
Dynamic Filtering of Useless Data in an Adaptive

Multi-Agent System : Evaluation in the Ambient

Domain

Valérian Guivarch, Valérie Camps, André Péninou, Simon Stuker

To cite this version:

Valérian Guivarch, Valérie Camps, André Péninou, Simon Stuker. Dynamic Filtering of Useless
Data in an Adaptive Multi-Agent System : Evaluation in the Ambient Domain. 11th Interna-
tional Conference on Practical Applications of Agents and Multiagent Systems (PAAMS 2013),
May 2013, Salamanca, Spain. Advances on Practical Applications of Agents and Multi-Agent
Systems, pp. 110-121, 2013. <hal-01264572>

HAL Id: hal-01264572

https://hal.archives-ouvertes.fr/hal-01264572

Submitted on 29 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50531302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01264572

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12364

The contribution was presented at PAAMS 2013
 http://www.paams.net/

Official URL: http://dx.doi.org/10.1007/978-3-642-38073-0_10

To cite this version : Guivarch, Valérian and Camps, Valérie and Péninou, André and
Stuker, Simon Dynamic Filtering of Useless Data in an Adaptive Multi-Agent System
: Evaluation in the Ambient Domain. (2013) In: 11th International Conference on
Practical Applications of Agents and Multiagent Systems (PAAMS 2013), 22 May
2013 - 24 May 2013 (Salamanca, Spain).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Dynamic Filtering of Useless Data

in an Adaptive Multi-Agent System:

Evaluation in the Ambient Domain

Valérian Guivarch, Valérie Camps, André Péninou, and Simon Stuker

Institut de Recherche en Informatique de Toulouse
{Valerian.Guivarch,Valerie.Camps,Andre.Peninou,Simon.Stuker}@irit.fr

http://www.irit.fr

Abstract. Amadeus is an Adaptive Multi-Agent System whose goal is
to observe and to learn users’ behaviour in an ambient system in or-
der to perform their recurrent actions on their behalf. Considering the
large number of devices (data sources) that generally compose ambient
systems, performing an efficient learning in such a domain requires filter-
ing useless data. This paper focuses on an extended version of Amadeus

taking account this requirement and proposes a solution based on coop-
erative interactions between the different agents composing Amadeus. An
evaluation of the performances of our system as well as the encouraging
obtained results are then shown.

Keywords: Adaptation, Learning, Distributed-problem solving, Data
filtering, Pervasive agents, Ambient intelligence.

1 Introduction

The performances of learning algorithms is generally degraded by the presence
of useless data among the ones used to learn, a piece of data being considered
to be useless if there is no link between its value and the objective to learn.
One way to improve this fact is to select useful data. An ambient system is
composed of many heterogeneous devices, often mobile, physically distributed
and interacting in a dynamic way. So, it is a typical example where applying a
learning is a very complex task, because it consists of a great number of devices
that are able to generate data. Furthermore, devices may appear and disappear
dynamically. Thus, in this case, the filtering of data coming from these devices
cannot be defined a priori, that is before the learning process. Learning has to
be done at runtime, without restarting from scratch when new data appear. The
filtering of useless data has also to be done at runtime.

This is particularly the case for the multi-agent system Amadeus [4] whose
goal is, in an ambient system, to observe the users’ actions in order to learn those
that are recurrent and to learn then how to perform them on behalf of the users.
This learning is performed in a decentralized way, an instance of Amadeus being
responsible of each device of the ambient system. However, the large number of

devices requires the filtering of useless data at runtime for the users’ behaviour
learning.

In this paper, we present an extended version of Amadeus. Section 2 briefly
presents the general functioning of Amadeus. Our contribution enabling the “on-
line” filtering of useless data is presented in section 3 and evaluated in section
4. Section 5 is devoted to related works. Section 6 concludes this paper and
explains the on-going work.

2 Our MAS Proposition for Ambient System: Amadeus

Our contribution aims at proposing a solution to tackle the problem of adapta-
tion in ambient systems. We propose to make an ambient system able to provide
a relevant behaviour, based on the perceived user’s actions, in order to assist
him by realizing his actions on his behalf. We have already proposed Amadeus

[4], an Adaptive Multi-Agent System that is able to learn the user’s contexts
while this user is performing recurrent actions in order to act on his behalf in
similar situations.

An instance of the Amadeus multi-agent system is associated to each device
of an ambient system. Figure 1 is a representation of an instance of Amadeus.
We can observe the four types of agents existing in the system: Data agents,
User agents, Context agents and Controller agents.

Fig. 1. Representation of an instance of Amadeus, one instance is associated to each
device of an ambient system

A Controller agent is associated to each effector of a device. Its goal is to
decide at anytime what is the best action to perform on the effector on behalf
of the user. This decision is made thanks to a set of Context agents.

A Context agent is created each time a user performs an action in his en-
vironment (for example to turn on the light). This agent associates this action
with a description of the situation in which the user performs this action. This
situation is composed of the set of the perceived data values when the action is
performed (example: Light = 0 ; PresenceSensor= 1 ; LuminositySensor = 22).

The action is represented by the value given to the effector (for example, 1 to
turn on and 0 to turn off the light).

The Context agent adds to this description a forecast on the effect of this
action on the user’s satisfaction level (does the completion of this action for
this situation lead to increase, to maintain or to decrease the user’s level sat-
isfaction?). This forecast is obtained by comparing the user’s satisfaction level
before and after the achievement of the action. This satisfaction is represented
by a value between 0 (the user is not satisfied at all) and 1 (he is very satisfied),
and is estimated by the User agent. The User agent is responsible for the user’s
preferences. Thanks to a representation of the user’s preferences (currently with
a XML file) the User agent can evaluate, for any situation, if the user is satisfied
with regard to the state of the device effector. One of our work perspectives
is to make the User agent able to dynamically and autonomously learn these
preferences, but this is out of the scope of this paper.

Every Context agent perceives a set of data coming from local sensors situated
on either the same device or on distant sensors situated on other instances of
Amadeus (namely on devices). The Data agents represent these data. In the
Context agent, each of these data possesses a validity status that depends on its
current value with regard to the situation described (by the Context agent). A
data is considered as valid if it is included in a values range. This range represents
the values interval that a piece of data may have in order to describe a situation.
Thus, the Context agent tries to establish the borders of valuable ranges for
every perceived data that enable it to describe the correct situation for which its
action proposition is appropriate (namely it will have the expected effects). To
do this, the Context agent possesses, for each perceived data, an Adaptive Range
Tracker (ART) that is a data structure enabling to describe a valuable interval
(called “interval of validity”) where min and max borders can evolve. The value
of each border is estimated with an Adaptive Value Tracker (AVT) [11], which is
a tool devoted to the tuning of evolving parameters. A Context agent considers
a data as valid if its current value belongs to its associated ART. A Context

agent has also its own validity status. Its status is valid if all perceived data
are valid (it is invalid otherwise). In this case, a Context agent sends its action
proposition and its forecast to the Controller agent. The Controller agent can
then decide which action, among those proposed by all valid Context agents, is
the most appropriate to satisfy the user.

A first evaluation of this Amadeus version applied to a simple example gave
us encouraging results [4] [5]. Nevertheless, we observed a strong weakness re-
garding the required learning time when the number of perceived data increases.
In particular, the addition of “useless” data that change independently of the
user’s actions on an effector, implies a strong slowing down of the learning time.
Such data are perceived by Context agents, and so are included in the situation
description, but they do not affect the user’ behaviour. For example, Context
agents can perceive humidity level of the rooms but it is not necessary to con-
sider this fact to decide to turn on or to turn off the lights. Indeed, if a situation
having previously led to the realization of an action by the user appears again,

with useless piece of data having a different status, the system considers wrongly
that the situation is different. For example, if the system has learnt to switch on
the light when the user goes into the room but with a specific level of humidity,
when the user enters again into the room, a change of humidity level perceived
by a humidity sensor leads the system to consider itself in a new situation, and
thus to not act.

To overcome this problem, it is necessary to determine, for each effector, which
data are useless for learning the behaviour to give to this effector, in order to
only consider the useful data. Describing explicitly what are the useful and the
useless data for each effector seems to be a limited solution, because of the strong
dynamic of an ambient system. This is why we propose to make each instance
of Amadeus able to autonomously determine, without any a priori information
and at runtime, what are the data useless to learn the user’s behaviour.

3 Data Filtering

The objective of our study is to locally detect what are the useless data for a
device. A piece of data is considered as useless if its value is independent of
the user’s decision to act on this device. This detection is based on a learning
performed at runtime, without any a priori information.

3.1 Proposed Approach

Our proposition to detect useless data is based on the cooperation between
agents. On the one hand, the Context and Controller agents are responsible for
the user’s behaviour learning towards the state of an effector. On the other hand,
the Data agents are responsible for providing useful data to Context and Con-

troller agents so that they make their learning. Thus, Data agents and Context

agents have to interact for determining which data are useful to characterise the
situation in which the user acts on the device, and which data are useless.

A Context agent is created each time the user performs an action on an effec-
tor. This agent associates the user’s action with a description of the situation in
which the user had performed it (see section 2). This situation is composed of the
set of the perceived data values when the action was performed. The assump-
tion is that all perceived data contribute to characterize the situation. Thus,
later, when the Context agent becomes valid, it can be sure of its decision. But
what about when it is not valid? Is it invalid because all data contributes really
to describe the situation (it is right to be invalid) or because one useless data
possesses a current value making the agent invalid (it is wrong to be invalid)?
The Context agent cannot solve this ambiguity by itself. Nevertheless, a more
interesting point of view is to think about useful and useless data when at once
i) the Context agent is invalid and ii) another one is valid. In such cases, the
Context agent can question itself about the necessity to be invalid in the current
situation. We use these cases in our approach described hereafter.

When a Context agent is selected and its action is made by the Controller

agent (or when the user makes an action himself), every invalid Context agent

observes its internal state, and evaluates if it was right to do not send its action
proposition. More details on this evaluation are given in section 3.2. When a
Context agent establishes it was right to be invalid at a given time, it was
thanks to the invalid perceived data. So, among these currently invalid data,
it knows that there is at least one useful piece of data. However, without more
information, the Context agent cannot determine if a data is invalid because it is
really useful, or if it is just a coincidence that this data is invalid in the current
situation. So, it sends a message called a “usefulness signal” to all the data that
are invalid in order to inform them that they are potentially useful.

In order to evaluate the usefulness of its data, each Data agent perceives the
usefulness signals sent by all the Context agents. The goal of a Data agent is
to process these signals in order to establish if the reception of these usefulness
signals is just the result of coincidences (the associated data was invalid at the
good moment, but even if it had not been, a data really useful would have been
invalid) or if it was invalid at the good moment because it is a useful data. This
process is described in section 3.3.

3.2 Usefulness Signal Generation

Let us consider a Context agent C. Another Context agent S has just been
selected, whereas C was invalid, because among the set of perceived data D,
there is a subset of invalid data DI for C. So, agent C observes the selected
agent S to know if it proposed the same action or not, and if this proposition
was or not associated with the same forecast on the effect of this action on the
user’s satisfaction level. Two particular cases can be highlighted.

The first one occurs when C and S propose the same action (for example,
turn on the light) but with different forecasts. It is obvious that the same action
cannot have two different effects in the same situation. Then, the Context agent
C was right to be invalid when S was valid. So, at least one of the invalid data of
C is useful. Let us give an example for this case. S proposes to turn on the light
when someone is in the room with a low luminosity level and a high humidity
level. On the contrary, C proposes to turn on the light when someone is in
the room with a high luminosity level and a low humidity level. S forecasts an
increase of the user’s satisfaction if it is selected, whereas C forecasts a decrease
of the user’s satisfaction if it is selected (to turn on the light if the luminosity is
high is not satisfying for the user). When S is selected, the situation is: someone
is in the room, low luminosity level and high humidity level. C observes that it
proposes the same action as S, but with a different forecast. So it can consider
that in the set of invalid data composed by the luminosity and the humidity
levels, there is at least one useful data for it (in this case, the luminosity data).

The second case occurs when C and S propose two different actions with the
same forecast. So, if S proposes an action that increases the user’s satisfaction
level, C cannot be valid in the same situation if it proposes a different action
that also increases the user’s satisfaction level. This is why C can consider that,
in the set of its invalid data, at least one is useful. Let us give an example for this
case. S proposes to increase the user’s satisfaction level by turning on the light

when the user is in the room with a low luminosity level and a high humidity
level. On the contrary, C proposes to increase the user’s satisfaction level by
turning off the light when the user is in the room with a high luminosity level
and a low humidity level. When S is selected, the situation is: the user is in the
room, low luminosity level and high humidity level. C evaluates that it cannot
be valid at the same time, so it considers that, in the set of its invalid data
composed by the luminosity level and the humidity level, there is at least one
useful data.

For each of these situations, C sends a usefulness signal to each of its invalid
data in order to warn them that they are “maybe” useful.

To conclude, Context agents are able to detect and gather situations or in-
formation about the usefulness of perceived data. However, these information
concern the usefulness of data, whereas we are interested in their uselessness.
So, in the next section, we describe how the Data agents process the usefulness

signal to detect if they are useful data or not.

3.3 Usefulness Signal Processing

First of all, let us underline that Context agents and Controller agents are always
bound to a single effector of a device (a complex device may have different
effectors). Data agents receive usefulness signals that are implicitly bounded
to an effector. Thus, Data agent processing of these signals must be performed
separately for each effector.

We consider two data F and L, where F is useful and L is useless with respect
to an effector E. Also, we consider two sets of Context agents SC1 and SC2,
where the agents of SC1 propose to switch the effector to some state e1, and
the agents of SC2 propose to switch the effector to some other state e2. Each
time a Data agents (F or L) receives a usefulness signal, it observes its current
value and the state of the effector E. With these values, it computes a density
function of the values taken at the reception of usefulness signals regarding the
effector state proposed by the Context agent that sent the signal. Let SE denotes
the set of possible states of the effector E. So, for each state e in SE , and each
Data agent D, dD(e) denotes the density function of agent D with respect to
effector’s state e when usefulness signals are received.

The distinction between the useful data F and the useless data L can be
observed through the density functions dF (e) and dL(e). Because Data agent F
is useful, it is correlated with the actions applied on the effector, hence dF (e1) 6=
dF (e2). Conversely, Data agent L is useless and has no influence on the effector’s
actions. We can observe this fact through the similarity between dL(e1) and
dL(e2).

On the basis of these remarks, we can evaluate the usefulness of a Data agent
by comparing the density functions corresponding to the different states of the
effector. More precisely, the distance between two density functions dD(e1) and
dD(e2) is measured through the Chi-square distance [3] relative to the general
data frequency:

δ (dD(e1), dD(e2)) =
∑

V alue i

(di − d′i)
2

d′i

where di (respectively d′i) denotes the frequency of value i for the Data agent D
(wheneverD is considered useful by Context agents) with respect to the effectors
state e1 (respectively e2). The usefulness of a Data agent D, UD(E), can then
be expressed as the maximum distance between any pair of its density functions:

UD(E) = max
x,y∈SE

(

δ (dD(x), dD(y))

)

The use of the chi-square distance in order to compare two density functions
allows obtaining a value that has a statistical significance. As a matter of fact,
under the assumption that the data is useful, δ (dD(e1), dD(e2)) follows some
chi-square law [1]. So, we can grant a statistical credibility to the evaluation of
the usefulness data.

When a Data agent receives a usefulness signal, it computes its density func-
tions with respect to the effector states. So, the evaluation of its usefulness based
on these density functions becomes more and more precise. Finally, when the
usefulness level of a Data agent gets below a certain fixed threshold empirically
calculated, the Data agent considers that it is useless for the effector.

In this case, the Data agent informs the set of Context agents associated to
this effector of its uselessness, and then its stops to send them update about its
value. Then the Context agents delete the ART associated with this data, and
forget this data to estimate their validity state.

Our filtering is based on the signal sent by the Context agents, each signal
concerning a set of Data agents. So, contrary to classical methods that filter
each data independentely, this method takes care about dependencies between
data.

4 Experimentations

The proposed solution was implemented using Speadl/MAY [12], which is a
tool allowing to assemble reusable components in order to build architectures
supporting the development and execution of multi-agent systems. Our solution
was evaluated through a simulator using users’ preferences (given in a XML file)
to generate users’ behaviour in a virtual ambient system.

Our experimentation takes place in a case study composed of an apartment
with five rooms (one living room, one bathroom, one kitchen and two bedrooms).
Each room possesses a light, a luminosity sensor and a presence sensor. Each
Amadeus instance associated to a light effector has to learn a good behaviour
based on the user’s actions on this effector. Each instance perceives not only the
data from its room (the luminosity sensor, the presence sensor, and the state
of the light), but also the data of the other rooms. Among the fifteen perceived

Fig. 2. Number of users’ actions per day
without Amadeus

Fig. 3. Number of users’ actions and
Amadeus actions per day without filtering
data

data (three by room and five rooms), only three data are useful for each instance,
and twelve are useless.

We added three users to this simulation. These users can move between the
different rooms; they can also leave (and come back to) the apartment (we
consider a sixth room called “outside” without any sensor and effector). The
users’ behaviour is based on simple rules: when a user enters in a room with a
switched off light and an insufficient luminosity, he turns on the light, whereas if
the luminosity is very strong with a switched on light, the user turns off the light.
When he leaves a room, if he was the last in this room and the light was switched
on, he turns off the light. Figure 3 represents the number of users’ actions per
day during a simulation of fifty days, without the Amadeus use. We can observe
an average number of 50 actions per day made by the different users.

The first experiment consists in adding an instance of Amadeus (first version
without useless data filtering) to each device of our case study. Every instance
associated with the light device is in charge to learn the correct behaviour to
give to this light device according to the users’ actions. Figure 3 represents the
number of actions respectively made by the users and Amadeus on the different
devices during a simulation of fifty days. We can observe that, even if Amadeus

makes many actions on behalf of the users, its performances are very limited
and the users have to make a lot of actions even after 50 learning days. This
can be explained by the fact that each Amadeus instance responsible for each
light device has difficulties to learn in which situation every action is realized,
because of the too numerous useless perceived data.

The second experiment consists in carrying out the same experiment with
Amadeus instances able to filter useless data. So, based on the process explained
in section 3, the Data agents are able to locally and autonomously detect what
are the useless perceived data for each device. For each of the five effectors, 12
useless data have to be filtered (hence a total number of 60 useless data for the
entire system). After fifty days of simulation, the system has filtered 48 useless
data (11 for the first light, 9 for the second, 8 for he third, 9 for the fourth and 11
for the fifth). Figure 4 shows the Amadeus capabilities to make actions on behalf
of the users with the use of filtering useless data, only 15 days being necessary
to decrease users’ actions to less than 10 per day.

Fig. 4. Number of users’ actions and Amadeus actions per day with filtering data

This simulation has been made twenty times, in order to evaluate the quality
of the filtering of useless data on several simulations. Each simulation gives
a quite random behavior to each user for moving in the apartment. Table 1
displays obtained results. The first line shows the total number of filtered data
whereas the second line shows the number of useful data wrongly filtered. The
third and fourth lines respectively show the percentage of useless data filtered,
and the percentage of useful data wrongly filtered. We obtained a final average
percentage of useless data filtered equal to 79.7, and an average percentage of
useful data wrongly filtered equal to 1.

Table 1. Results of the evaluation of Amadeus for twenty simulations

Total number of filtered data 55 42 51 41 48 52 46 56 50 49
Number of useful data wrongly filtered 0 0 0 0 0 0 0 0 0 1

Percentage of useless data filtered 91,7 70 85 68,3 80 86,7 76,7 93,3 83,3 81,7
Percentage of useful data wrongly filtered 0 0 0 0 0 0 0 0 0 6,7

Total number of filtered data 48 38 42 45 49 49 50 49 47 49
Number of useful data wrongly filtered 0 0 0 0 0 1 0 0 1 0

Percentage of useless data filtered 80 63,3 70 75 81,7 81,7 83,3 81,7 78,3 81,7
Percentage of useful data wrongly filtered 0 0 0 0 0 6,7 0 0 6,7 0

The data selection performed by the Data agents is not perfect because about
20% of useless data remain unfiltered. However, it is possible to decrease the cho-
sen threshold to decide data uselessness in order to have better results regarding
the data filtering, but it would imply an increase of the rate of wrong filtering.
Nevertheless, our objective is not necessary to filter all the useless data, but
to filter a sufficient number of useless data in order to make Amadeus able to
learn the users’ behaviour. Hence, we consider that it is better to have unfiltered
useless data than wrongly filtered useful data.

5 Related Work

A very explicit illustration of the useless data effect on learning algorithms is
given by [2]. Figure 5 shows an example where a learning algorithm tries to
classify information into two classes. If the learning algorithm observes the A
and B points using only the data x1 (represented by their projection A’ and
B’ on the x1 axis), it will find correctly the two classes (dotted vertical line).
However, if it considers the useless data x2, it will fail to separate the two classes
(diagonally continuous line). So, considering useless data in the learning process
makes it necessary to increase the number of examples that must be provided
to the learning algorithm in order to overcome this problem.

Fig. 5. Illustration of the effect of useless data on a learning algorithm (from [2])

In the literature, many solutions were proposed to solve this very recurrent
problem in learning methods [7]. A first solution concerns variable ranking meth-
ods [6]. Such methods try to compute a score for each data that represents the
usefulness of this data with respect to the target of the learning. This evaluation
is performed independently of each data, and data with a low score are consid-
ered as useless. However, in complex systems such as ambient systems, the large
number of interactions between data makes such methods inappropriate. As a
matter of fact, the effect of a piece of data on the target of the learning can be
strongly dependant on other data, so an evaluation of the usefulness of this piece
of data independently of other data is not appropriate [14]. For example, in the
study of the section 4, the usefulness of luminosity sensor is strongly depending
of the value of presence sensor, so it is necessary to evaluate the usefulness to
this data regarding the values of other data.

Other methods allow the selection of useful data by considering subsets of
data rather than independent pieces of data. These methods can be divided into
three categories [13]:

1. Filter techniques that carry out the selection of useful data independently of
the learning algorithm itself; they are unable to interact with this one during
learning process [9].

2. Wrapper techniques that use the learning algorithm itself in order to evaluate
the usefulness of subsets of data. For this, the learning algorithm is applied to
different subsets of data, and the performances of the learning are evaluated
regarding the data subset to which it is applied. They generally get better
results than Filter techniques, but they require much more computation time
and they present a strong risk of overfitting [8].

3. Embedded techniques that are directly integrated in the learning algorithm
itself (the variable selection being strongly correlated with the process of the
learning algorithm). For example, some algorithms observe the impact of the
addition or the removal of data in their learning process in order to evaluate
the usefulness of these data [10].

Because of the dynamic and distributed properties of the learning algorithm im-
plemented by Amadeus, we considered, as we implemented it, that an embedded
technique of data selection was the most appropriate solution.

6 Conclusion

In this paper, we have presented an extended version of the multi-agent system
Amadeus. This system is devoted to the learning of users’ behaviour in ambient
systems. Amadeus can learn situations and actions performed by the user on
effectors of devices in order to perform later these actions on behalf of the user.
However, the large number of useless data, because of the high number of devices
in ambient systems, makes necessary to improve Amadeus learning by adding
filtering data capabilities. We have introduced a new ability to the Data agents,
which purpose is to detect if a piece of data is useless for every effector of a
device in the ambient system or not. We also described the data filtering process
performed by the Data agents, and presented first results about the Data agents’
filtering performances.

The choice to define a threshold to decide of the uselessness of each data
gives encouraging results. For example, Amadeus is able to filter a large part of
useless data, and it wrongly filters a very low level of useful data. However, in an
adaptive multi-agent system, having a static parameter is a weakness in term of
real adaptation. That is why we are currently investigating a solution to make
the Data agents able to filter useless data and to autonomously and dynamically
define the proper threshold to use.

References

1. Baillargeon, G.: Introduction à l’inférence statistique: méthodes d’échantillonnage,
estimation, tests d’hypothèses, corrélation linéaire, droite de régression et test du
khi-deux avec applications diverses. Techniques statistiques. Les Editions SMG
(1982)

2. Delalleau, O.: Extraction hiérarchique de caractéristiques pour l’apprentissage à
partir de données complexes en haute dimension, Pre-doctoral report, University
of Montreal (2008)

3. Greenwood, P.E., Nikulin, M.S.: A Guide to Chi-Squared Testing. Wiley, New York
(1996)

4. Guivarch, V., Camps, V., Péninou, A.: Context awareness in ambient systems by
an adaptive multi-agent approach. In: Paternò, F., de Ruyter, B., Markopoulos,
P., Santoro, C., van Loenen, E., Luyten, K. (eds.) AmI 2012. LNCS, vol. 7683, pp.
129–144. Springer, Heidelberg (2012)

5. Guivarch, V., Francisco De Paz Santana, J., Bajo Pérez, J., Péninou, A., Camps, V.:
Learning user’s behaviour with an Adaptive Multi-Agent System approach (regular
paper). In: Intelligent Systems for Context-based Information Fusion, Cartagena
de Indias - Colombia, Springer (2012)

6. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of Machine Learning Research 3, 1157–1182 (2003)

7. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature extraction: foundations
and applications, vol. 207. Springer (2006)

8. John, G.H., Kohavi, R., Pfleger, K., et al.: Irrelevant features and the subset selec-
tion problem. In: Proceedings of the Eleventh International Conference on Machine
Learning, San Francisco, vol. 129, pp. 121–129 (1994)

9. Kira, K., Rendell, L.A.: The feature selection problem: Traditional methods and
a new algorithm. In: Proceedings of the National Conference on Artificial Intelli-
gence, p. 129. John Wiley & Sons Ltd. (1992)

10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

11. Lemouzy, S., Camps, V., Glize, P.: Principles and Properties of a MAS Learning
Algorithm: a Comparison with Standard Learning Algorithms Applied to Implicit
Feedback Assessment (regular paper). In: IEEE/WIC/ACM International Confer-
ence on Intelligent Agent Technology (IAT), Lyon, pp. 228–235. CPS (Conference
Publishing Services) (août 2011)

12. Noel, V.: Component-based Software Architectures and Multi-Agent Systems: Mu-
tual and Complementary Contributions for Supporting Software Development.
Thése de doctorat, Université de Toulouse, Toulouse, France (juillet 2012)

13. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioin-
formatics. Bioinformatics 23(19), 2507–2517 (2007)

14. Shafti, L.S., Haya, P.A., Garćıa-Herranz, M., Pérez, E.: Evolutionary feature ex-
traction to infer behavioral patterns in ambient intelligence. In: Paternò, F., de
Ruyter, B., Markopoulos, P., Santoro, C., van Loenen, E., Luyten, K. (eds.) AmI
2012. LNCS, vol. 7683, pp. 256–271. Springer, Heidelberg (2012)

