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Chapter 2

High-dimensional lustering

Christophe Biernaki and Cathy Maugis-Rabusseau

2.1 Introdution

High-dimensional (HD) data sets are now frequent, mostly motivated by teh-

nologial reasons whih onern automation in variable aquisition, heaper

availability of data storage and more powerful standard omputers for quik

data management possibility. All �elds are impated by this general phe-

nomenon of variable number in�ation, only the de�nition of �high� being do-

main dependent. In marketing, this number an be of order 102, in miroarray

gene expression between 102 and 104, in text mining 103 or more, of order

106 for single nuleotide polymorphism (SNP) data, et. Note also that some-

times muh more variables an be involved, what an be typially the ase with

disretized urves, for instane urves oming from temporal sequenes.

Here are two related illustrations. Figure 2.1(a) displays a text mining ex-

ample

1

. It mixes Medline (1033 medial abstrats) and Cran�eld (1398 aero-

nautial abstrats) making a total of 2431 douments. Furthermore, all the

words (exluding stop words) are onsidered as features making a total of 9275
unique words. The data matrix onsists of douments on the rows and words

on the olumns with eah entry giving the term frequeny, that is the number of

ourrenes of orresponding word in orresponding doument. Figure 2.1(b)

displays a urve example. This Kneading data set omes from Danone Vitapole

Paris Researh Center and onerns the quality of ookies and the relationship

with the �our kneading proess (Lévéder et al. [2004℄). It is omposed by 115

di�erent �ours for whih the dough resistane is measured during the kneading

proess for 480 seonds. We notie that the equispaed instants of time in the

interval [0; 480℄ (here 241 measures) ould be muh more large than 241 if

measures were more frequently reorded.

1

This data set is publily available at ftp://ftp.s.ornell.edu/pub/smart.
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(a) (b)

Figure 2.1: Examples of high-dimensional data sets: (a) Text mining:

n = 2431 douments and the frequeny that d = 9275 unique words ours in

eah doument (a whiter ell indiates a higher frequeny); (b) Curves:

n = 115 kneading urves observed at d = 241 equispaed instants of time in

the interval [0; 480℄.

Suh a tehnologial revolution has a huge impat in other sienti� �elds,

as soietal or also mathematial ones. In partiular, high-dimensional data

management brings some new hallenges to statistiians sine standard (low-

dimensional) data analysis methods struggle to diretly apply to the new (high-

dimensional) data sets. The reason an be twofold, sometimes linked, involving

either ombinatorial di�ulties or disastrously large estimate variane inrease.

Data analysis methods are essential for providing a syntheti view of data sets,

allowing data summary and data exploratory for future deision making for

instane. This need is even more aute in the high-dimensional setting sine on

the one hand the large number of variables suggests that a lot of information

is onveyed by data but, in the other hand, suh information may be hidden

behind their volume.

Cluster analysis is one of the main data analysis method. It aims at parti-

tioning a data set x = (x1, . . . ,xn), omposed by n individuals and lying in a

spae X of dimension d into K groups G1, . . . , GK . This partition is denoted

by z = (z1, . . . , zn), lying in a spae Z, where zi = (zi1, . . . , ziK)′ is a vetor

of {0, 1}K suh that zik = 1 if individual xi belongs to the kth group Gk, and

zik = 0 otherwise (i = 1, . . . , n, k = 1, . . . ,K). Figure 2.2 gives an illustration

of this priniple when d = 2. Model-based lustering allows to reformulate

luster analysis as a well-posed estimation problem both for the partition z

and for the number K of groups. It onsiders data x1, . . . ,xn as n i.i.d. real-

izations of a mixture pdf f(·; θK) =
∑K

k=1 πkf(·;αk), where f(·;αk) indiates
the pdf, parameterized by αk, assoiated to the group k, where πk indiates

the mixture proportion of this omponent (

∑K
k=1 πk = 1, πk ≥ 0) and where

θK = (πk,αk, k = 1, . . . ,K) indiates the whole mixture parameters. From the

whole data set x it is then possible to obtain a mixture parameter estimate θ̂K

to dedue a partition estimate ẑ from the onditional probability f(z|x; θ̂K).
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It is also possible to derive an estimate K̂ from an estimate of the marginal

probability f̂(x|K). More details on mixture models, related estimation of θK ,

z and K are given throughout Chapter ??.
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x = (x1, . . . ,xn) −→ ẑ = (ẑ1, . . . , ẑn), K̂ = 3

Figure 2.2: The lustering purpose illustrated in the two-dimensional setting.

Beyond the nie mathematial bakground it provides, model-based lus-

tering has led also to numerous and signi�ant pratial suesses in the �low-

dimensional� setting as Chapter ?? relates, with referenes therein. Extending

the general framework of model-based lustering to the �high-dimensional� set-

ting is thus a natural and desirable purpose. In priniple, the more information

we have about eah individual, the better a lustering method is expeted to

perform. However the struture of interest may often be ontained in a subset

of the available variables and a lot of variables may be useless or even harmful

to detet a reasonable lustering struture. It is thus important to selet the

relevant variables from the luster analysis view point. It is a reent researh

topi in ontrast to variable seletion in regression and lassi�ation models

(Kohavi and John [1997℄; Guyon and Elissee� [2003℄; Miller [1990℄). This new

interest for variable seletion in lustering omes from the inreasingly frequent

use of these methods on high-dimensional data sets, suh as transriptome data

sets.

Three types of approahes dealing with variable seletion in lustering have

been proposed. The �rst one inludes lustering methods with weighted vari-

ables (see for instane Friedman and Meulman [2004℄) and dimension redution

methods. For this later, MLahlan et al. [2002℄ use a mixture of fator analyz-

ers to redue the extremely high dimensionality of a gene expression problem. A

suitable Gaussian mixture family is onsidered in Bouveyron et al. [2007℄ to take

into aount the dimension redution and the data lustering simultaneously.

In ontrast to this �rst method type, the last two approahes selet expliitly

relevant variables. The so-alled ��lter� approahes selet the variables before a

lustering analysis (see for instane Dash et al. [2002℄; Jouve and Nioloyannis

[2005℄). Their main weakness is the in�uene of independent seletion step of

the lustering results. In ontrast, the so-alled �wrapper� approahes ombine
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variable seletion and lustering. For distane-based methods, one an ite

Fowlkes et al. [1988℄ for a forward seletion approah with omplete linkage

hierarhial lustering, Devaney and Ram [1997℄ who propose a stepwise algo-

rithm where the quality of the feature subsets is measured with the obweb

algorithm or the method of Bruso and Cradit [2001℄ based on the adjusted

Rand index for K-means lustering. There exists also wrapper methods in

the model-based lustering setting. When the number of variables is greater

than the number of individuals, Tadesse et al. [2005℄ propose a fully Bayesian

method using a reversible jump algorithm to simultaneously hoose the num-

ber of mixture omponents and selet variables. Kim et al. [2006℄ use a similar

approah by formulating lustering in terms of Dirihlet proess mixtures. In

Gaussian mixture model lustering, Law et al. [2004℄ propose to evaluate the

importane of the variables in the lustering proess via �feature salienies� and

use the Minimum Message Length riterion. Raftery and Dean [2006℄ reast

the problem of omparing two nested variable subsets as a model omparison

problem and address it using Bayes fator. An interesting aspet of their model

formulation is that irrelevant variables are not required to be independent of

the lustering variables. They avoid thus the unrealisti independene assump-

tion between the relevant and irrelevant variables for the lustering, onsidered

in Tadesse et al. [2005℄, Kim et al. [2006℄ and Law et al. [2004℄. In their model,

the whole irrelevant variable subset depends on the whole relevant variables

through a linear regression equation. However, some relevant variables are not

neessarily required to explain all irrelevant variables in the linear regression

and their introdution involves additional parameters without a signi�ant in-

rease of the loglikelihood. The related extensions proposed by Maugis et al.

[2009a,b℄ follow this remark.

Many model proposals already exist, inluding assoiated parameter esti-

mation and, sometimes, spei� model seletion strategies. We will divide

these models into anonial and non-anonial ones, indiating if parameter

onstraints are respetively de�ned relatively to the initial data spae or rel-

atively to a transformation (a fatorial mapping typially). Before presenting

suh models, and their related model seletion proess, we draw what are the

pros (blessing) and the ons (urse) of having many variables for performing a

luster analysis proess.

2.2 HD lustering: Curse or blessing?

2.2.1 HD density estimation: Curse

In the previous setion, we provided some examples of high-dimensional data

sets. In the present setion, the aim is to give a somewhat more theoretial

de�nition of what a high-dimensional data set should be in a density estimation

setting. Suh a de�nition will dramatially depends on the non-parametri and
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on the parametri ases. It also relies on some asymptoti arguments. Remind

that we onsider a data set x = (x1, . . . ,xn), xi being desribed by d variables.

Non-parametri ase

In the non-parametri situation, usually xi is onsidered to rely in a high-

dimensional spae as soon as n = o
(
ed
)
, thus as soon as the logarithm of the

sample size, lnn, is negligible beside the spae dimension d. A �rst justi�ation

of this laim is given by Bellman [1961℄: To approximate within error ǫ > 0
a (Lipshitz) funtion of d variables, about (1/ǫ)d evaluations (provided by

the sample size n. . . ) on a grid are required. A seond justi�ation is also

given by Silverman [1986℄: Approximating a Gaussian distribution with �xed

Gaussian kernels and with approximate error of about 10% requires a sample

size log10 n(d) ≈ 0.6(d − 0.25). For instane, with d = 10, n(10) ≈ 7.105,
implying already a huge sample size for a quite moderate dimensional setting.

Parametri ase

In the parametri situation, let Sm be a model desribed by Dm ontinuous

parameters, likely depending on the dimension d. In suh a ase, the data set

x is said to rely in a high-dimensional spae as soon as n is small in omparison

to a partiular funtion g of Dm, namely n = o(g(Dm)). As an illustration

for g, we onsider the heterosedasti Gaussian mixture with true parameter

θ∗
and K omponents. We note θ̂K the Gaussian MLE with K omponents.

In that situation, g is a linear funtion from the following result (Maugis and

Mihel [2012℄): It exists positive onstants κ and A suh that

Ex[d
2
H(f(·; θ∗), f(·|θ̂K̂))] ≤ κ

[
inf
K
{KL(f(·; θ∗), f(·; θ̂K)) + pen(K)}+ 1

n

]

where dH denotes the Hellinger distane, KL the Kullbak-Leibler divergene

and

pen(K) ≥ κ
DK

n

{
2A lnd+ 1− ln

(
1 ∧

[
DK

n
A ln d

])}
.

Thus the HD non-parametri and parametri situations are drastially dif-

ferent in magnitude. However, in pratie, DK an be high sine DK ∼ d2/2 in
this Gaussian situation, ombined with potentially large onstants. For high-

lighting this fat, onsider the following two-omponent multivariate Gaussian

mixture:

π1 = π2 =
1

2
, X1|Z11 = 1 ∼ N(0, I), X1|Z12 = 1 ∼ N(1, I), (2.1)

with a = (a . . . a)′ a real vetor of size d. An illustration of this setting is

displayed in Figure 2.3(a). Note that the two omponents are more and more

separated when d grows sine ‖1 − 0‖I =
√
d. However, the quality of the
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mixture density estimate degrades (the Kullbak-Leibler divergene inreases)

when dimension inreases as it is illustrated in Figure 2.3(b) with a homosedas-

ti model and with equal mixing proportions.

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x1

x2

1 2 3 4 5 6 7 8 9 10
12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

d

K
ul

lb
ac

k−
Le

ib
le

r

(a) (b)

Figure 2.3: HD urse in the parametri density estimation ontext: (a) A

bivariate data set example with isodensity of eah omponent and (b) the

Kullbak-Leibler divergene of the density estimate when d inreases.

2.2.2 HD lustering: A mix of urse and blessing

Contrary to density estimation where inreasing dimension has a lear negative

e�et, dimension may have both positive and negative e�ets on the luster-

ing task. We distinguish now whih fators favor suh �blessing� or �urse�

outomes.

Blessing fators

We retrieve the model design (2.1). We display again a orresponding sample

in Figure 2.4(a). We have already mentioned that the two omponents are

more and more separated when d inreases. The reason is that eah variable

uniformly provides its own separation information suh that the assoiated

theoretial error dereases when d grows. Indeed, this error is equal to errtheo =
Φ(−

√
d/2), where Φ is the df of N(0, 1). We an see this derease with d by a

dash line in Figure 2.4(b). An interesting onsequene is then that the empirial

error rate dereases also with d as it ould be notied in ontinuous line in

Figure 2.4(b). It means that inreasing dimension may have a positive e�et

on the lustering task as soon as all variables onvey meaningful information

on the hidden partition.

We propose now to illustrate more drastially this positive e�et through a

simple fatorial mapping visualization. We onsider the three following Gaus-
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Figure 2.4: HD blessing in the lustering ontext when most variables onvey

independent partitioning information: (a) A bivariate data set example with

isodensity of eah omponent and (b) the theoretial (dash line) and the

empirial (ontinuous line) error rate when d inreases.

sians, all more and more separated when d inreases:

π1 = π2 = π3 = 1
3 ,

X1|Z11 = 1 ∼ N(0, I), X1|Z12 = 1 ∼ N(2, I), X1|Z13 = 1 ∼ N(−2, I), .

Then Figure 2.5(a)-(d) displays a related sample of size n = 1000 for di�er-

ent dimensions on the main two axes of the Fatorial Disriminant Analysis

(FDA) mapping. It learly appears that omponents are more and more easily

reognized when dimension inreases, although it is a simple visualization pro-

ess. At the limit, no omplex lustering algorithm would be enough to identify

lusters. . .

Curse fators

In fat, inreasing dimension may have a positive e�et on lustering retrieval

only if variables injet some partioning information. In addition, suh informa-

tion has to be not redundant. We illustrate now these two partiular features.

Firstly, we onsider many variables whih provide no separation information.

We retrieve the same parameter setting as (2.1) exept that the omponents

are not more separated when d grows sine ‖µ2 − µ1‖I = 1, where µ1 = 0 is

the enter of the �rst Gaussian and where µ2 = (1 0 . . . 0)′ is the one of the
seond, thus (k = 1, 2)

X1|Z1k = 1 ∼ N(µk, I). (2.2)

A sample is displayed on Figure 2.6(a). Figure 2.6(b) shows in dash line that

the theoretial error rate is onstant (it orresponds to errtheo = Φ(− 1
2 )) when

the dimension inreases, as expeted. Consequently, the empirial error rate

degrades in this situation (ontinuous line of the same �gure).
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Figure 2.5: Fatorial Disriminant Analysis (FDA) on the main two fatorial

axes of three Gaussian omponents more and more separated when the spae

dimension inreases: (a) d = 2, (b) d = 20, () d = 200 and d = 400.

Seondly, we onsider a ase where many variables provide separation, but

redundant information, in the following sense: It is the same parameter setting

as before for the �rst dimension exept for all other ones

X1j = X11 + εj , where εj
iid∼ N(0, 1) (j = 2, . . . , d). (2.3)

See a data example in Figure 2.7(a). Thus, omponents are not more separated

when d grows sine ‖µ2−µ1‖Σ = 1, Σ denoting the ommon ovariane matrix

of eah Gaussian omponent, and µk denoting the enter of the omponent

k = 1, 2 (note that both µk andΣ ould be easily omputed from Equation (2.2)

and (2.3)). Consequently, errtheo = Φ(− 1
2 ) is onstant and the empirial error

inreases with d, as illustrated in Figure 2.7(b) with previous onventions.

2.2.3 Intermediate onlusion

In ase where variables have important blessing onsequenes for the lustering

performane, it is important to perform the lustering task in the whole data



High-dimensional lustering 9

−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

x1

x2

1 2 3 4 5 6 7 8 9 10
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

d

er
r

 

 

Empirical
Theoretical

(a) (b)

Figure 2.6: HD urse in the lustering ontext when variables onvey no

partitioning information: (a) A bivariate data set example with isodensity of

eah omponent and (b) the theoretial (dash line) and the empirial

(ontinuous line) error rate when d inreases.
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Figure 2.7: HD urse in the lustering ontext when variables onvey

redundant partitioning information: (a) A bivariate data set example with

isodensity of eah omponent and (b) the theoretial (dash line) and the

empirial (ontinuous line) error rate when d inreases.

spae. In partiular, ��lter� methods performing variable seletion before the

lustering task have to be exluded, the risk of removing disriminant features

being too large. The remaining question is then whih �wrapper� methods to be

used? Suh methods should �manage� with priority the fat that some variables

have negative e�ets for lustering. The general answer is to design spei�

parsimonious models for lustering, the most emblemati ones relying on some

variable seletion priniple. We will see also several alternative strategies, in

partiular variable lustering (to not be mingled with individual lustering, our

primary task), aiming at assigning di�erent roles (�lusters�) to the variables.

Suh a priniple is quite widespread in fat (in the anonial data spae or in
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a transformed spae) even if it is not often initially desribed with this point

of view.

Behing this model design whih is the �rst step of high-dimensional model-

based lustering, the question of model seletion is then asked. In some situa-

tions, traditional model seletion riteria ould be diretly applied. However, in

many ases, two kinds of di�ulties may happen. Firstly, the number of om-

peting models avoids to enumerate all possible models whih ompete. Typi-

ally, in a variable seletion ontext the number of possibilities is ombinatorial.

In suh a ase, strategies for designing an intelligent path in a relevant subset

of models is a possible answer. Seondly, validity of traditional model seletion

riteria themselves an be hallenged, requiring some original proposals.

In the rest of this hapter, we will give an overview of the main high-

dimensional lustering methods. We will systematially highlight novelty of

the proposed models, possible onnetions between them (variable seletion or

variable lustering, initial spae or non-anonial spae) and issues for model

seletion (riteria and strategies of use).

2.3 Non-anonial models

As disussed previously, models designed for high-dimensional lustering rely

on parsimonious de�nition of related parameters. In this setion, we fous

on situations where parsimony is injeted through parameters de�ned in a

transformed feature spae, alled here non-anonial feature spae. We onsider

this ase before the anonial feature spae situation (next setion) sine it is

somewhat related to the pioneering idea of �ltering. Indeed, fatorial analysis

(for instane prinipal omponent analysis in the ontinuous ase) was �rst

onduted for seleting (new) variables before applying any lustering method

on them. Here, ideas are related but with a wrapper point of view. Most

situations address ontinuous features.

2.3.1 Gaussian mixture of fator analysers

In Gaussian model-based lustering, inreasing the number of variables has

its main e�et on the number of parameters inluded in the ovariane ma-

tries Σk, sine it is of quadrati order. Consequently, most methods aim at

introduing parsimony �rst on Σk. History and details ould be found in Bou-

veyron and Brunet [2014℄. In partiular, Ghahramani and Hinton [1997℄ and

MLahlan [2003℄ design the following reparameterization of Σk:

Σk = BkB
′
k + ωkΛk

where Bk is a loadings d× q non-square real matrix (1 ≤ q ≤ q
max

, q
max

< d),
ωk is a positive real number and Λk is a d× d diagonal positive de�nite matrix

suh that |Λk| = 1. For a well understanding of the underlined motivation,
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it is equivalent to assuming X1 ∈ R
d
to be generated by the following latent

variable Y1 ∈ R
q
lying in a smaller (latent) spae than R

d

X1|Y1, Z1k = 1 = BkY1 + µk + εk

whereY1 ⊥ εk (⊥ denoting independene), Y1 ∼ N(0, I) and εk ∼ N(0, ωkΛk).
In this layout, Y1 is alled the fator, by straightforward analogy to fator

analysis methods. Estimation is performed through an alternating expetation-

ondition maximization (AECM) algorithm (Meng and van Dyke [1997℄).

Complexity of suh a model is equal to Dm = (K − 1) +Kd+Kq[d− (q −
1)/2]+Kd, where it an be seen that the quadrati part has vanished. In fat,

it orresponds to the most omplex model of a whole family, MNiholas and

Murphy [2008℄ having de�ned 12 assoiated parsimonious versions, inluding

for instane inter-lass equality between Bk, identity of Λk = I, et. Finally,

models in ompetition (Sm)m∈M gather the ombinations non only of these

12 parsimonious versions but also of the ouples (q,K) of the latent dimension

and of the number of omponents. In pratie, q
max

is expeted to be quite

low for parsimonious reasons and thus the ardinal of M is not exessively

high. Traditional model seletion riteria (as BIC) an then be diretly applied

on this olletion. The r pakage pgmm

2

provides an implementation of this

method.

2.3.2 HD Gaussian mixture models

Bouveyron et al. [2007℄ propose another way for obtaining parsimony on the

ovariane matries Σk. It relays on the following spetral deomposition

Σk = Dk∆kD
′
k

where Dk is the orthogonal matrix of the eigenvetors of Σk and ∆k is a

diagonal matrix ontaining the related eigenvalues. They impose ∆k to follow

the parsimonious struture

∆k =




ak1 0
.

.

.

0 akqk

0

0

bk 0
.

.

.

0 bk






 qk



 (d− qk)

with akj ≥ bk > 0, for j = 1, ..., qk and qk < d. Suh an assumption an

be somewhat related to a kind of prinipal omponent analysis per Gaussian

group. It ould also be viewed as a kind of variable lustering seletion, the

2

http://ran.r-projet.org/web/pakages/pgmm/index.html
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d− qk remaining variables of ∆k orresponding to a group of �noisy� features.

Figure 2.8 illustrates a three dimensional (d = 3) and two omponents situation

(K = 2) where both subspae dimensions q1 and q2 are equal (q1 = q2 = 2) but
di�er in orientation. Estimation an easily performed through an EM algorithm

for instane.

Figure 2.8: Illustration of the HD lustering mixture Gaussian model in a two

omponents situation (provided by Bouveyron et al. [2007℄).

Complexity of suh a model is given Dm = (K − 1) + Kd +
∑K

k=1 qk[d −
(qk + 1)/2] +

∑K
k=1 qk + 2K. In addition, Bouveyron et al. [2007℄ propose

eight parsimonious versions by imposing for instane equality between sub-

spae dimensions (qk = q, for all k), et. Finally, the whole model family

(Sm)m∈M inludes ouples ((q1, . . . , qK),K) of subspae dimension and num-

ber of omponents, ombined with the eight models. Sine qk may depend on

the omponent, ontrary to the Gaussian mixture of fator analysers desribed

in the previous setion, the number of models beomes ombinatorial. Then, it

may be di�ult in the HD setting to browse all models for applying a BIC-like

riterion for instane. Consequently, Bouveyron et al. [2007℄ propose a kind of

rule of thumb riterion for seleting eah qk, looking for a break in the eigen-

value sree of the empirial ovariane matrix for eah group omponent, the

so-alled sree test of Cattell [Cattell, 1966℄. The rmixmod pakage

3

(Lebret

et al. [2015℄) implements these models.

2.3.3 Funtional data

Funtional and disretized data

Stritly speaking, real funtional data (Ramsay and Silverman [2005℄, Ferraty

and Vieu [2006℄) orrespond to i = 1, . . . , n urves whih are realizations of

n random variables linked to n L2
-ontinuous real-valued stohasti proesses

Yi = {Yi(t) ∈ R, t ∈ [0, T ]} taking values in a Hilbert spae H of funtions

de�ned on the (time) interval [0, T ]. Thus, it orresponds to an in�nite di-

mensional spae. Sine most funtional data are longitudinal, we adopt here

3

http://ran.r-projet.org/web/pakages/Rmixmod/index.html
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the onvention of parameterizing models in terms of time. However, it applies

equally well with any other features as angle, length, et. In addition, exten-

sions are possible for multivariate urves, it means that individual i is desribed
by several urves (see for instane James and Sugar [2003℄ or Jaques and Preda

[2014b℄).

In pratie, eahYi is unobserved for two, essentially tehnologial, reasons.

Firstly, the n urves Yi are disretized eah in mi time-points {Yi(tis), 0 ≤ s ≤
mi, tis ∈ [0, T ]}. Seondly, an error on observation is usually present suh

that only mi ordered time-points {Xi(tis), 0 ≤ s ≤ mi, tis ∈ [0, T ]} (i =
1, . . . , n) are available for eah urve. For instane, the following relationship

between disretized (unobserved) values Yi(tis) and noisy (observed) values

Xi(tis) ould be assumed:

Xi(tis) = Yi(tis) + εis, (2.4)

where εis has zero mean and is unorrelated with eah other and Yi(tis). Other
assumptions are possible as we will see below.

We refer to Jaques and Preda [2014a℄ for a general review on lustering for

funtional data, inluding the model-based one. Di�ulty of performing unan-

imous lustering on generative distributions omes from the fat that, ontrary

to the �nite-dimensional setting, the notion of density probability is generally

not de�ned for funtional random variable (Delaigle and Hall [2010℄). Con-

sequently, related tehniques require de�ning density probabilities in a �nite-

dimensional spae, leading to multiple and di�erent implementations.

In this hapter, we divide model-based lustering tehniques into two di�er-

ent ategories: these ones where the generative model is expliitly de�ned on

the observed values Xi = {X(tis), 0 ≤ s ≤ mi, tis ∈ [0, T ]}, i = 1, . . . , n, and
these ones for whih it is not the ase. Indeed, this split will have important

onsequenes for some aspets onerning model seletion.

Clustering with no expliit distribution on Xi

Usually, the �rst step before a lustering method is to reonstrut the initial

funtional form of data. It an then be viewed as a preproessing step (��lter-

ing� method). It often relies on the assumption that the unobserved urve Yi

an be expressed in a basis of d funtions {φj}j=1,...,d, for instane B-splines

or wavelets, in the following form:

Yi(t) =

d∑

j=1

γijφj(t).

Using then the regression (2.4) hypothesis, traditional least squared oe�ients

estimates are obtained by

γ̂i = (Φ′
iΦi)

−1
Φ

′
iXi
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where Φi = (φj(tis)) is a mi× d matrix gathering the value of eah basis fun-

tion for eah time disretization knot. Finally, standard model-based lustering

tehniques (typially multivariate Gaussian mixtures, eventually HD variants

previously desribed in Setions 2.3.1 and 2.3.2) an be diretly applied on

the estimated oe�ients γ̂i. The partition on individuals Xi is obtained as a

simple by-produt, being the same as this one of individuals γ̂i.

Instead of partitioning the basis oe�ients γ̂i, a model-based lustering

tehnique an be alternatively applied to some prinipal omponent sores

resulting from funtional prinipal omponent analysis (FPCA) of the pre-

vious reonstruted urves. In pratie, the omputational proess for im-

plementing FPCA onsists of performing a standard (entered) PCA to the

matrix Γ̃WΓ̃
′
T, where Γ = (γ̂ij) is the n× d matrix of estimated oe�ients,

T = 1
nI is the n × n matrix of weights for urves, Γ̃ is the n × d matrix of

entered oe�ients of Γ and W is the d × d matrix of the inner produts

wjj′ =
∫ T

0 φj(t)φj′ (t)dt (1 ≤ j, j′ ≤ d) (it ats like a metri). Thus, the jth
prinipal omponent sore Cj is the jth eigenvetor assoiated to the largest

jth eigenvalue:

Γ̃WΓ̃
′
TCj = αjCj .

As usual with PCA, FPCA performs a kind of variable ordering. Finally,

lustering is performed on a trunating prinipal omponent sores C1, . . . ,Cq,

with q ≤ d.

From a model seletion point of view, both previous methods allow to use

some information riteria like BIC for seleting the number K of omponents.

However, it is not really possible to use them for seleting other parts of the

model whih are the funtional basis {φj}j=1,...,d and, spei�ally to FPCA,

the trunation of order q.

Clustering with expliit distribution on Xi

Ideally, for bene�ing from the whole mathematial statistis orpus, model-

based lustering tehniques would require a distribution on allXi = (Xi(tis), 0 ≤
s ≤ mi, tis ∈ [0, T ]), i = 1, . . . , n. First of all, it is important to notie that per-

forming the lustering task diretly with observed values Xi's as if they would

orrespond to lassial multivariate values is not desirable, even if it ould meet

this goal. The �rst reason is that eah Xi does not neessarily rely in the same

spae dimension (here mi for eah), even if in pratie it ould be often the

ase. The seond and the most important reason is that working with suh raw

data wastes order information on them.

Contrary to the raw data ase, several tehniques propose distributions on

Xi whih take all the funtional data spei�ity into aount. Jaques and

Preda [2013℄ perform FPCA by group, leading to prinipal omponents per

group noted Cijk. In addition, they assume a Gaussian distribution of the Cijk,

leading to onditional independene of them sine being already unorrelated.
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It leads to the following Gaussian mixture model, relying on a trunation of

order 1 ≤ qk ≤ d for eah omponent:

f(xi; θ) ≈
K∑

k=1

πk

qk∏

j=1

φ(Cijk ; 0, αjk)

where φ(·; 0, αjk) is the univariate Gaussian density of mean zero (sores Cijk

are entered) and variane αkj (orresponding also to eigenvalues). Then, pa-

rameter estimation is provided through an EM-like algorithm for maximizing

the (pseudo) log-likelihood, where both steps are the following:

E-step Compute onditional probabilities tik ∝ πk

∏qk
j=1 φ(Cijk ; 0, αkj) as usual.

M-step First, prinipal sores are updated. Notie that weights Tk depend

now on tik's, Γk too. Seond, perform the qk trunation order seletion

by deteting a kind of elbow in the eigenvalues by the sree test of Cat-

tell (Cattell [1966℄). Finally, parameters πk are omputed as usual and

parameters αk are already given from previous onditional FPCA.

This proess is implemented in the r funlust

4

pakage. As an illustration,

this pakage is applied to kneading urves, whih are desribed in Setion 2.1,

in Figure 2.9. From a model seletion point of view, there are some important

remarks. Strikly speaking, it is just a pseudo likelihood method sine data

Cijk are hanging at eah iteration step of EM. Consequently, using seletion

riteria like BIC ould be hazardous for hoosing K, qk or the funtional basis.

However, in pratie, BIC works well for hoosing K. However, it is not used

for seleting qk, as previous said, for limiting omputing time. No attempt for

hoosing the basis is performed.

(a) (b)

Figure 2.9: n = 115 kneading urves observed at d = 241 equispaed instants

of time in the interval [0; 480℄: (a) raw urves, (b) three groups partioning

urves with the funlust pakage.

Alternatively, James and Sugar [2003℄ onsider randomness diretly on the

basis oe�ients γi. They assume that γi arises from a homosedasti Gaussian

4

http://ran.r-projet.org/web/pakages/Funlustering/index.html
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multivariate model whih, oupling with (2.4), provides the following regres-

sion model, onditionally on the ith urve belonging to the kth luster (so

onditional to Zik = 1) :

Xi = Φi(µk + ǫi) + εi,

where ǫi ∼ N(0,Σ) and εi ∼ N(0, σ2
I). Also, some parsimonious assumptions

are made on enters µk. Then, an EM algorithm allows to estimate all param-

eters. Contrary to the model of Jaques and Preda [2013℄ desribed just above,

we are now faed to an unambiguous generative approah allowing straightfor-

ward model seletion with any lassial riterion for hoosing every quantity

of interest (the number K of lusters, the basis {φj} and the parsimony of

all means µk), even if the authors prefer to use a so-alled �distortion fun-

tion� riterion for seleting K faster sine avoiding EM omputations for all K
values.

In the same spirit as James and Sugar [2003℄, Samé et al. [2011℄ give an-

other regression model providing a full generative, �exible and parsimonious

distribution on the Xi's. They assume that the urves arise from a mixture

of regressions on a basis of polynomial funtions (the order to be given by

model seletion), with possible hanges in regime at eah instant of time. The

mixing proportions are de�ned by logisti funtions for allowing segmentation

in time. An EM proedure is performed for estimation and several parsimo-

nious versions are desribed. This full generative distribution allows again full

model seletion (number of lusters, polynomial order of the basis funtion and

number of regime hanges) in any standard way. However, as in many pre-

vious settings, the number of ompeting models an inrease drastially. For

instane, the basi funtions an hange by regime, multiplying ombinations.

2.3.4 Intermediate onlusion

Many parsimonious modelling solutions exist for dealing with HD data, on-

erning as well independent and funtional data, even if some gaps remain to

be �lled like ategorial funtional data or also mixed (ontinuous and ate-

gorial typially) multivariate funtional data. Most of existing models rely

on a generative distribution on the data spae, allowing diret use of standard

seletion riteria. However, the ruial question is foused on the multipliity

of models to be ompared. It is the reason why some authors favor some more

empirial, but fast, rules for model seletion.

We guess that future researhes should address new advanes for fast sele-

tion of multiple models in a short alloated time. In the next setion, devoted

to anonial model setting, we will see early several attempts for this purpose,

for instane by designing a partiular strategy in the model spae, avoiding all

model evaluation.
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2.4 Canonial models

We address now models for HD data whih position parsimony assumptions

diretly on the initial (or anonial) variable spae. Advantage of suh ap-

proahes, beside non-anonial ones, is a great model readibility for the pra-

titioner. Indeed, this one is usually more austomed to his variable set than

to a somewhat more arti�ial set, as the fatorial features ould be sometimes.

In this ontext, this hapter takles important notions: variable seletion,

variable lustering, model seletion validity and also strategies for dealing with

model multipliity.

2.4.1 Parsimonious mixture models

Classial mixture models have already been presented in Chapter ??, Se-

tion ??. It gathers in partiular the Gaussian mixture model for the ontinuous

ase and the latent multinomial mixture model for the ategorial ase, inlud-

ing also many parsimonious variants. Dealing with HD data impose to onsider

essentially some of the most parsimonious ones thus there is a need to provide

more details in this setion. Then, extension to the mixed ase (merging on-

tinuous and ategorial features) is presented as a straightforward extension.

All these models are implemented in the r pakage rmixmod

5

. Finally, we will

present a new attempt for variable seletion in the ontinuous, ategorial and

mixed situations.

Spherial and diagonal Gaussian mixtures for ontinuous variables

We onsider data sets x = (x1, . . . ,xn), with xi ∈ R
d
. The most parsimonious

Gaussian mixture models de�ned by Celeux and Govaert [1995℄ belong to the

so-alled spherial and diagonal families. An example of diagonal model is given

in Figure 2.10. Using notations already provided in Setion ?? of Chapter ??,

their most omplex versions respetively orrespond to onstraints Σk = λkI

and Σk = λkBk on the ovariane matrix Σk of the kth omponent, where

λk = |Σk|1/d and Bk diagonal with |Bk| = 1. Inluding some parsimonious

versions, whih allow some parts to vary or not between omponents, a total

of two spherial and four diagonal models are available. All models, and their

respetive number of parameters, are displayed in Table 2.1. Model seletion

an be easily performed by traditional riteria, like BIC.

Latent lass model for ategorial variables

We onsider now data sets x = (x1, . . . ,xn), eah xi ontaining d ategori-

al variables, the jth having mj response levels. The oding xi = (xjh
i ; j =

5

http://ran.r-projet.org/web/pakages/Rmixmod/index.html
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Figure 2.10: Isodensity of a two-omponents diagonal Gaussian mixture in

the three-dimensional spae.

Family Model Number of parameters

diagonal

[λB] dim(π) +Kd+ d
[λkB] dim(π) +Kd+ d+K − 1
[λBk℄ dim(π) + 2Kd−K + 1
[λkBk] dim(π) + 2Kd

spherial

[λI] dim(π) +Kd+ 1
[λkI] dim(π) +Kd+K

Table 2.1: Some harateristis of the two spherial and the four diagonal

models. We have dim(π) = K − 1 in the ase of free proportions and

dim(π) = 0 in the ase of equal proportions.

1, . . . , d;h = 1, . . . ,mj) indiates that x
jh
i = 1 if i has response level h for vari-

able j and xjh
i = 0 otherwise. The standard model for lustering observations

desribed through ategorial variables is the so-alled latent lass model (see

for instane Goodman [1974℄). Data are assumed to arise independently from

a mixture of K multivariate multinomial distributions with pdf

f(xi; θ) =

K∑

k=1

πk

d∏

j=1

mj∏

h=1

(αjh
k )x

jh
i , (2.5)

where θ = (π,α) denotes the vetor parameter of the latent lass model to be

estimated, with α = (α1, . . . ,αK) and αk = (αjh
k ; j = 1, . . . , d;h = 1, . . . ,mj),

αjh
k denoting the probability that variable j has level h if objet i is in luster

k. Thus, the latent lass model assumes that the variables are onditionally

independent knowing the latent groups.
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Lebret et al. [2015℄ propose four parsimonious versions, with thus a to-

tal of �ve models. They orrespond to an extension of the parameteriza-

tion of Bernoulli distributions used by Celeux and Govaert [1991℄ for lus-

tering and also by Aithinson and Aitken [1976℄ for kernel disriminant anal-

ysis. The basi idea is to impose the vetor α
j
k = (αj1

k , . . . , α
jmj

k ) to take the

form (βj
k, . . . , β

j
k, γ

j
k, β

j
k, . . . , β

j
k) with γj

k > βj
k. Sine

∑mj

h=1 α
jh
k = 1, we have

(mj − 1)βj
k+γj

k = 1 and, onsequently, βj
k = (1−γj

k)/(mj − 1). The onstraint

γj
k > βj

k beomes �nally γj
k > 1/mj. Then, the vetor α

j
k an be broken up

into the two following parameters:

• a
j
k = (aj1k , . . . , a

jmj

k ) where ajhk = 1 if h orresponds to the rank of γj
k (in

the following, this rank will be noted h(k, j)), 0 otherwise;

• εjk = 1− γj
k whih orresponds to the probability that the data xi arising

from the kth omponent are suh that x
jh(k,j)
i 6= 1.

In other words, the multinomial distribution assoiated to the jth variable

of the kth omponent is reparameterized by a enter a
j
k and the dispersion

εjk around this enter. Thus, it allows us to give an interpretation similar to

the enter and the variane matrix used for ontinuous data in the Gaussian

mixture ontext. Finally, the relationship between the initial parameterization

and the new one is given by:

αjh
k =

{
1− εjk if h = h(k, j)

εjk/(mj − 1) otherwise.

(2.6)

In the following, this model will be denoted by [εjk]. In this ontext, three other

models an be easily dedued. We note [εk] the model where εjk is independent

of the variable j, [εj] the model where εjk is independent of the omponent k

and, �nally, [ε] the model where εjk is independent of both the variable j and

the omponent k. In order to maintain some unity in the notation, we will

denote also [εjhk ] the most general model initially introdued. The number of

free parameters assoiated to eah model is given in Table 2.2. Again, model

seletion an be easily performed by traditional riteria, like BIC.

Mixed data models

It is frequent in pratie to mix ontinuous and ategorial data. Thus the

ith individual is omposed by two parts, xi = (xcont
i ,xcat

i ), x
cont
i and x

cat
i

designing the ontinuous and the ategorial ones respetively. In that ase, it

is easy to ombine (diagonal) parsimonious Gaussian mixture and latent lass

model by onditional independene [Moustaki and Papageorgiou, 2005℄:

f(x;αk) = f(xcont;αcont
k )× f(xcat;αcat

k )
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Model Number of parameters

[ε] dim(π) + 1
[εj ] dim(π) + d
[εk] dim(π) +K

[εjk] dim(π) +Kd

[εjhk ] dim(π) +K
∑d

j=1(mj − 1)

Table 2.2: Number of free parameters of the �ve multinomial models. We

have dim(π) = K − 1 in the ase of free proportions and dim(π) = 0 in the

ase of equal proportions.

with αk = (αcont
k ,αcat

k ) (see also Setion ?? in Chapter ??). Then, the previous
six Gaussian mixture models and the �ve multinomial mixture models an be

ombined, de�ning straightforwardly 30 new mixed models. Classial riteria

an be used for seleting them, with also the number of lusters K.

Although previously desribed models, in the ontinuous, ategorial or

mixed data situations, are the most parsimonious ones in their respetive fam-

ilies, they are not really designed for realisti HD situations involving several

thousands of variables for instane. Indeed, their parameter number remains

too high in suh ases.

Variable seletion has always been a natural answer for HD lustering as

already disussed in the beginning of this hapter. Typially, �ltering methods

relying on a preliminary fatorial analysis step then ut the number of fatorial

variables to be retained. However, in model-based lustering involving a full

wrapping approah, the di�ulty is to integrate properly this seletion step

in the model itself. Thus, we disuss now more suitable methods for the HD

situation.

2.4.2 Variable seletion through regularization

In this setion, we fous on the variable seletion problem in the Gaussian

mixture lustering ontext.

ℓ1-penalization proedures

Inspired by the suess of the Lasso regression, Pan and Shen [2007℄ propose to

take advantage of the sparsity property of ℓ1-penalization of the likelihood to

perform automati variable seletion for high-dimensional model-based luster-

ing. Their proedure, alled PS-Lasso in the sequel, onsists of using a Lasso

method to selet relevant lustering variables and estimate mixture parameters

in the same exerise. The ovariane matries are assumed to be idential and

diagonal (Σk = V = diag(σ2
1 , . . . , σ

2
d)) and an ℓ1 penalty is onsidered on mean
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parameters. For any K ∈ N
∗
, the following funtion has to be maximized:

θK 7→
n∑

i=1

ln

[
K∑

k=1

πkφ (x̄i;µk,V)

]
− λ

K∑

k=1

‖µk‖1 , (2.7)

where θK = (π,µ1, . . . ,µK ,V), ‖µk‖1 =
d∑

j=1

∣∣µkj

∣∣
, x̄i = (xij − x̄j)1≤j≤p with

x̄j = 1
n

∑n
i=1 xij , λ is a non-negative regularization parameter and φ(·;µ,Σ)

denotes the multivariate Gaussian density of enter µ and ovariane matrix

Σ. An EM-algorithm is proposed to solve this parameter estimation problem.

Next, a modi�ed BIC riterion is used to selet K and λ:

BIC(K,λ) = −2 ln

[
n∏

i=1

K∑

k=1

πkφ(xi;µk,V)

]
+ ln(n)D(K,λ)

where D(K,λ) = (K − 1)+Kd+ d− q, q denoting the number of the maximum

penalized likelihood estimate mean omponents that are equal to 0.

This approah was suessively extended in Zhou et al. [2009℄ (Gaussian

mixtures with diagonal ovariane matries) and �nally in Zhou et al. [2009℄.

In this last paper, a regularized Gaussian mixture model with unonstrained

ovariane matries is proposed. They employ a ℓ1 penalty on mean parameters

and on ovariane matries as follows:

θK 7→
n∑

i=1

ln

[
K∑

k=1

πkφ (x̄i;µk,Σk)

]
− λ

K∑

k=1

‖µk‖1 − ρ

K∑

k=1

∥∥Σ−1
k

∥∥
1
, (2.8)

where

‖µk‖1 =

d∑

j=1

∣∣µkj

∣∣,
∥∥Σ−1

k

∥∥
1
=

d∑

j,j′=1
j 6=j′

∣∣(Σ−1
k )jj′

∣∣ ,

and where λ and ρ are two non-negative regularization parameters. This pa-

rameter estimation problem is solved using an EM algorithm where the so-alled

glasso algorithm (Friedman et al. [2007℄) is used to estimate sparse preision

matries Σ
−1
k .

Lasso-MLE proedure

In Meynet [2012℄ and Meynet and Maugis-Rabusseau [2012℄, they highlight

that the ℓ1-penalization indues shrinkage of the oe�ients and thus biased

estimators with high estimation risk. Moreover, the use of a BIC-type ri-

terion for the model seletion an be unsuitable for high-dimensional data.

Consequently, they propose to only use an ℓ1-penalized likelihood approah to

determine potential sets of relevant variables. This allows to e�iently on-

strut a data-driven model subolletion with reasonable omplexity, even for
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high-dimensional situations. The evaluation of the MLE rather than the ℓ1-
penalized estimator for eah model is onsidered to avoid estimation problems

due to ℓ1-penalization shrinkage. More preisely, the data x = (x1, . . . ,xn)
are assumed to have a null expetation (in pratie, empirial entering of the

data is performed to ensure this assumption) and their unknown density f is

estimated by a �nite spherial Gaussian mixture. The lusters are harater-

ized by the mean parameters (µk)1≤k≤K and a variable j is alled irrelevant

for the lustering if µkj = 0 for all k = 1, . . . ,K; otherwise it is alled relevant.

The relevant variable subset (resp. irrelevant variable subset) is denoted by Jr

(resp. Jc
r = {1, . . . , d} \ Jr). Consequently, the variable seletion problem is

reast into a model seletion problem, where the model olletion is (S(K,Jr))
with

S(K,Jr) =





xi ∈ R
d 7→ f(xi; θ) =

[
K∑

k=1

πk φ(x
Jr

i ;µk, σ
2
I)

]
φ(x

J
c
r

i ;0, σ2
I)

θ =
(
π1, . . . , πK ,µ1, . . . ,µK , σ2

)
∈ ΠK ×

(
R

|Jr|
)K × R

∗
+





,

x
Jr

i denoting the restrition of xi on Jr, |Jr| orresponding to the ardinal

of Jr and ΠK denoting the simplex related to parameters (π1, . . . , πK). The

dimension of a model S(K,Jr) orresponds to the total number of free parameters

estimated in the model: D(K,Jr) = K(1 + |Jr|).
The so-alled Lasso-MLE proedure proposed in Meynet andMaugis-Rabusseau

[2012℄ is deomposed into three main steps. In the �rst step, as Pan and Shen

[2007℄, an ℓ1-approah is onsidered: For eah (K,λ) ∈ N
∗ × Gλ (Gλ is a given

grid on λ), the Lasso estimator θ̂L
(K,λ) is omputed by maximizing (2.7) and

the assoiated relevant variable subset is

J(K,λ) = {j ∈ {1, . . . , d} : ∃ k ∈ {1, . . . ,K} suh that µ̂kj 6= 0}.

Thus a random model subolletion {S(K,Jr) : (K,Jr) ∈ ML} is obtained,

where

ML = {(K,Jr) : K ∈ N
∗,Jr ∈

⋃

λ∈Gλ

J(K,λ)}.

The seond step onsists of omputing the MLE θ̂(K,Jr) using the standard

EM algorithm for eah model (K,Jr) ∈ ML
. The third step is devoted to

model seletion. As in Maugis and Mihel [2012℄, a non asymptoti penalized

riterion is proposed to solve the model seletion problem. By extending the

general model seletion theorem of Massart [2007℄ (Theorem 7.11) (see also

Setion ?? in Chapter??) (demander ref à Pasal dans le book), Meynet [2012℄

proves that the penalty is

pen(K,Jr) = κ1

D(K,Jr)

n

[
1 + κ2 ln

(
d

D(K,Jr)

)]
, (2.9)

where κ1 and κ2 are two unknown onstants. As expeted, the penalty is

proportional to the model dimension. The logarithmi term quanti�es the
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model olletion omplexity by taking into aount the possible large number

of models with idential dimension. Nevertheless this logarithm term beomes

unneessary if the number of models with the same dimension is small enough.

For instane, for �nite Gaussian mixture models in a low-dimensional setting,

a penalty proportional to the dimension is su�ient to selet a model lose

to the orale (Maugis and Mihel [2011℄). But in the high-dimensional on-

text, the number of models having the same dimension is expeted to grow.

Nonetheless, thanks to the random preseletion of relevant variables subsets, a

omplete variable seletion is not performed here. Thus, if the random model

subolletion is muh poorer than the whole model olletion and ontains few

models with the same dimension, a penalty proportional to the dimension

pen(K,Jr) =
D(K,Jr)

n
(2.10)

might be su�ient to selet a model with proper dimension. Next, the penalty

depending on unknown multipliative onstants is alibrated using the so-alled

slope heuristis [Birgé and Massart, 2007; Baudry et al., 2012℄.

Comparing PS-Lasso and Lasso-MLE

To ompare the Lasso-MLE and PS-Lasso proedures, the following simulated

example is proposed in Meynet and Maugis-Rabusseau [2012℄. The data set

onsists of n = 200 observations desribed by d = 1 000 variables. The data are
simulated aording to a mixture of two Gaussian distributions π1 φ(·;0d, I) +
(1 − π1)φ(·;µ2, I) where µ2 = (1.5, . . . , 1.5,0950) and π1 = 0.85. The relevant
variables are the �rst �fty variables (J⋆

r = {1, . . . , 50}). 20 simulations of the

data set are performed. For eah simulation, models with K ∈ {1, 2, 3} lusters
are onsidered. The results are summarized in Table 2.3. Table 2.3 shows that

Proedure Estimator TR FR

K̂
ARI

1 2 3

PS-Lasso

orale 50.3 (0.2) 214.6 (79.0) 0 16 4 0.90 (0.03)
BIC 49.7 (0.8) 14.3 (3.4) 0 18 2 0.86 (0.02)

Lasso-MLE

orale 50.0 (0.0) 0.2 (0.2) 0 20 0 0.95 (0.02)
AIC 50.0 (0.0) 17.1 (4.2) 0 14 6 0.90 (0.04)
BIC 49.8 (0.4) 4.4 (2.2) 0 20 0 0.92 (0.02)
DDSE 50.0 (0.0) 2.4 (1.7) 0 20 0 0.94 (0.02)

Table 2.3: Averaged number of true relevant (TR) and false relevant (FR)

variables (± standard deviation); number of times a lustering with K̂ = 1, 2
and 3 omponents is seleted; Averaged ARI (± standard deviation) over the

20 simulations. DDSE stands for data-driven slope estimation.

the PS-Lasso orale model, and to a lesser extend the model seleted by BIC,

ontain many false relevant variables and may overestimate the number of
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mixture omponents. This on�rms that the PS-Lasso proedure is not suited

to reover the true model and the true relevant variables. Moreover, BIC data

lustering is disappointing. In ontrast, the Lasso-MLE orale model always

oinides with the true model and leads to a very good data lustering. The

data-driven slope estimation (2.10) ahieves better performane than BIC and

AIC.

2.4.3 Variable role modelling

SRUW modelling

In this setion, we fous on variable seletion proedures in model-based lus-

tering whih are based on variable role modelling without variable transforma-

tion. After a series of papers (Law et al. [2004℄; Tadesse et al. [2005℄; Raftery

and Dean [2006℄; Maugis et al. [2009a℄), Maugis et al. [2009℄ propose a general

model for seleting variables for lustering with Gaussian mixtures. This model,

alled SRUW, distinguishes between relevant variables (S) and irrelevant vari-

ables (Sc) for lustering. In addition, the irrelevant variables are divided into

two ategories. A part of the irrelevant variables (U) may be dependent on a

subset R of the relevant variables and another part (W ) are independent of

other variables. Thus the data density is assumed to be deomposed into three

parts as follows:

f(xi|m; θ) =
K∑

k=1

πkφ(x
S

i ;µk,Σk)× φ(xU

i ; a+ x
R

i b,Ω)× φ(xW

i ;γ,Γ)

where x
S
i designates the restrition of xi in the set of variables S (similarly

for U , R and W ), θ =
(
(πk,µk,Σk)

K
k=1, a,b,Ω,γ,Γ

)
is the full parameter

vetor (with straightforward dimensions for eah of its omponents) and m =
(K,mΣ,mΩ,mΓ,S,R,U ,W ) is the full model index with mΣ, mΩ and mΓ

denoting the form of the relevant ovariane matries (Σk)
K
k=1, the form of

the regression variane matrix Ω and the form of the ovariane matrix Γ of

the independent variables W respetively. It an be any struture de�ned by

Celeux and Govaert [1995℄ for mΣ, a spherial, diagonal or general struture

for mΩ and a spherial or diagonal struture for mΓ.

The SRUW model generalizes several previous model seletion methods.

The proedure of Law et al. [2004℄, where irrelevant variables are assumed to be

independent of all the relevant variables, orresponds to W = Sc
, R = ∅, U =

∅. The variable seletion proedure of Raftery and Dean [2006℄, available in the

r pakage lustvarsel

6

, assumes that the irrelevant variables are regressed

on the whole relevant variable set (W = ∅, U = Sc
and R = S). The

generalization of Maugis et al. [2009a℄ enrihes this model by allowing the

irrelevant variables to be explained by only a subset of the relevant variables

6

https://ran.r-projet.org/web/pakages/lustvarsel/index.html
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R ⊂ S (W = ∅,U = Sc); this method is implemented in the selvarlust

software

7

.

The SRUW method reasts the variable seletion problem for model-based

lustering as a model seletion problem. It is solved maximizing the following

BIC-type riterion:

ritm = BIC

lust

(K,mΣ)(x
S) + BIC

reg

mΩ
(xU | xR) + BIC

indep

mΓ
(xW ), (2.11)

where BIC

lust

(·,·,S) represents the BIC riterion of the Gaussian mixture model

with the variables S, BICreg

(·,U ,R) represents the BIC riterion of the regression

model of the variables U on the variables R and BIC

indep

(·,W ) represents the BIC

riterion of the Gaussian model with the variables W .

Sine the SRUW model olletion is large, two embedded bakward or for-

ward stepwise algorithms for variable seletion, one for the lustering and one

for the linear regression, are onsidered to solve this model seletion prob-

lem. A bakward algorithm allows one to start with all variables in order to

take variable interations into aount. A forward proedure, starting with an

empty lustering variable set or a small variable subset, ould be preferred for

numerial reasons if there are numerous variables. The method is implemented

in the selvarlustindep software.

8

The two embedded stepwise variable se-

letion algorithms are used to identify the SRUW sets. It leads to ompare two

models at eah step in order to determine whih variable should be exluded or

inluded in the set S, R, U or W . But in a high-dimensional setting, even the

variable seletion method with the two forward stepwise algorithms beomes

painfully slow and alternative methods are desirable.

SelvarMix proedure

In order to avoid the highly CPU-time onsuming of stepwise algorithms of

selvarlustindep, an alternative variable seletion proedure in two steps

is proposed by Sedki et al. [2014℄. This variable seletion proedure is imple-

mented in the r pakage selvarmix

9

.

In the �rst step, the variables are ranked through the Lasso-like proedure

of Zhou et al. [2009℄ (see Setion 2.4.2). For any K ∈ N
⋆
and two non-negative

regularization parameters λ and ρ on two grids of values Gλ and Gρ, the ri-

terion de�ned in Equation (2.8) is maximized. The estimated mixture param-

eters θ̂K(λ, ρ) = ((π̂k(λ, ρ)), (µ̂k(λ, ρ)), (Σ̂k(λ, ρ)))
K
k=1 are omputed with the

EM algorithm of Zhou et al. [2009℄. It is worth noting that this Lasso-like

riterion does not take into aount the typology of the variables indued by

the SRUW model. Stritly speaking, it only distinguishes two possible roles for

the variables: a variable is delared related or independent of the lustering.

7

selvarlust is available at http://www.math.univ-toulouse.fr/~maugis/

8

selvarlustindep is available at http://www.math.univ-toulouse.fr/~maugis/

9

https://ran.r-projet.org/web/pakages/SelvarMix/index.html
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Varying the regularization parameters (λ, ρ) in Gλ × Gρ, a sore is de�ned for

eah variable j ∈ {1, . . . , d} and for �xed K:

OK(j) =
∑

(λ,ρ)∈Gλ×Gρ

(
1− 1µ̂1j(λ,ρ)=...=µ̂Kj(λ,ρ)=0

)
.

The larger OK(j), the more related for the lustering the variable j is expeted
to be. The variables are thus ranked by their dereasing values on OK(j), this
variable ranking being noted IK = (j1, . . . , jd).

Conditional to a model (K,mΣ,mΩ,mΓ) omposed by the number of groups

and all the strutures of ovariane matries, the relevant lustering variable

set S is �rst determined. The variable set is sanned aording to the IK order.

One variable is added to S if

BIC

di�(jv) = BIC

lust

(K,mΣ)

(
x
S ,xjv

)

−BIClust

(K,mΣ)

(
x
S
)
− BIC

reg

mΩ

(
x
jv | xR[jv ]

)

is positive, R[jv ] being the variables of S required to linearly explain x
jv
. The

sanning of IK is stopped as soon as c suessive variables have a non positive

BIC

di�

value, c being a �xed positive integer. Next the independent variable set
W is determined as follows: Sanning the variable set aording to the reverse

order of IK , a variable jv is added to W if the subset R[jv ] of S (derived from

the bakward stepwise algorithm) is empty. The algorithm stops as soon as c
suessive variables are not delared independent. The redundant variables are

thus delared to be U = {1, . . . , d}\{S∪W } and the subsetR of S required to

linearly explain x
U

is derived from the bakward stepwise algorithm. Finally,

the model (K,mΣ,mΩ,mΓ) maximizing the riterion (2.11) is seleted.

Variable seletion without multiple parameter estimation

Altough some strategies design suh redued deterministi paths for limiting

the number of model evaluations, this number remains too high for fast model

seletion. Indeed, eah model omparison requires to estimate model parame-

ters whih are needed for any model seletion riterion like BIC. Marba and

Sedki [2015℄ propose an original strategy avoiding parameter estimation for all

models whih ompete, thus limiting the omputing time. Then a parameter

estimation is just performed for the retained model at the end of their proess.

Their strategy is applied in the diagonal Gaussian mixture but ould be easily

extended to the multinomial or the mixed situations also.

In their ontext, a variable is said to be irrelevant for the lustering task if its

one-dimensional marginal distributions are equal between omponents. In the

Gaussian diagonal situation for instane, and noting Σk = diag(σ2
k1, . . . , σ

2
kd),

a variable j is thus irrelevant if

µ1j = . . . = µKj and σ2
1j = . . . = σ2

Kj .
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By introduing a variable wj suh that wj = 0 if variable j is irrelevant for

the lustering and wj = 1 otherwise, seleting w = (w1, . . . , wd) is thus stritly
equivalent to seleting a given probabilisti model. Then any model seletion

riterion, like BIC, ould be used for seleting the pair m = (K,w).

Their strategy relies on a variant of the ICL riterion of Biernaki et al.

[2000℄. The ICL riterion (see Setion ?? in Chapter ??) is de�ned by ICLm =
ln f(x, ẑm|m), where ẑm is the MAP of the MLE of θ with the model Sm.

The proposed variant is the so-alled MICL riterion (Maximum Integrated

Complete-data Likelihood) de�ned by

MICLm = ln f(x, z∗m|m) with z
∗
m = argmax

z∈Z
ln f(x, z|m).

Then, the model Sm∗
maximizing MICLm is retained:

m
∗ = arg max

m∈M
MICLm.

Marba and Sedki [2015℄ prove that MICL, like ICL, is onsistent for hoosing

w when the number K of omponents is known. Nevertheless, like ICL (see

again Setion ?? in Chapter ??), MICL is onsistent for hoosing K only when

lusters do not too muh overlap. In addition, losed-form expression of MICL

is available when there exists onjuguate priors, what is the ase for Gaussian

and multinomial mixtures. For instane, see Equation (??) of Chapter ?? for

the exat expression of ICL in the multinomial ase.

The question of maximizing MICL on w is obviously the ruial di�ulty.

Marba and Sedki [2015℄ implement the following simple alternate proedure,

for a �xed K value (thus this algorithm has to be run for di�erent andidate

values of K). Starting from a value w
(0)

(thus Sm(0) ) uniformly sampled in

the orresponding spae and then a value z
(0)

being dedued from the MAP

rule of the assoiated MLE, an iteration of the algorithm is omposed by the

following two steps (q ≤ 0):

Partition step Fix z
(q+1)

suh that

ln f(x, z(q+1)|m(q)) ≥ ln f(x, z(q)|m(q)).

Model step Fix m
(q+1) = argmaxm∈M ln f(x, z(q+1)|m) suh that m

(q+1) =
(K,w(q+1)) with (j = 1, . . . , d)

w
(q+1)
j = arg max

wj∈{0,1}
ln f(xj

1, . . . , x
j
n|K,wj , z

(q+1)).

This proedure an be trapped in loal maxima and thus several run are re-

quired. In addition, it an be time onsuming when the sample size inreases,

due to the so-alled �model step�. However, it is a very promising �rst attempt

for dealing with model multipliity in variable seletion, without systemati
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parameter estimation whih orresponds in fat, for most urrent approahes,

to a huge time onsuming waste. The algorithm of these authors is available

as an r pakage alled varsellm

10

.

2.4.4 Co-lustering

De�nition and historial utility

Simultaneous lustering of rows and olumns, usually designated by bi-lustering,

o-lustering or blok lustering, is an important tehnique in two way data

analysis. They onsider the two sets simultaneously and organize the data

into homogeneous bloks. Two partition representations are thus now needed.

First, as usual, a partition of n individuals (lines of the data matrix x) into K
lusters still notied z = (z11, . . . , znK) with zik = 1 if i belongs to luster k
and zik = 0 otherwise (we note as well zi = k if zik = 1). Seond, and symmet-

rially, a partition of d variables (olumns of the data matrix x) into L lusters

is denoted by w = (w11, . . . , wdL) with wjl = 1 if j belongs to luster l and
wjl = 0 otherwise (we note as well wj = l if wjl = 1). Both spae partitions

are respetively denoted by Z and W . Figure 2.11 gives an illustration of this

purpose.

In reent years, o-lustering have found numerous appliations in the �elds

ranging from data mining, information retrieval, biology, omputer vision and

so forth. Dhillon [2001℄ publishes an artile on text data mining by simulta-

neously lustering the douments and ontent (words) using bipartite spetral

graph partitioning. This is a quite useful tehnique for instane to manage huge

orpus of unlabeled douments. Xu et al. [2010℄ present another o-lustering

appliation (again using bipartite spetral graph) to understand subset aggre-

gates of web users by simultaneously lustering the users (sessions) and the page

view information. Giannakidou et al. [2008℄ employ a similarity metri based

o-lustering tehnique for soial tagging system. In �eld of bio-informatis,

o-lustering is mainly used to �nd strutures in gene expression data. This

is useful for instane to �nd sets of genes whih orrespond to a partiular

kind of disease. Some of the pioneer material in this ontext an be found in

Kluger et al. [2003℄. Reently many model-based o-lustering algorithms have

also been developed to target omputer vision appliations. For instane, Qiu

[2004℄ demonstrates the utility of o-lustering in image grouping by simul-

taneously lustering images with their low-level visual features. Guan et al.

[2005℄ extend this work and present opportunity to develop a novel ontent

based image retrieval system. Similarly, Rasiwasia and Vasonelos [2009℄ use

o-lustering to model senes.

10

https://ran.r-projet.org/web/pakages/VarSelLCM/index.html
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Figure 2.11: Co-lustering priniple illustrated on a binary data set: On the

left, the initial data set (n = 500 and d = 100); On the right, the reorganized

data set with a simultaneous partitioning of rows and olumns (K = 6 and

L = 4).
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Probabilisti formulation and use in HD lustering

We refer to the book of Govaert and Nadif [2013℄ for providing more details

on o-lustering tehniques, probabilisti or not. Here, we fous on model-

based o-lustering as being often a generalization of non-probabilisti methods

and allowing oherent formulation from estimation to model seletion. In the

following set, sum or produt on i, j, k and l stands for ranges {1, . . . , n},
{1, . . . , d}, {1, . . . ,K} and {1, . . . , L} respetively.

Blok model-based lustering an be seen as an extension of the traditional

mixture model-based lustering (see Chapter ??). The basi idea is to extend

the latent lass priniple of loal (or onditional) independene. Eah data

point xj
i is assumed to be independent one zi and wj are �xed:

f(x|z,w; θ) =
∏

i,j

f(xj
i ;αziwj

).

We have noted θ = (π,ρ,α), where α = (αkl) , π = (πk) and ρ = (ρk) are
the vetors of probabilities πk and ρl that a row and a olumn belong to the

kth row omponent and to the lth olumn omponent respetively. Assuming

also independene between all zi and wj , the latent blok mixture model has

�nal pdf

f(x; θ) =
∑

(z,w)∈Z×W

∏

i,j

πziρwj
f(xj

i ;αziwj
). (2.12)

The pdf f(·;αziwj
) depends on the kind of data xj

i :

• In the binary ase (xjh
i ∈ {0, 1}2, with ∑2

h=1 x
jh
i = 1), f(·;αkl) orre-

sponds to the Bernoulli distribution B(αkl) of parameterαkl = p(Xj
i = 1)

(see Govaert and Nadif [2008℄).

• In the ategorial ase with m levels (xjh
i ∈ {0, 1}m, with ∑m

h=1 x
jh
i = 1),

f(·;αkl) orresponds to the multinomial distributionM(αkl) of parameter

αkl = (α1
kl, . . . , α

m
kl) with αh

kl = p(Xj
i = h) for h = 1, . . . ,m (see Keribin

et al. [2015℄).

• In the ontingeny table ase (xj
i ∈ N), f(·;αkl) orresponds to the Pois-

son distribution P(µkνlγkl) of parameter αkl = (µk, νl, γkl). The Poisson
parameter is here split into µk and νl the e�ets of the row k and the

olumn l respetively and γkl the e�et of the blok kl (see Govaert and
Nadif [2010℄). Unfortunately, this parameterization is not identi�able. It

is therefore not possible to estimate simultaneously µk, νl and γkl without
imposing further onstraints. Constraints

∑
k πkγkl =

∑
l ρlγkl = 1 and∑

k µk = 1,
∑

l νl = 1 are a possibility.

• In the ontinous ase (xj
i ∈ R), f(·;αkl) orresponds to the Gaussian dis-

tribution N(µkl, σ
2
kl) of parameter αkl = (µkl, σ

2
kl), denoting respetively

the mean and the variane (see Govaert and Nadif [2013℄).
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Suh models an be very parsimonious

11

even in the HD setting provided

that L is quite low, as it is shown in Table 2.4. The number of parameters of

this table has to be ompared to this one of Tables 2.1 and 2.2. Consequently,

these blok lustering models ould be good andidates for performing HD

lustering even if they are not exatly designed for this aim initially. In suh

a ase, lustering of olumns an just be seen as an instrumental strategy for

obtaining HD parsimonious models. Indeed, the HD lustering purpose only

onerns n and not d in our ase. However, olumn lustering has advantage

to provide an easy readability of the model to the pratitioner.

Model Number of parameters

Binary dim(π) + dim(ρ) +KL
Categorial dim(π) + dim(ρ) +KL(m− 1)
Contingeny dim(π) + dim(ρ) +KL
Continuous dim(π) + dim(ρ) + 2KL

Table 2.4: Number of parameters of the blok lustering models. We have

dim(π) = K − 1 in the ase of free proportions in lines and dim(π) = 0 in the

ase of equal proportions. Symmetrially, we have dim(ρ) = L− 1 in the ase

of free proportions in olumns and dim(ρ) = 0 in the ase of equal

proportions.

Parameter estimation

EM-based algorithms are the standard approah to estimate model parameters

by maximizing the observed log-likelihood. Here, the omplete data is repre-

sented as a vetor (x, z,w) where unobservable vetors z and w are the labels.

The omplete log-likelihood an then be written

ℓ(θ;x, z,w) =
∑

k

(
∑

i

zik) log πk+
∑

l

(
∑

j

wjl) log ρl+
∑

i,j,k,l

zikwjl log f(x
j
i ;αkl).

Then, from Setion ?? of Chapter ??, the expeted omplete log-likelihood

Q(θ, θ(q)) involved at the qth iteration of the EM algorithm is expressed by

Q(θ, θ(q)) =
∑

i,k

p(Zi = k|x; θ(q)) ln πk +
∑

j,l

p(Wi = l|x; θ(q)) ln ρl

+
∑

i,j,k,l

p(Zi = k,Wj = l|x; θ(q)) ln f(xj
i ;αkl). (2.13)

Unfortunately, di�ulties arise owing to the dependene struture in the

model, and more preisely in the ombinatorial di�ulty for evaluating the

terms p(Zi = k,Wj = l|x; θ(q)). Several solutions exist for skirting this di�-

ulty (see Govaert and Nadif [2013℄ for more details), inluding:

11

Some more parsimonious versions are also de�ned (see referenes).
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• The so-alled variational approah whih onstraints the problemati joint

probability to satisfy the relation

f(z,w|x; θ) ≈ f(z|x; θ)f(w|x; θ).

• To replae the E-step by a S-step, so using a SEM algorithm instead of

EM (see details on SEM in Setion ?? of Chapter ??). In the S-step,

random ouples (z,w) (onditionnally to x) are drawn sequentially by

the following two-step Gibbs algorithm (see more details in Keribin et al.

[2015℄)

Z|x,w; θ and W |x, z; θ.

Several estimation algorithms are implemented in the r pakage bloklus-

ter

12

.

For �nishing this estimation desription, it is important to note two impor-

tant features. Firstly, many loal maxima of the likelihood may exist in the

blok lustering model, more than in the standard mixture ontext, probably

owing to the latent data multipliity. In pratie, many runs should then be

launhed to avoid traps in loal maxima. Seondly, omputing the (observed)

log-likelihood value ℓ(θ;x) itself is di�ult for the same ombinatorial reasons

that previously. Suh an unavailability an have important onsequenes on

model seletion also.

Model seletion

Models in ompetition are indexed by the number of lusters in line and olumn,

thus S = (K,L). It is ruial to notie that model seletion in blok lustering

has to be performed with aution sine some traditional riteria annot be

used straightforwardly. In partiular, it is hazardous to use asymptoti riteria

like BIC sine asymptoti is now double with both quantities n and d. In

addition, using non asymptoti evaluation of the integrated likelihood f(x) has
to be given up beause of the ombinatorial di�ulty involved by the latent

variables z and w.

Avoiding both asymptoti problems and ombinatorial di�ulties is possible

by using exat expression of the ICL riterion (Biernaki et al. [2000℄, Biernaki

et al. [2011℄). In the blok lustering ontext, ICL is written

ICLm = ln f(x, ẑm, ŵm) = ln f(x|ẑm, ŵm) + ln f(ẑm) + ln f(ŵm),

ẑm and ŵm being the MAP estimate of z and w respetively obtained from the

MLE θ̂m. Lomet et al. [2012℄ provide the orresponding losed-form expression

of ICL for the Gaussian situation and Keribin et al. [2015℄ similarly for the

Bernoulli/multinomial ase. We refer the reader to these referenes for detailed

disussion about the Bayesian hyperparameter hoie.

12

http://ran.r-projet.org/web/pakages/blokluster/index.html
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In addition, in this multinomial setting with m levels, Keribin et al. [2015℄

use their non-asymptoti expression to derive the new following asymptoti

one, alled ICLbi:

ICLbim = ℓ(θ̂m;x, ẑm, ŵm)−K − 1

2
ln(n)− L− 1

2
ln(d)−KL(m− 1)

2
ln(nd).

It is interesting to notie that, in omparison to the ICLbi formula in the

simple mixture ontext (see Equation (??) in Chapter ??), now both the row

number n and the olumn number d are involved in the penalty. Using then the
straightforward link ICLm = ln f(ẑm, ŵm|x; θ̂m) +BICm between ICLbi and

ICL, they propose the following blok lustering spei� asymptoti version of

BIC

BICm = ℓ(θ̂m;x)− K − 1

2
ln(n)− L− 1

2
ln(d)− KL(m− 1)

2
ln(nd).

Again, it is interesting to observe the way that both n and d are present in the

penalty. Neverthess, the BIC alulus remains unattainable sine it relies on

the unvailable value of the log-likelihood ℓ(θ̂m;x).

Finally, Keribin et al. [2015℄ make the onjeture, orroborated with experi-

ments, that BIC and ICL are asymptotially equivalent and thus have the same

asymptoti behaviour. As a onsequene, the ICL riterion is expeted to be

onsistent for seleting both K and L in blok lustering, for any true parame-

ter setting. It is totally di�erent from row lustering where onsisteny is only

true for su�iently separated lusters (see Baudry [2012℄ and also Setion ??

in Chapter ??). Suh a remark is ruial beause it is linked to the blessing of

HD lustering we have disussed in length earlier in Setion 2.2.2.

Return on the blessing in HD lustering

We illustrate now, in the binary blok lustering setting, that HD situations

are a whole blessing for row lustering. Denoting by p(Xj1
i = 1|Zi = k) = τk =∑L

l=1 αklρl, then the marginal distribution of Xj
i on j is the following mixture

of binomial distributions B(·, ·)



∑

j

Xj1
i



 |Zi = k ∼ B(d, τk).

In that ase, Brault [2014℄ provides the following ontrol of partition error z of

this mixture, z
∗
denoting the true row partition:

p(ẑ 6= z
∗) ≤ 2n exp

{
−1

8
d

[
min
k 6=k′

|τk − τk′ |
]}

+K(1−min
k

πk)
n.

It implies the important fat that row lustering is onsistent in high-dimension

provided some asymptoti onstraints between n and d, for instane that

ln(n) = o(d).
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Figure 2.12: Illustration of the low row luster overlap in the binary HD

setting: The initial data matrix is at the top; Histogram of the sum of

olumns is displayed at the seond line (�rst olumn); The third line

underlines that three row lusters are learly present (�rst olumn); The

reorganized matrix (in row and olumns) is available at the last line of the

�gure. Symmetrial omments ould be made on olumn luster overlap

(seond olumn on the �gure). This �gure has been provided by Brault [2014℄.

Figure 2.12 illustrates this low row luster overlap in a HD setting. Note that

the same omment ould be made on olumn luster overlap when n inreases,

even if it is not the �rst topi of this haper foused on row HD lustering.

In the same spirit, Mariadassou and Matias [2013℄ show the following more

general result in the binary ase, on the onsisteny of the ouple (ẑ, ŵ):

θ̂
n,d→∞−→ θ∗ ⇒ p(ẑ = z

∗, ŵ = w
∗|x; θ̂) n,d→∞−→ 1,

where θ∗
and w

∗
respetively design the true θ and w.

Contingeny table illustration: doument lustering

We retrieve the text mining example introdued in Setion 2.3.2. Sine it

onerns a ontingeny table (ross ounting douments and words) we apply
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Medline Cran�eld

Medline 1033 ·
Cran�eld · 1398

Figure 2.13: Confusion table by applying blok lustering for text

partitioning.

a Poisson blok lustering model. The �true� blok partitioning involves K =
2 doument lusters (row) and L = 2 word lusters (olumn). Table 2.13

displays the onfusion table for douments by using 2×2 bloks. We show that

we exatly retrieve the underlying doument struture, what is expeted by

the blessing e�et of HD lustering, the data set being here with d = 9275.
Figure 2.14 gives a view of the data set before and after reorganization by

blok-lustering. We also distinguish lear partitioning in rows and olumns.

(a) (b)

Figure 2.14: Text mining example: (a) the initial data set; (b) the

reorganized data set with (K,L) = (2, 2).

2.4.5 Intermediate onlusion

Designing parsimonious models in the anonial spae for HD data has the

expeted advantage of being more meaningful for the pratitioner than non-

anonial ones. In this ontext, several spei� ontributions exist, that ould

be split into variable seletion-like and variable lustering-like approahes. Be-

yond their apparent di�erene, they share the ommon property to reast a

partiular, but simple, role for the variables in a generative and very parsi-

monious way when the dimension of the feature spae inreases. However,

although only generative approahes are involved, it is not always straightfor-

ward to use lassial model seletion riteria. Indeed, some questions about

either their asymptoti validity, their expliit alulus (the likelihood is not

always alulable) or their use in ase of a huge number of ompeting models

is posed. Nevertheless, reent advanes in this ative �eld of researh suggest

possibility to progressively overome these sienti� loks. Beyond these model
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seletion questionings, the important task onsisting of designing spei� gen-

erative models for HD mixed features should be also undertaken sine it is

urrently poorly developed albeit more and more present in nowadays data

sets.

2.5 Future methodologial hallenges

Two strong trends are highly expeted to hold in a near future, that should

be addressed by spei� researhes. Firstly, data sets will be desribed by a

onstantly inreasing number of features, these features being possibly them-

selves of very di�erent kinds. For instane, (high-dimensional) multivariate

ategorial funtional data ould be mixed with (high-dimensional) multivari-

ate ounting data, et. Seondly, the number of model andidates for dealing

with these kinds of data sets will onstantly inrease, leading to a unmanage-

able number of models estimation in pratie. Suh a situation will address

the question to design some spei� strategies in model seletion, for avoiding

ine�etive and unneessary estimation of a too large number of models.
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