard deviation) over the

20 simulations. DDSE stands for data-driven slope estimation.

the PS-Lasso oracle model, and to a lesser extend the model selected by BIC,
contain many false relevant variables and may overestimate the number of
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mixture components. This confirms that the PS-Lasso procedure is not suited
to recover the true model and the true relevant variables. Moreover, BIC data
clustering is disappointing. In contrast, the Lasso-MLE oracle model always
coincides with the true model and leads to a very good data clustering. The

data-driven slope estimation (2.10) achieves better performance than BIC and
AIC.

2.4.3 Variable role modelling
SRUW modelling

In this section, we focus on variable selection procedures in model-based clus-
tering which are based on variable role modelling without variable transforma-
tion. After a series of papers (Law et al. [2004]; Tadesse et al. [2005]; Raftery
and Dean [2006]; Maugis et al. [2009a]), Maugis et al. [2009¢] propose a general
model for selecting variables for clustering with Gaussian mixtures. This model,
called SRUW, distinguishes between relevant variables (S) and irrelevant vari-
ables (S°¢) for clustering. In addition, the irrelevant variables are divided into
two categories. A part of the irrelevant variables (U) may be dependent on a
subset R of the relevant variables and another part (W) are independent of
other variables. Thus the data density is assumed to be decomposed into three
parts as follows:

K

Fxilm; 0) => " mep(x7; pi, Ti) x d(x;a+xb, Q) x ¢(x]¥;7,T)
k=1

where x? designates the restriction of x; in the set of variables S (similarly
for U, R and W), 0 = ((wk,uk,Ek)szl,a,b,Q,'y,I‘) is the full parameter
vector (with straightforward dimensions for each of its components) and m =
(K,mys, mq,mr, S, R,U, W) is the full model index with my, mg and mr
denoting the form of the relevant covariance matrices (X)X |, the form of
the regression variance matrix {2 and the form of the covariance matrix I" of
the independent variables W respectively. It can be any structure defined by
Celeux and Govaert [1995] for my, a spherical, diagonal or general structure
for mgo and a spherical or diagonal structure for my.

The SRUW model generalizes several previous model selection methods.
The procedure of Law et al. [2004], where irrelevant variables are assumed to be
independent of all the relevant variables, corresponds to W =S¢, R=0, U =
(). The variable selection procedure of Raftery and Dean |2006], available in the
R package CLUSTVARSEL®, assumes that the irrelevant variables are regressed
on the whole relevant variable set (W = 0, U = S° and R = S). The
generalization of Maugis et al. [2009a] enriches this model by allowing the
irrelevant variables to be explained by only a subset of the relevant variables

Shttps://cran.r-project.org/web/packages/clustvarsel/index.html
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RcC S (W =0,U = S°; this method is implemented in the SELVARCLUST

software’.

The SRUW method recasts the variable selection problem for model-based
clustering as a model selection problem. It is solved maximizing the following
BIC-type criterion:

critm = BIC{i g ) (x°) + BICss, (xV | x™) + BICh (x*), (2.11)

where BIC{""'s) represents the BIC criterion of the Gaussian mixture model
with the variables S, BIC:,SU, R) Tepresents the BIC criterion of the regression
model of the variables U on the variables R and BICi(‘_‘f’;“}) represents the BIC
criterion of the Gaussian model with the variables W.

Since the SRUW model collection is large, two embedded backward or for-
ward stepwise algorithms for variable selection, one for the clustering and one
for the linear regression, are considered to solve this model selection prob-
lem. A backward algorithm allows one to start with all variables in order to
take variable interactions into account. A forward procedure, starting with an
empty clustering variable set or a small variable subset, could be preferred for
numerical reasons if there are numerous variables. The method is implemented
in the SELVARCLUSTINDEP software.® The two embedded stepwise variable se-
lection algorithms are used to identify the SRUW sets. It leads to compare two
models at each step in order to determine which variable should be excluded or
included in the set S, R, U or W. But in a high-dimensional setting, even the
variable selection method with the two forward stepwise algorithms becomes
painfully slow and alternative methods are desirable.

SelvarMix procedure

In order to avoid the highly CPU-time consuming of stepwise algorithms of
SELVARCLUSTINDEP, an alternative variable selection procedure in two steps
is proposed by Sedki et al. [2014]. This variable selection procedure is imple-
mented in the R package SELVARMIX®.

In the first step, the variables are ranked through the Lasso-like procedure
of Zhou et al. [2009] (see Section 2.4.2). For any K € N* and two non-negative
regularization parameters A and p on two grids of values Gy and G,, the cri-
terion defined in Equation (2.8) is maximized. The estimated mixture param-
eters Ox (A, p) = (7r(\, p), (e (A, p)), (Zk(\, p)))E, are computed with the
EM algorithm of Zhou et al. [2009]. It is worth noting that this Lasso-like
criterion does not take into account the typology of the variables induced by
the SRUW model. Strictly speaking, it only distinguishes two possible roles for
the variables: a variable is declared related or independent of the clustering.

7SELVARCLUST is available at http://www.math.univ-toulouse.fr/ maugis/
8 SELVARCLUSTINDEP is available at http://www.math.univ-toulouse.fr/"maugis/
%https://cran.r-project.org/web/packages/SelvarMix/index.html
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Varying the regularization parameters (A, p) in Gx x G,, a score is defined for
each variable j € {1,...,d} and for fixed K:

Ox() = Y.  (1=Ta,000==fis;(r0)=0) -
(Ap)EGAXG),

The larger Ok (j), the more related for the clustering the variable j is expected
to be. The variables are thus ranked by their decreasing values on Ok (), this
variable ranking being noted Zx = (j1, ..., Jd)-

Conditional to a model (K, my;, mgq, mr) composed by the number of groups
and all the structures of covariance matrices, the relevant clustering variable
set S is first determined. The variable set is scanned according to the Zx order.
One variable is added to S if

BIC*'(ju) = BIC{ iy (x7,x)
BICH g (x5) = BIC;, (x| x704))

is positive, R[j,] being the variables of S required to linearly explain x’>. The
scanning of Tk is stopped as soon as ¢ successive variables have a non positive
BIC"" value, ¢ being a fixed positive integer. Next the independent variable set
W is determined as follows: Scanning the variable set according to the reverse
order of T, a variable j, is added to W if the subset R][j,] of S (derived from
the backward stepwise algorithm) is empty. The algorithm stops as soon as ¢
successive variables are not declared independent. The redundant variables are
thus declared to be U = {1,...,d}\{SUW} and the subset R of S required to
linearly explain xY is derived from the backward stepwise algorithm. Finally,
the model (K, ms, mqo, mr) maximizing the criterion (2.11) is selected.

Variable selection without multiple parameter estimation

Altough some strategies design such reduced deterministic paths for limiting
the number of model evaluations, this number remains too high for fast model
selection. Indeed, each model comparison requires to estimate model parame-
ters which are needed for any model selection criterion like BIC. Marbac and
Sedki [2015] propose an original strategy avoiding parameter estimation for all
models which compete, thus limiting the computing time. Then a parameter
estimation is just performed for the retained model at the end of their process.
Their strategy is applied in the diagonal Gaussian mixture but could be easily
extended to the multinomial or the mixed situations also.

In their context, a variable is said to be irrelevant for the clustering task if its
one-dimensional marginal distributions are equal between components. In the
Gaussian diagonal situation for instance, and noting Xj = diag(c?,,...,0%,),
a variable j is thus irrelevant if

_ 2 . _ .2
pij=...=pk; and oy; =...=0k;,.
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By introducing a variable w; such that w; = 0 if variable j is irrelevant for
the clustering and w; = 1 otherwise, selecting w = (w1, ..., wq) is thus strictly
equivalent to selecting a given probabilistic model. Then any model selection
criterion, like BIC, could be used for selecting the pair m = (K, w).

Their strategy relies on a variant of the ICL criterion of Biernacki et al.
[2000]. The ICL criterion (see Section ?? in Chapter ??) is defined by ICL,, =
In f(x,%m|m), where Zn, is the MAP of the MLE of 8 with the model Sp,.
The proposed variant is the so-called MICL criterion (Mazimum Integrated
Complete-data Likelihood) defined by

MICLy, = In f(x,2z;,|m) with z}, = arg max In f(x,z/m).
z<

Then, the model Sy,+ maximizing MICLy, is retained:

* = MICLyy,.
m arg max m

Marbac and Sedki [2015] prove that MICL, like ICL, is consistent for choosing
w when the number K of components is known. Nevertheless, like ICL (see
again Section ?? in Chapter ??), MICL is consistent for choosing K only when
clusters do not too much overlap. In addition, closed-form expression of MICL
is available when there exists conjuguate priors, what is the case for Gaussian
and multinomial mixtures. For instance, see Equation (??) of Chapter ?? for
the exact expression of ICL in the multinomial case.

The question of maximizing MICL on w is obviously the crucial difficulty.
Marbac and Sedki [2015] implement the following simple alternate procedure,
for a fixed K value (thus this algorithm has to be run for different candidate
values of K). Starting from a value w(®) (thus S,,)) uniformly sampled in
the corresponding space and then a value z(®) being deduced from the MAP
rule of the associated MLE, an iteration of the algorithm is composed by the
following two steps (¢ < 0):

Partition step Fix z(¢t1) such that

1nf(x,z(q+1)|m(q)) >1In f(x, Z(Q)|m(Q))_

Model step Fix m(@t1) = arg maxmep In f(x, 20971 |m) such that m(e+t1) =
(K, wtD)) with (j =1,...,d)

W'ty

; —arg max Inf(z),... 20 |K, w;j,z 7).

wje{o,l}

This procedure can be trapped in local maxima and thus several run are re-
quired. In addition, it can be time consuming when the sample size increases,
due to the so-called “model step”. However, it is a very promising first attempt
for dealing with model multiplicity in variable selection, without systematic
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parameter estimation which corresponds in fact, for most current approaches,
to a huge time consuming waste. The algorithm of these authors is available
as an R package called VARSELLOM!C.

2.4.4 Co-clustering
Definition and historical utility

Simultaneous clustering of rows and columns, usually designated by bi-clustering,
co-clustering or block clustering, is an important technique in two way data
analysis. They consider the two sets simultaneously and organize the data
into homogeneous blocks. Two partition representations are thus now needed.
First, as usual, a partition of n individuals (lines of the data matrix x) into K
clusters still noticed z = (211, ..., 2nk) With z;; = 1 if 7 belongs to cluster k
and z;; = 0 otherwise (we note as well z; = k if z;; = 1). Second, and symmet-
rically, a partition of d variables (columns of the data matrix x) into L clusters
is denoted by w = (w11,...,wqr) with w;; = 1 if j belongs to cluster ! and
wj;; = 0 otherwise (we note as well w; = [ if w;; = 1). Both space partitions
are respectively denoted by Z and W. Figure 2.11 gives an illustration of this
purpose.

In recent years, co-clustering have found numerous applications in the fields
ranging from data mining, information retrieval, biology, computer vision and
so forth. Dhillon [2001] publishes an article on text data mining by simulta-
neously clustering the documents and content (words) using bipartite spectral
graph partitioning. This is a quite useful technique for instance to manage huge
corpus of unlabeled documents. Xu et al. [2010] present another co-clustering
application (again using bipartite spectral graph) to understand subset aggre-
gates of web users by simultaneously clustering the users (sessions) and the page
view information. Giannakidou et al. [2008] employ a similarity metric based
co-clustering technique for social tagging system. In field of bio-informatics,
co-clustering is mainly used to find structures in gene expression data. This
is useful for instance to find sets of genes which correspond to a particular
kind of disease. Some of the pioneer material in this context can be found in
Kluger et al. [2003]. Recently many model-based co-clustering algorithms have
also been developed to target computer vision applications. For instance, Qiu
[2004] demonstrates the utility of co-clustering in image grouping by simul-
taneously clustering images with their low-level visual features. Guan et al.
[2005] extend this work and present opportunity to develop a novel content
based image retrieval system. Similarly, Rasiwasia and Vasconcelos [2009] use
co-clustering to model scenes.

Ohttps://cran.r-project.org/web/packages/VarSelLCM/index .html
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20 40 80 80 100 40
Initial data Rearnanized dara

Figure 2.11: Co-clustering principle illustrated on a binary data set: On the
left, the initial data set (n = 500 and d = 100); On the right, the reorganized
data set with a simultaneous partitioning of rows and columns (K = 6 and
L=4).
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Probabilistic formulation and use in HD clustering

We refer to the book of Govaert and Nadif [2013] for providing more details
on co-clustering techniques, probabilistic or not. Here, we focus on model-
based co-clustering as being often a generalization of non-probabilistic methods
and allowing coherent formulation from estimation to model selection. In the
following set, sum or product on i, j, k and ! stands for ranges {1,...,n},
{1,...,d}, {1,..., K} and {1,..., L} respectively.

Block model-based clustering can be seen as an extension of the traditional
mixture model-based clustering (see Chapter ??). The basic idea is to extend
the latent class principle of local (or conditional) independence. Each data
point z] is assumed to be independent once z; and w; are fixed:

f(X|Z=W; 0) = H f($i7 aziwj)'

We have noted 8 = (7, p, ), where o« = (evgy) , ™ = (my) and p = (pg) are
the vectors of probabilities 7 and p; that a row and a column belong to the
kth row component and to the /th column component respectively. Assuming
also independence between all z; and w;, the latent block mixture model has
final pdf

f(x;0) = Z szipwjf(;vf;aziwj). (2.12)

(z,Ww)EZXW 1i,j
The pdf f(-; @z,w,;) depends on the kind of data )

e In the binary case (zJ" € {0,1}2, with 2}21:1 2" = 1), f(an) corre-
sponds to the Bernoulli distribution B(a; ) of parameter a; = p(X] = 1)
(see Govaert and Nadif [2008]).

e In the categorical case with m levels (2" € {0,1}™, with Yoy " =1),
f(+; apy) corresponds to the multinomial distribution M(a;) of parameter
ap = (al,...,am) with o, = p(X] = h) for h =1,...,m (see Keribin
et al. [2015]).

e In the contingency table case (xf € N), f(-; o) corresponds to the Pois-
son distribution P(urv;yk) of parameter ax; = (pk, Vi, Y1 )- The Poisson
parameter is here split into ui and 1; the effects of the row £ and the
column [ respectively and -y the effect of the block kl (see Govaert and
Nadif [2010]). Unfortunately, this parameterization is not identifiable. It
is therefore not possible to estimate simultaneously ug, v; and v without
imposing further constraints. Constraints ), v = >, pyw = 1 and
>k ke = 1,2, v =1 are a possibility.

e In the continous case (z € R), f(-; ax) corresponds to the Gaussian dis-
tribution N(ug, 03;) of parameter ag; = (g, 03;), denoting respectively
the mean and the variance (see Govaert and Nadif [2013]).
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Such models can be very parsimonious'! even in the HD setting provided

that L is quite low, as it is shown in Table 2.4. The number of parameters of
this table has to be compared to this one of Tables 2.1 and 2.2. Consequently,
these block clustering models could be good candidates for performing HD
clustering even if they are not exactly designed for this aim initially. In such
a case, clustering of columns can just be seen as an instrumental strategy for
obtaining HD parsimonious models. Indeed, the HD clustering purpose only
concerns n and not d in our case. However, column clustering has advantage
to provide an easy readability of the model to the practitioner.

Model Number of parameters

Binary dim(7) + dim(p) + KL
Categorical  dim(m) + dim(p) + KL(m — 1)
Contingency dim(7) + dim(p) + KL
Continuous dim(7r) + dim(p) + 2K L

Table 2.4: Number of parameters of the block clustering models. We have
dim(w) = K — 1 in the case of free proportions in lines and dim(7) = 0 in the
case of equal proportions. Symmetrically, we have dim(p) = L — 1 in the case

of free proportions in columns and dim(p) = 0 in the case of equal
proportions.

Parameter estimation

EM-based algorithms are the standard approach to estimate model parameters
by maximizing the observed log-likelihood. Here, the complete data is repre-
sented as a vector (x,z, w) where unobservable vectors z and w are the labels.
The complete log-likelihood can then be written

00;%x,z,w) Z ZZ““ logwk—i—z Zwﬂ ) log pi+ Z zipwy log f :El,akl).
i,7,k,l

Then, from Section ??7 of Chapter 7?7, the expected complete log-likelihood
Q(6,0) involved at the gth iteration of the EM algorithm is expressed by

Q(6,6) Zp (Z; = k|x; 0(9) 1n7rk—|—Zp s =1x;09) In p,
+ > p(Zi =k, W; = 1x;09) In f(; o). (2.13)
i,7,k,l

Unfortunately, difficulties arise owing to the dependence structure in the
model, and more precisely in the combinatorial difficulty for evaluating the
terms p(Z; = k, W; = I|x;09). Several solutions exist for skirting this diffi-
culty (see Govaert and Nadif [2013] for more details), including:

11Some more parsimonious versions are also defined (see references).
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e The so-called variational approach which constraints the problematic joint
probability to satisfy the relation

f(z,wlx;0) = f(z|x;0) f(w|x; 0).

e To replace the E-step by a S-step, so using a SEM algorithm instead of
EM (see details on SEM in Section ?? of Chapter ?7). In the S-step,
random couples (z,w) (conditionnally to x) are drawn sequentially by
the following two-step Gibbs algorithm (see more details in Keribin et al.
[2015])

Z|x,w;0 and W]|x,z;6.

Several estimation algorithms are implemented in the R package BLOCKCLUS-
TER!Z.

For finishing this estimation description, it is important to note two impor-
tant features. Firstly, many local maxima of the likelihood may exist in the
block clustering model, more than in the standard mixture context, probably
owing to the latent data multiplicity. In practice, many runs should then be
launched to avoid traps in local maxima. Secondly, computing the (observed)
log-likelihood value ¢(8;x) itself is difficult for the same combinatorial reasons
that previously. Such an unavailability can have important consequences on
model selection also.

Model selection

Models in competition are indexed by the number of clusters in line and column,
thus & = (K, L). It is crucial to notice that model selection in block clustering
has to be performed with caution since some traditional criteria cannot be
used straightforwardly. In particular, it is hazardous to use asymptotic criteria
like BIC since asymptotic is now double with both quantities n and d. In
addition, using non asymptotic evaluation of the integrated likelihood f(x) has
to be given up because of the combinatorial difficulty involved by the latent
variables z and w.

Avoiding both asymptotic problems and combinatorial difficulties is possible
by using exact expression of the ICL criterion (Biernacki et al. [2000], Biernacki
et al. [2011]). In the block clustering context, ICL is written

ICLy = lnf(x, imaVAVm) = 1nf(x|ivaAVm) + lnf(im) + lnf(x?vm),

Zm and Wy, being the MAP estimate of z and w respectively obtained from the
MLE 6,,,. Lomet et al. [2012] provide the corresponding closed-form expression
of ICL for the Gaussian situation and Keribin et al. [2015] similarly for the
Bernoulli/multinomial case. We refer the reader to these references for detailed
discussion about the Bayesian hyperparameter choice.

12http://cran.r-project.org/web/packages/blockcluster/index.html
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In addition, in this multinomial setting with m levels, Keribin et al. [2015]

use their non-asymptotic expression to derive the new following asymptotic
one, called ICLbic:

ICLbicy, = E(ém;x, Zm, Wm) — % In(n)— L-1 In(d) — KL(m—1)

In(nd).

It is interesting to notice that, in comparison to the ICLbic formula in the
simple mixture context (see Equation (??) in Chapter ?7?), now both the row
number n and the column number d are involved in the penalty. Using then the
straightforward link ICLy, = In f(Zm, Wm|X; ém) + BIC,, between ICLbic and
ICL, they propose the following block clustering specific asymptotic version of
BIC

BIC = £(0rm; x) — % n(n) — L= g - KL =D

In(nd).

Again, it is interesting to observe the way that both n and d are present in the
penalty. Neverthess, the BIC calculus remains unattainable since it relies on

the unvailable value of the log-likelihood ¢(6yy,; x).

Finally, Keribin et al. [2015] make the conjecture, corroborated with experi-
ments, that BIC and ICL are asymptotically equivalent and thus have the same
asymptotic behaviour. As a consequence, the ICL criterion is expected to be
consistent for selecting both K and L in block clustering, for any true parame-
ter setting. It is totally different from row clustering where consistency is only
true for sufficiently separated clusters (see Baudry [2012] and also Section ??
in Chapter ??). Such a remark is crucial because it is linked to the blessing of
HD clustering we have discussed in length earlier in Section 2.2.2.

Return on the blessing in HD clustering

We illustrate now, in the binary block clustering setting, that HD situations
are a whole blessing for row clustering. Denoting by p(Xf1 =1Zi=k)=7, =
Zle agipr, then the marginal distribution of Xl-j on j is the following mixture
of binomial distributions B(:, )

S X 1Zi =k~ B(d, k).
J

In that case, Brault [2014] provides the following control of partition error z of
this mixture, z* denoting the true row partition:

1
N 1 : o o n
p(z#z )_2nexp{ 8d [gﬁ;ﬂm Tk @}—l—K(l Inklnwk)

It implies the important fact that row clustering is consistent in high-dimension
provided some asymptotic constraints between n and d, for instance that

In(n) = o(d).
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Matrice initiale
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des sommes
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Figure 2.12: Illustration of the low row cluster overlap in the binary HD
setting: The initial data matrix is at the top; Histogram of the sum of
columns is displayed at the second line (first column); The third line
underlines that three row clusters are clearly present (first column); The
reorganized matrix (in row and columns) is available at the last line of the
figure. Symmetrical comments could be made on column cluster overlap
(second column on the figure). This figure has been provided by Brault [2014].

Figure 2.12 illustrates this low row cluster overlap in a HD setting. Note that
the same comment could be made on column cluster overlap when n increases,
even if it is not the first topic of this chaper focused on row HD clustering.

In the same spirit, Mariadassou and Matias [2013] show the following more
general result in the binary case, on the consistency of the couple (z, Ww):

A n,d—oco
—

0 0* = pa=2z"Ww=wx0) oo 1,

where 8* and w* respectively design the true 8 and w.

Contingency table illustration: document clustering

We retrieve the text mining example introduced in Section 2.3.2. Since it
concerns a contingency table (cross counting documents and words) we apply
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Medline Cranfield
Medline 1033
Cranfield . 1398

Figure 2.13: Confusion table by applying block clustering for text
partitioning.

a Poisson block clustering model. The “true” block partitioning involves K =
2 document clusters (row) and L = 2 word clusters (column). Table 2.13
displays the confusion table for documents by using 2x2 blocks. We show that
we exactly retrieve the underlying document structure, what is expected by
the blessing effect of HD clustering, the data set being here with d = 9275.
Figure 2.14 gives a view of the data set before and after reorganization by
block-clustering. We also distinguish clear partitioning in rows and columns.

Unique Words Unique Words
"

SJUDTINOO(]

SJUITNI0(]

Figure 2.14: Text mining example: (a) the initial data set; (b) the
reorganized data set with (K, L) = (2,2).

2.4.5 Intermediate conclusion

Designing parsimonious models in the canonical space for HD data has the
expected advantage of being more meaningful for the practitioner than non-
canonical ones. In this context, several specific contributions exist, that could
be split into variable selection-like and variable clustering-like approaches. Be-
yond their apparent difference, they share the common property to recast a
particular, but simple, role for the variables in a generative and very parsi-
monious way when the dimension of the feature space increases. However,
although only generative approaches are involved, it is not always straightfor-
ward to use classical model selection criteria. Indeed, some questions about
either their asymptotic validity, their explicit calculus (the likelihood is not
always calculable) or their use in case of a huge number of competing models
is posed. Nevertheless, recent advances in this active field of research suggest
possibility to progressively overcome these scientific locks. Beyond these model
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selection questionings, the important task consisting of designing specific gen-
erative models for HD mized features should be also undertaken since it is
currently poorly developed albeit more and more present in nowadays data
sets.

2.5 Future methodological challenges

Two strong trends are highly expected to hold in a near future, that should
be addressed by specific researches. Firstly, data sets will be described by a
constantly increasing number of features, these features being possibly them-
selves of very different kinds. For instance, (high-dimensional) multivariate
categorical functional data could be mixed with (high-dimensional) multivari-
ate counting data, etc. Secondly, the number of model candidates for dealing
with these kinds of data sets will constantly increase, leading to a unmanage-
able number of models estimation in practice. Such a situation will address
the question to design some specific strategies in model selection, for avoiding
ineffective and unnecessary estimation of a too large number of models.
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