
DTD based costs for Tree-Edit distance in Structured

Information Retrieval

Cyril Laitang, Karen Pinel-Sauvagnat, Mohand Boughanem

To cite this version:

Cyril Laitang, Karen Pinel-Sauvagnat, Mohand Boughanem. DTD based costs for Tree-Edit
distance in Structured Information Retrieval. 35th European Conference on Information Re-
trieval (ECIR 2013), Mar 2013, Moscou, Russia. Advances in Information Retrieval, pp. 158-
179, 2013. <hal-01264568>

HAL Id: hal-01264568

https://hal.archives-ouvertes.fr/hal-01264568

Submitted on 8 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50531304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01264568

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12346

The contribution was presented at :
 http://ecir2013.org/

Official URL: http://dx.doi.org/10.1007/978-3-642-36973-5_14

To cite this version : Laitang, Cyril and Pinel-Sauvagnat, Karen and Boughanem,
Mohand DTD based costs for Tree-Edit distance in Structured Information Retrieval.
(2013) In: 35th European Conference on Information Retrieval (ECIR 2013), 24
March 2013 - 27 March 2013 (Moscou, Russian Federation).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

DTD Based Costs for Tree-Edit Distance

in Structured Information Retrieval

Cyril Laitang, Karen Pinel-Sauvagnat, and Mohand Boughanem

IRIT-SIG,
118 route de Narbonne,

31062 Toulouse Cedex 9, France
{laitang,sauvagnat,boughanem}@irit.fr

Abstract. In this paper we present a Structured Information Retrieval
(SIR) model based on graph matching. Our approach combines content
propagation, which handles sibling relationships, with a document-query
structure matching process. The latter is based on Tree-Edit Distance
(TED) which is the minimum set of insert, delete, and replace operations
to turn one tree to another. To our knowledge this algorithm has never
been used in ad-hoc SIR. As the effectiveness of TED relies both on
the input tree and the edit costs, we first present a focused subtree
extraction technique which selects the most representative elements of
the document w.r.t the query. We then describe our TED costs setting
based on the Document Type Definition (DTD). Finally we discuss our
results according to the type of the collection (data-oriented or text-
oriented). Experiments are conducted on two INEX test sets: the 2010
Datacentric collection and the 2005 Ad-hoc one.

1 Introduction

Structured information retrieval (SIR) aims at ranking document parts instead
of whole documents. For this purpose, SIR exploits document structure to focus
on the user needs and to return XML elements that are both exhaustive and spe-
cific to his/her need. Structured document collections are of two types: some are
strongly structured and contain textual information that can be seen as database
records (they are called data-oriented) and others are more loosely structured but
contain content designed to be read by humans (they are called text-oriented).
Whatever the considered type of collection, queries on these collections can be
expressed using both content (keywords) and structural constraints about con-
tent location. These queries are called content and structure (CAS) queries. Both
XML documents and CAS queries can be naturally represented through trees
where nodes are elements and edges hierarchical dependencies. Text content is
located in the leaves and element names are the nodes labels. An example of an
XML document and a CAS query is given in figure 1.

In the literature two types of approaches were proposed to handle docu-
ment structure regardless of content. The first one is relaxation [1] [4] [7]. In
these approaches, the main structure is atomized into a set of weighted node-
node relationships. These weights are the distance between nodes in the original

structure. The second family is related to subtree extraction. The aim is to ex-
tract a particular subtree representative from the overall document structure.
One of these approaches is the lowest common ancestor (LCA) in which the tree
is rooted by the first common ancestor of two or more selected nodes [5]. In SIR
this approach aims at scoring structure by finding subtrees where all the leaves
contain at least one term of the query [3].

Fig. 1. Tree representation of an XML document and a query in which we want a

“movie” directed by “Terry Gilliam” with the actor “Benicio del Toro” and with a

character named “Dr Gonzo”.

To the best of our knowledge, only a few approaches use the graph theory
and none uses Tree-Edit Distance (TED) to evaluate similarity between the
documents and query trees. One can however find approaches using string edit
distance on path instead of trees [20]. The model we propose in this paper
evaluates the relevance of an element with respect to a query using both content
scoring propagation and a structure similarity measure based on TED. The
research questions we address are the following:

– is TED useful for Structured Information Retrieval?
– as the effectiveness of TED mainly depends on the removing and relabeling

costs and as these costs are often fixed in graph theory, how effective are
edit costs if they are computed according to some document features?

– does the collection type (data or text-oriented) on which TED is applied
affect the results?

The rest of this paper is organized as follows: section 2 gives a brief introduction
on TED algorithms and details our structured oriented model. In section 3, in
order to evaluate our TED based SIR model, we conducted some experiments
on two different test sets. Finally, the impact of the collection type on the SIR
process is discussed in section 4.

2 Tree-Edit Distance for Structural Document-Query

Matching

We assume that a query is composed of content (keywords) and structure con-
ditions, as shown in figure 1. The document-query relevance is evaluated by
considering content and structure separately before combining them to rank rel-
evant elements. In this section, we first describe the query-document content
evaluation and we then detail our structure matching algorithm based on TED.

2.1 Content Relevance Score Evaluation

Our content score evaluation of a node n in a document is a three steps process.
First, for each keyword in the query, we use a tf×idf (Term Frequency × Inverse
Document Frequency [11]) formula to score the document leaf nodes according
to query terms contained in content conditions. Then the scores are propagated
through the document tree structure. Regarding the propagation, our intuition
is that the score of an inner node n must depend on three operands. First, it
must contain its intermediate score p(n) computed as the mean of its leaves
score. Then it must take into account its neighbors, particularly its siblings and
parent nodes, as they could be seen as contextualization parameters. Indeed,
relevant elements are more likely to be found in an overall relevant document
[25]. Based on these constraints we define the content score c(n) of a node n as
the intermediate content score of the element itself plus its siblings intermediate

score plus its parent’s score. Recursively, and starting from the document root,
c(n) is computed as follows:

c(n) =

p(n)
︸︷︷︸

(i)

+

∑

b∈siblings(n) p(b)

| siblings(n) |
︸ ︷︷ ︸

(ii)

+
c(a1)− p(n)

| children(a1) |
︸ ︷︷ ︸

(iii)

if n 6= root

︷︸︸︷

p(n) otherwise

(1)

(i) is the intermediate content score p(n) =
∑

x∈leaves(n) p(x)

|leaves(n)| evaluated using a

tf × idf formula; (ii) is the siblings score computed as the mean of the node n

siblings intermediate content scores p(b); (iii) is the parent score, evaluated with
c(a1) the final score of the father a1 divided by the number all of its children
nodes.

2.2 Structure-Based Relevance Score Evaluation

The second part of our approach is the structure score evaluation. This process
follows three steps. The first one is subtrees selection and extraction. The second
step is the structural evaluation through TED. The final step is then the struc-
ture score normalization. As our structure similarity evaluation process relies on
Tree-Edit Distance we will first overview some state-of-the-art algorithms.

Tree-Edit Distance Algorithms. Two graphs are called isomorphic if they
share the same nodes and edges. Evaluating their isomorphism is called graph
matching. We make the distinction between approximate and exact matching.
While the first one attempts to find a degree of similarity between two structures,
exact matching validates the similarity. Due to the context of our work (Infor-
mation Retrieval), we focus on approximate matching. There are three main
families of approximate tree matching: edit distance, alignment and inclusion.
We used Tree-Edit Distance (TED) as it has the most generalized application
field of the three main families [6]. TED algorithms [23] generalize Levenshtein
edit distance[16] to trees. The similarity is the minimal set of operations (adding,
removing and relabeling) to turn one tree to another. Later, Klein et al. [14] re-
duced the overall complexity in time and space by splitting the tree structure
based on the heavy path (defined in the following paragraph). Finally Touzet et
al. [8] used a decomposition strategy to dynamically select the best nodes to re-
curse on between rightmost and leftmost, which reduces the number of subtrees
in memory. Regarding the costs, a common practice is to use apriori fixed costs
for the primitive operations [17] [18], i.e: 1 for removing a node, 0 for relabeling a
node by another if their tags are similar and 1 otherwise. However as these costs
strongly impact the isomorphism evaluation one may find non-deterministic ap-
proaches that try to estimate these costs using training techniques [19] [18].

To our knowledge, TED has never been used in SIR, and this is what we
propose in this paper.

Subtree Extraction. Our approach uses minimal subtrees representing all the
relevant nodes (having p(n) > 0) labeled with a label contained in the query as
input for the matching process. This representation is considered as minimal as
it prunes all irrelevant branches regarding to the query while keeping original
internal document relationships in the considered branches.

These subtrees S are created from the combination of all the paths from the
deepest relevant nodes to the highest node in the hierarchy, all containing a label
from the query. These paths are then merged and rooted by a node having the
same label l than the query root (root(Q)). Formally a subtree S is composed of
all nodes n from the document tree D having descendants des(n) and ancestors
anc(n) sharing a label with the query (l(n) ∈ {l(Q)}):

S = {n ∈ D,P (n) > 0 ∧ l(root(Q)) ∈ {l(anc(n))} ∧ ∃d ∈ des(n)/l(d) ∈ {l(Q)}} (2)

The different steps of subtrees extraction are illustrated in figure 2. Starting from
leaves with a score > 0 (step 1), branches are extracted from the first ancestor
matching a label of the query (in our case “director”, “name” and “character”)
to the query root label (step 2). These paths are merged into one subtree (step
3). These steps reduce the average subtrees size and increase our model efficiency
as TED runtime strongly depends on the input trees cardinality.

Edit Distance Optimal Path. TED is a way of measuring similarity based
on the minimal cost of operations to transform one tree to another. The number

Fig. 2. Illustration of the different steps of our minimal subtree extraction

of subtrees stored in memory depends on the direction we choose when applying
the operations. Our algorithm is an extension of the optimal cover strategy from
Touzet et al. [8]. The difference is that the optimal path is computed with the
help of the heavy path introduced by Klein et al. [14]. The heavy path is the path
from root to leaf which passes through the rooted subtrees with the maximal
cardinality1. This means that selecting always the most distant node from this
path allows to create the minimal set of subtrees in memory during the recursion:
this is the optimal cover strategy. Formally a heavy path is defined as a set of
nodes (n1, ..., nz), with T (x) the rooted tree in x satisfying:

∀(ni, ni+1) ∈ heavy

{
ni+1 ∈ children(ni)
∀x ∈ children(ni), x 6∈ {ni+1}, | T (ni+1) |≥| T (x) |

(3)

This strategy is used on the document and query in our TED algorithm :

Algorithm 1: Edit distance using optimal paths
d(F , G, pF , pG) begin

if F = ⊘ then

if G = ⊘ then

return 0;
else

return d(⊘, G - OG.get(pG)), pF , inc(pG)) + cdel (OG.get(pG));
end

end

if G = ⊘ then

return d(F - OF .get(pF)), ⊘, inc(pF), pG) + cdel (OF .get(pF));
end

a = d(F - OF .get(pF), G, inc(pF), pG) + cdel (OF .get(pF));
b = d(F , G - OF .get(pF), pF , inc(pG) + cdel (OG.get(pG));
c = d(T (OF .get(pF)) - OF .get(pF), T (OG.get(pG)) - OG.get(pG), inc(pF), inc(pG)) +
d(F - T(OF .get(pF)), G - T(OG.get(pG)), next(pF), next(pG)) + cmatch (OF .get(pF),
OG.get(pG));
return min(a, b, c);

end

F, G are two forests (i.e. the document and the query as first input), pF and
pG are positions in OF and OG the optimal paths (i.e. paths of the optimal

1 A tree cardinality is its number of nodes.

cover strategy). Function O.get(p) returns the node in path O corresponding to
position p and function inc() increments this position.

Edit Distance Costs Evaluation. As seen in the beginning of this section,
TED operation costs are generally set to 1 for removing, to 0 for relabeling similar
tags and to 1 otherwise [23] which is sufficient for evaluating relatively similar
trees. However in our approach document trees are usually larger than query
trees which means that the removing cost should be assigned lower values. In
addition TED costs should be adapted to the considered collection: some nodes
may have higher associated costs than others depending on their informativeness
in the collection. There are two constraints in estimating these costs. First, as
relabeling is equivalent to removing and then adding a node, its cost should be
at less or equal to two removing operations. Second, an IR model should be
efficient as well as effective. For this reason we need to get the estimation of
these costs for a minimal computation time. For all these reasons we propose to
use the DTD (Document Type Definition) of the documents which contains all
the transition rules between the document elements. We use this DTD to create
an undirected graph representing all the possible transitions between elements
(figure 3). We choose it to be undirected in order to make elements strongly
connected. The idea is that the less degree a node has the less its removing cost
should be.

Fig. 3. Example of a “movie” DTD with its corresponding graph

As some collections can come up with several DTDs we create one graph for
each of them and one final merged on shared labels if they exist (this explains
our choice to represent the DTD graph in figure 3 as a graph and not as a tree).
This merged graph is then used when the query is not explicit enough and is
conform to more than one DTD.

In order to process the relabeling cost cmatch(n1, n2) of a node n1 by a node
n2, respectively associated with tags t1 and t2, we seek the shortest path sp()
in these DTD graphs through a Floyd-Warshall [9] algorithm. This allows to
overcome the cycle issues. We divide this distance by the longest of all the
shortest paths that can be computed from this node label to any of the other
tags in the DTD graph. Formally :

cmatch(n1, n2) =
sp(t1, t2)

max(sp(t1, tx))
∀x ∈ DTD (4)

Similarly the removing cost is the highest cost obtained from all the relabeling
costs between the current document node and all of the query nodes. Formally

cdel(n1) = max(
sp(t1, ty)

max(sp(t1, tx))
)∀x ∈ DTD;∀y ∈ Q (5)

The final structure score s(n) of a node n is evaluated according to the TED
d(S,Q) of subtree S (S is the subtree rooted in n) and query Q divided by S

cardinality. This normalization is done in order to reduce the influence of subtree
size on the final score.

s(n) = 1−
d(S,Q)

| S |
(6)

2.3 Final Structure and Content Combination

The final score score(n) for each candidate node n is evaluated through the
linear combination of the previously normalized scores ∈ [0, 1]. Formally, with
λ ∈ [0, 1]:

score(n) = λ× c(n) + (1− λ)× s(n). (7)

3 Experiments and Results

The experiments we conducted are based on two collections of the Initiative for

the Evaluation of XML Retrieval (INEX) campaign which is the reference eval-
uation campaign for SIR models. We choose these test sets as they both contain
strongly structured documents and aim to investigate techniques for finding in-
formation using queries considering content and structure. In the following we
will present the two main collections with their respective evaluation measures.
Finally we will present our results over the two associated tracks.

3.1 Collections and Evaluation Metrics

INEX 2005 SSCAS Track. The INEX 2005 collection is composed of about
12000 XML documents from the IEEE Computer Society scientific papers. These
documents have an average of 1500 elements for a hierarchical depth of 6.9. In
total there are 8 millions nodes and 192 different tags. An example of an IEEE
document can be found in figure 4.

Two main types of queries are available, namely Content Only (CO) and Con-

tent And Structure (CAS). Tasks using CAS queries are centered on structural
constraints. Four subtasks were proposed. To evaluate queries in which struc-
tural constraints are semantically relevant, we use the SSCAS subtask, in which
8 queries specify strict constraints on the target element (the element we want to
retrieve) and its environment. The adequacy between document and query hier-
archical structure). This SSCAS task was not reconducted in the following INEX
campaigns, until 2010 when the Datacentric track began. The CAS subtasks use
two metrics [13]: Non-interpolated mean average effort-precision (MAeP) which

Fig. 4. Examples of documents from the IEEE (left) and IMDB (right) collections

is used to average the effort-precision measure at each rank and Normalized cu-

mulated gain (nxCG).

INEX 2010 Datacentric Track. This track usesthe IMDB data collection
generated from IMDB web site. In total, the data collection contains 4,418,081
XML files, including 1,594,513 movies, 1,872,471 actors, 129,137 directors who
did not act in any movie, 178,117 producers who did not direct nor act in any
movie, and 643,843 other people involved in movies who did not produce nor
direct nor act in any movie. An example of an IMDB document can be seen
in figure 4. 28 queries are associated with the collection. As IMDB uses two
DTDs we created three graphs : one for movie, one for person and one merged
on nodes shared by the previous two. The merged DTD will be used for queries
where relevant nodes could be found either in a movie or in a person.

Effectiveness of SIR systems was evaluated though two measures [27] detailed
in [12] : MAiP (Mean average interpolated precision) is computed through 101
standard recall points (eg : 0.00, 0.01, etc..) and MAgp T2I assesses the ex-
haustivity of the returned results. Element score is the score at a tolerance to
irrelevance (T2I) points, 300 in our case with no overlap.

3.2 Results

Our first aim is to evaluate the effectiveness of TED with DTD based costs. To
do so we set two different costs versions. The first one is TED with DTD in
which the costs of removing and relabeling are evaluated from the DTDs of the
different collections (as explained in section 2.2). The second one is TED without

DTD in which the costs are set to 0 for a relabeling of two nodes sharing the
same label and 1 otherwise. Removing is set to 0.5 for nodes whose label is in
the query and 1 otherwise. These latter scores are inspired from previous work
[15]. The rest of this section is structured as follows: first we will present our
results on each collection for various settings of the equation [7] λ parameter.
We will then present our results based on INEX benchmarks compared to the
official INEX participants best results on these tracks.

Fig. 5. Results for the MAeP measure with various values of λ, INEX 2005

Fig. 6. Results for the MAiP measure with various values of λ, INEX 2010

TED for Structure Evaluation. Our INEX 2005 SSCAS task results for the
whole λ spectrum on MAeP measure are presented in figure 5. It appears that
TED always reduces effectiveness (results are better with λ = 1). We however
notice that performances are better with the DTD based costs for λ between 0.3
and 0.7. Indeed if structure helps during the score propagation process from the
leaves to inner nodes, it could however harms the search process when structure
does not return any relevant elements by itself. The low results obtained under
λ = 0.3 show that the structure does not provide an answer to the query without
a proper content evaluation and does not provide semantic information.

Regarding INEX 2010 Datacentric task, our results for various values of the
λ parameter over the MAiP measure are shown in figure 6. Contrary to INEX
2005, it appears that combining content and structure improves significantly the
results for both runs. Moreover, our DTD based costs run scores significantly
higher than the one with the costs set empirically. Another observation is that
contrary to the IEEE collection a strongly structured based combination tends
to return results even for the lowest values of λ.

At first sight our results may appear contradictory on the overall structure
usefulness. However, as there has been an extensive controversy in the literature
about similar issues [25] we will discuss in the next section what we believe could
be the reason of such results.

Table 1. Results for λ = 0.7 compared with official participants best results for the
INEX SSCAS track, strict quantization

Runs MAeP nxCG10 nxCG25 nxCG50

TED with DTD 0.1622 0.425 0.4 0.36

MaxPlanck 0.1334 0.45 0.3956 0.3894

TED without DTD 0.1235 0.425 0.38 0.365

IBMHaifa 0.1023 0.225 0.4278 0.4067

Table 2. Results for λ = 0.7 compared with official participants best results, INEX
2010

Runs MAiP Runs MAgP

TED with DTD 0.2197 OTAGO-DC-BM25 0.2491

TED without DTD 0.1984 UPFL15TM 0.2458

ufam2010Run2 0.1965 UPFL15TMImov 0.2433

UPFL15TMI 0.1809 Kasetsart 0.1811

UPFL15TMImo 0.1752 TED with DTD 0.1335

ufam2010Run1 0.1614 TED without DTD 0.1183

Overall Performances. In order to compare our approach with INEX official
participants we fix λ = 0.7 in equation (7) as it is the best compromise in term
of results for our two runs.

Table 1 shows our results on INEX 2005 compared to the best participants
(the Max Planck institute with its TopX [24] system which uses a database
approach and IBM Haifa Research Lab). Our method outperforms state-of-the-
art methods on the MAeP metric and obtains similar results on the nxCG metric.

Table 2 presents our results on INEX 2010 for both official metrics. Among
the official participants, one can cite the Otago university which used a BM25
trained on INEX 2009 [10] and a divergence language model [2] (run OTAGO-
DC-BM25) and Pompeu Fabra [21] which used a language model (runs UPFL*).

Our approaches score better than the official participants when using the
TED part on the MAiP measure (+12 % on MAiP for the DTD based costs and
+1% for our empirically set costs compared to the first ranked run in the official
results (Ufam)). However our MAgP score is significantly lower (we should have
been ranked 6th). This can be explained by the fact that the MAgP over-ranks
systems returning whole documents instead of elements.

4 Structure Usefulness and Collection Type

As we have seen in section 1, the insight behind SIR models is that document
structure owns information that could help to improve the search process. How-
ever in literature there is a controversy on the real usefulness of structure itself.
While some authors such as Sauvagnat et al. [22] outline its importance, oth-
ers like Trotman et al. [26] or recent INEX track overview [27] and [28] show its
very low usefulness. Overall Trotman et al. [25] stated that structural constraints

Table 3. Structural constraints distribution over three INEX ad-hoc tracks

Tracks 1 constraint 2 constraints ≥ 3 constraints

INEX 2005 SSCAS 25% 37.5% 37.5%

INEX 2010 Datacentric 12% 48% 40%

helps in half of the cases. We believe that this controversy and our contradictory
results could be explained by the nature of the collections themselves.

In the IEEE 2005 collection, the nested tags are not informative as they only
represent a structure similar to what could be found in a book. We also noticed
that the leaves text content contains terms similar to ones that can be found in
a narrative description. Thus structure is more a filter and a support for the fi-
nal ranking that a mandatory part in the search process. In the IMDB collection,
structure carries semantic and is as effective as the text content to answer the
query. For example in figure 1 if a user wants to retrieve the title of a movie di-
rected by Terry Gilliam he will only be interested by Terry Gilliam director and
not Terry Gilliam cameo in a movie (under the element labeled “director” and not
“trivia”). A second observation is that the text in leaves is short and focus (with
the exception of some elements like ”plot” most of the leaves only contain three
or four terms). Thus the structure is as important as the content itself.

Structured documents can be classified according to two main categories. A
document can be text-oriented, meaning that the text is exhaustive and the tags
structural organization could be used as a filter; or it can be data-oriented with
very specific text content split over semantically meaningful tags. The collection
we used in these experiments are text-oriented for IEEE and data-oriented

for IMDB. Our results could then be explained with the previous category the
collection falls into : structure should be more strictly followed on a data-centered
collection than on a text-centered one.

If the collection type can explain our results and the overall controversy we
cannot, however, discard query formulation. It appear that CAS queries struc-
tural constraints are mostly loosely set. Trotman et al. [26] explain the lack of
improvement over the structure by the inability of the users to give relevant
structural hints. Another lead could be the short amount of structural con-
straints. Following table 3 it is surprising to realize that 62.5% of the query in
INEX 2005 SSCAS task contain less than 3 structural constraints with 25% of
them containing only 1.

5 Conclusions and Future Work

In this paper we presented a SIR model based on Tree-Edit Distance (TED) to
measure the structural similarity between a query and a document subtree. As
TED cost impacts the effectiveness of the search process we proposed to setup
these costs according to the DTD. The results showed that TED performances
depend on the type of collections, i.e. text-oriented or data-oriented. Indeed
TED is more useful for a data-oriented collection than for a text-oriented, where
structure is only considered as a hint.

In future work we plan to further study terms and tags distribution on some
other XML collections. We also plan to improve the content scoring part of our
model as it acts as a baseline to measure the efficiency of our structure approach.

References

1. Alilaouar, A., Sedes, F.: Fuzzy querying of XML documents. In: Web Intelligence
and Intelligent Agent Technology Conference, France, pp. 11–14 (2005)

2. Amati, G., Van Rijsbergen, C.J.: Probabilistic models of information retrieval
based on measuring the divergence from randomness. ACM Trans. Inf. Syst. 20,
357–389 (2002)

3. Barros, E.G., Moro, M.M., Alberto, H., Laender, F.: An Evaluation Study of Search
Algorithms for XML Streams. JIDM 1(3), 487–502 (2010)

4. Ben Aouicha, M., Tmar, M., Boughanem, M.: Flexible document-query matching
based on a probabilistic content and structure score combination. In: Symposium
on Applied Computing (SAC), Sierre, Switzerland (March 2010)

5. Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.,
Panario, D., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer,
Heidelberg (2000)

6. Bille, P.: A survey on tree edit distance and related problems. Theoritical Computer
Science 337(1-3), 217–239 (2005)

7. Damiani, E., Oliboni, B., Tanca, L.: Fuzzy techniques for XML data smushing. In:
Proceedings of the International Conference, 7th Fuzzy Days on Computational
Intelligence, Theory and Applications, pp. 637–652 (2001)

8. Dulucq, S., Touzet, H.: Analysis of Tree Edit Distance Algorithms. In:
Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676,
pp. 83–95. Springer, Heidelberg (2003)

9. Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5, 345 (1962)

10. Jia, X.-F., Alexander, D., Wood, V., Trotman, A.: University of Otago at INEX
2010. In: Geva, S., Kamps, J., Schenkel, R., Trotman, A. (eds.) INEX 2010. LNCS,
vol. 6932, pp. 250–268. Springer, Heidelberg (2011)

11. Sparck Jones, K.: Index term weighting. Information Storage and Retrieval 9(11),
619–633 (1973)

12. Kamps, J., Pehcevski, J., Kazai, G., Lalmas, M., Robertson, S.: INEX 2007 Evalua-
tion Measures. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007.
LNCS, vol. 4862, pp. 24–33. Springer, Heidelberg (2008)

13. Kazai, G., Lalmas, M.: INEX 2005 Evaluation Measures. In: Fuhr, N., Lalmas,
M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 16–29. Springer,
Heidelberg (2006)

14. Klein, P.N.: Computing the Edit-Distance between Unrooted Ordered Trees. In:
Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS,
vol. 1461, pp. 91–102. Springer, Heidelberg (1998)

15. Laitang, C., Pinel-Sauvagnat, K., Boughanem, M.: Edit Distance for XML Infor-
mation Retrieval: Some Experiments on the Datacentric Track of INEX 2011. In:
Geva, S., Kamps, J., Schenkel, R. (eds.) INEX 2011. LNCS, vol. 7424, pp. 138–145.
Springer, Heidelberg (2012)

16. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady 10, 707 (1966)

17. Mehdad, Y.: Automatic cost estimation for tree edit distance using particle swarm
optimization. In: Proceedings of the ACL-IJCNLP 2009 Conference Short Papers,
ACLShort 2009, pp. 289–292 (2009)

18. Neuhaus, M., Bunke, H.: Automatic learning of cost functions for graph edit dis-
tance. Information Science 177(1), 239–247 (2007)

19. Oncina, J., Sebban, M.: Learning stochastic edit distance: Application in hand-
written character recognition. Pattern Recogn. 39, 1575–1587 (2006)

20. Popovici, E., Ménier, G., Marteau, P.-F.: SIRIUS: A Lightweight XML Indexing
and Approximate Search System at INEX 2005. In: Fuhr, N., Lalmas, M., Malik,
S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 321–335. Springer, Heidelberg
(2006)

21. Ramı́rez, G.: UPF at INEX 2010: Towards Query-Type Based Focused Retrieval.
In: Geva, S., Kamps, J., Schenkel, R., Trotman, A. (eds.) INEX 2010. LNCS,
vol. 6932, pp. 206–218. Springer, Heidelberg (2011)

22. Sauvagnat, K., Boughanem, M., Chrisment, C.: Why Using Structural Hints in
XML Retrieval? In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Chris-
tiansen, H. (eds.) FQAS 2006. LNCS (LNAI), vol. 4027, pp. 197–209. Springer,
Heidelberg (2006)

23. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)
24. Theobald, M., Schenkel, R., Weikum, G.: Topx XXL. In: Proceedings of the Ini-

tiative for the Evaluation of XML Retrieval, pp. 201–214 (2005)
25. Trotman, A.: Processing structural constraints. In: Encyclopedia of Database Sys-

tems, pp. 2191–2195 (2009)
26. Trotman, A., Lalmas, M.: Why structural hints in queries do not help XML-

retrieval. In: SIGIR 2006, pp. 711–712 (2006)
27. Trotman, A., Wang, Q.: Overview of the INEX 2010 Data Centric Track. In: Geva,

S., Kamps, J., Schenkel, R., Trotman, A. (eds.) INEX 2010. LNCS, vol. 6932, pp.
171–181. Springer, Heidelberg (2011)

28. Wang, Q., Ramı́rez, G., Marx, M., Theobald, M., Kamps, J.: Overview of the INEX
2011 Data-Centric Track. In: Geva, S., Kamps, J., Schenkel, R. (eds.) INEX 2011.
LNCS, vol. 7424, pp. 118–137. Springer, Heidelberg (2012)

