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émanant des établissements d’enseignement et de
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Reconstruction of Ultrasound RF Echoes Modeled
as Stable Random Variables

Alin Achim, Senior Member, IEEE, Adrian Basarab, Member, IEEE, George Tzagkarakis,
Panagiotis Tsakalides, Member, IEEE, and Denis Kouamé, Member, IEEE

Abstract—This paper introduces a new technique for
reconstruction of biomedical ultrasound images from simu-
lated compressive measurements, based on modeling data with
stable distributions. The proposed algorithm exploits two types
of prior information: on one hand, our proposed approach is
based on the observation that ultrasound RF echoes are best
characterized statistically by alpha-stable distributions. On
the other hand, through knowledge of the acquisition process,
the support of the RF echoes in the Fourier domain can be
easily inferred. Together, these two facts form the basis of an �p
minimization approach that employs the iteratively reweighted
least squares (IRLS) algorithm, but in which the parameter p is
judiciously chosen, by relating it to the characteristic exponent
of the underlying alpha-stable distributed data. We demonstrate,
through Monte Carlo simulations, that the optimal value of the
parameter p is just below that of the characteristic exponent α,
which we estimate from the data. Our reconstruction results show
that the proposed algorithm outperforms previously proposed
reconstruction techniques, both visually and in terms of two
objective evaluation measures.

Index Terms—Medical ultrasound, alpha-stable distributions,
compressive sampling, image reconstruction, �p minimization.

I. INTRODUCTION

U LTRASOUND imaging is arguably the most widely used
cross-sectional medical imaging modality worldwide.

Indeed, ultrasound has a number of potential advantages over
other medical imaging modalities, because it is non-invasive,
portable and versatile, it does not use ionizing radiation, and it
is relatively low-cost [1].

The general principle of ultrasound image formation involves
the transmission of an ultrasound beam from an array of trans-
ducers (the probe) towards the medium being scanned [1]. The
returning echoes are then analyzed in order to construct an
image that displays their location and amplitude. Image com-
pression is needed in order to reduce the data volume and
to achieve a low bit rate, ideally without any perceived loss
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of image quality. The need for transmission bandwidth and
storage space in the digital radiology environment, especially
in telemedicine applications, and the continuous diversifica-
tion of ultrasound applications keep placing new demands on
the capabilities of existing systems [1]. Introduction of new
technologies, potentially entailing orders of magnitude greater
requirements for data transfer, processing, and storage, impose
even greater demands and act to encourage the development
of effective data reduction techniques. Recent developments in
medical ultrasound (US) imaging have led to commercial sys-
tems with the capability of acquiring Real-Time 3D (RT3D) or
4D image data sets. However, typical scanners can only pro-
duce a few volume images per second, which is fast enough
to see a fetus smile but not fast enough to see heart valves
moving. To address this issue, several techniques were pro-
posed recently for increasing the acquisition frame rates and
these include multiline transmit imaging, plane-/diverging wave
imaging or retrospective gating [2]. Nevertheless, the disadvan-
tage of acquiring data at such high frame rates is a reduction in
image quality [2], [3].

Traditionally, statistical signal processing has been centred
in its formulation on the hypotheses of Gaussianity and sta-
tionarity. This is justified by the central limit theorem and
leads to classical least squares approaches for solving various
estimation problems. The introduction of various sparsifying
transforms starting with the penultimate decade of the last cen-
tury, together with the adoption of various statistical models
that are able to model various degrees of non-Gaussianity and
heavy-tails, have led to a progressive paradigm shift [4]. At the
core of modern signal processing methodology sits the concept
of sparsity. The key idea is that many naturally occurring sig-
nals and images can be faithfully reconstructed from a lower
number of transform coefficients than the original number of
samples (i.e. acquired according to Nyquist theorem) [5]. In
this context, compressive sensing (CS) could prove to be a
powerful solution to enhance US images frame rate by decreas-
ing the amount of acquired data. In terms of reconstruction,
most CS methods rely on �1 norm minimization using a linear-
programming algorithm. All these approaches do not exploit the
true statistical distribution of the data and are motivated by
the inability of the classical least-squares approach to estimate
the reconstructed signal.

In the last four years, a few research groups worked specifi-
cally on the feasibility of compressive sampling in US imaging
and several attempts of applying the CS theory may be found
in the recent literature (for an overview see e.g. [6]). In par-
ticular, in [7], we have introduced a novel framework for CS



of biomedical ultrasonic signals based on modeling data with
symmetric alpha-stable (SαS) distributions. Then, we pro-
posed an �p-based minimization approach that employed the
iteratively reweighted least squares (IRLS) algorithm, but in
which the parameter pwas conjectured to be related to the char-
acteristic exponent of the underlying alpha-stable distributed
data. The results showed a significant increase of the recon-
struction quality when compared with previous �1 minimization
algorithms. On the other hand, the effect of the random sam-
pling pattern on the reconstruction quality, when working in the
frequency domain (k-space) was studied in [8]. This was further
exploited in [9] for the design of a US reconstruction technique
similar to [7] but operating in the Fourier domain.

In this paper, we further extend our techniques described
in [7], [9], [10] by supplementing the prior information avail-
able to an �p minimization algorithm with the support of the
RF echoes in the frequency domain and showing via Monte
Carlo simulations how to optimally choose the parameter p.
In ultrasound applications the support can be easily inferred
through knowledge of the ultrasound scanner specifications and
transducer bandwidth. Hence, we describe this new approach
as exploiting dual prior information. The contributions of this
paper can be thus summarized in the following two essential
points: (i) we propose an approach to ultrasound RF echoes
reconstruction based on �p minimization that uses dual prior
information and (ii) we show, through Monte Carlo simulations,
that choosing to perform the minimization with the parameter
p just under the value of the characteristic exponent, α, leads
to optimal reconstruction performance. The actual acquisition
of medical ultrasound data using compressive sensing has been
addressed in other works, e.g. [11], but is beyond the scope of
this paper.

The rest of this manuscript is structured as follows: In the
following section, we provide a brief, necessary overview of the
compressive sensing theory and of the heavy-tailed model that
we employ for ultrasound data. In Section III-A we describe
the IRLS based method for �p minimization that exploits
dual prior information. Section IV justifies the use of �p with
the parameter p close to the characteristic exponent α and
illustrates the proposed algorithm reconstruction performance.
Finally, Section V concludes the paper and draws future work
directions.

II. BACKGROUND

A. Compressive sensing

Compressive sensing is based on measuring a significantly
reduced number of samples than what is dictated by the
Nyquist theorem. Given a correlated image, the traditional
transform-based compression method performs the following
steps: i) acquires all N samples of the signal, (ii) computes a
complete set of transform coefficients (e.g., DCT or wavelet),
(iii) selectively quantizes and encodes only the K << N most
significant coefficients. This procedure is inefficient, since a
significant proportion of the output of the analogue-to-digital
conversion process ends up being discarded.

Compressive sensing is concerned with sampling sig-
nals more parsimoniously, acquiring only the relevant signal

information, rather than sampling followed by compression.
The main hallmark of this methodology is that, given a com-
pressible signal, a small number of linear projections, directly
acquired before sampling, contain sufficient information to
effectively perform the processing of interest (signal recon-
struction, detection, classification, etc).

In terms of signal approximation, Candés et. al [5] and
Donoho [12] have demonstrated that if a signal is K-sparse in
one basis (meaning that the signal is exactly or approximately
represented by K elements of this basis), then it can be recov-
ered from M = c ·K · log(N/K) << N fixed (non-adaptive)
linear projections onto a second basis, called the measurement
basis, which is incoherent with the sparsity basis, and where
c > 1 is a small overmeasuring constant. The measurement
model is

y = Φx, (1)

where x is theN × 1 discrete-time signal, y is theM × 1 vector
containing the compressive measurements, and Φ is theM ×N
measurement matrix.

In this work, we simulate compressive measurements start-
ing from real RF ultrasound images by projecting the RF signals
onto random matrices. Designing a real compressive ultrasound
imaging system is beyond the scope of this work. In fact, most
existing attempts at applying compressive sensing principles
in ultrasonography proceed in the same way. Nevertheless, a
few groups have started to show the feasibility of this type of
systems in real-world scanners. These include applications to
compressed beamforming in cardiac imaging [13], plane-wave
imaging [14], and duplex Doppler [15].

In terms of reconstruction, using the M measurements in the
first basis and given the K-sparsity property in the other basis,
the original signal can be recovered by taking a number of dif-
ferent approaches. The majority of these approaches solve con-
strained optimization problems. Commonly used approaches
are based on convex relaxation (Basis Pursuit [5]), non-convex
optimization (Re-weighted �p minimization [16]) or greedy
strategies (Orthogonal Matching Pursuit (OMP) [17]). In the
context of this work, our interest lies in non-convex optimiza-
tion (re-weighted �p minimization [16], [18]) strategies.

B. α-stable distributions as models for RF echoes

The ultrasound image formation theory has been long time
dominated by the assumption of Gaussianity for the return RF
echoes. However, the authors in [19] have shown that ultra-
sound RF echoes can be accurately modelled using a power-law
shot noise model, which in [20] has been in turn shown to
be related to α-stable distributions. The same result has also
been obtained by [21] but starting directly from the general-
ized central limit theorem. The appearance of stable models
in the context of ultrasound images has also been noticed in
[22] but they were used to model their wavelet decomposition
coefficients rather than the RF echoes.

By definition, a random variable is called symmetric α-stable
(SαS) if its characteristic function is of the form:

ϕ(ω) = exp(jδω − γ|ω|α), (2)



Fig. 1. Example SαS probability density functions for α = 1 (Cauchy, dash-
dot), 1.5 (dash), and 2 (Gaussian). The dispersion parameter is kept constant
at γ = 1.

where α is the characteristic exponent, taking values 0 < α ≤
2, δ (−∞ < δ <∞) is the location parameter, and γ (γ > 0)
is the dispersion of the distribution. For values of α in the inter-
val (1, 2], the location parameter δ corresponds to the mean of
the SαS distribution, while for 0 < α ≤ 1, δ corresponds to its
median. The dispersion parameter γ determines the spread of
the distribution around its location parameter δ, similar to the
variance of the Gaussian distribution. Fig. 1 shows the proba-
bility density functions (PDF) of several densities including the
Cauchy and the Gaussian. Note the tail behaviour of SαS den-
sities as a function of α: the lower the characteristic exponent,
α, the heavier the corresponding density tail (asymptotically
power laws).

1) Model parameter estimation for SαS distributions: The
α-stable tail power law provided one of the earliest approaches
in estimating the stability index of real measurements [23].
The empirical distribution of the data, plotted on a log-log
scale, should approach a straight line with slope α if the
data is stable. Maximum likelihood methods developed by
various authors are asymptotically efficient and have become
amenable to fast implementations [24]. More recently, based on
Mellin Transform [25], Nicolas [26] proposed the second-kind
statistics theory, by analogy with the way in which common
statistics are deducted based on Fourier Transform. The cor-
responding Method of Log-Cumulants (MoLC) is based on
equating sample log-cumulants to their theoretical counter-
parts for a particular model and then solving the resulting
system, much in the same way as in the classical method of
moments.

In particular, the Mellin transform of SαS densities is given
in (3). Interestingly, the expression for the Mellin transform of
the SαS density is the same as that for its fractional lower order
moments [27], by letting s = p+ 1, where p is the moment
order and s is the complex variable of the transform

ΦSαS(s) =
γ

s−1
α 2sΓ

(
s
2

)
Γ
(− s−1

α

)
α
√
πΓ

(− s−1
2

) . (3)

By taking the limit as s→ 1 of the first and second derivatives
of the logarithm of ΦSαS(s), we obtain the following results

for the second-kind cumulants of the SαS model [28]

k̃1 =
α− 1

α
ψ(1) +

log γ

α

k̃2 =
π2

12

α2 + 2

α2
(4)

where ψ is the Digamma function and ψ(r, ·) is the Polygamma
function, i.e., the r-th derivative of the Digamma function.
The first two sample second-kind cumulants can be estimated
empirically from N samples yi as follows

ˆ̃
k1 =

1

N

N∑
i=1

[log(|yi|)]

ˆ̃
k2 =

1

N

N∑
i=1

[(log(|yi|)− ˆ̃
k1)

2]. (5)

The estimation process simply involves solving (4) for α and γ.
In Fig. 2 we show an example of an ultrasound RF echo mod-
elled using SαS density functions both in time and in frequency
domain.

III. SIGNAL RECONSTRUCTION VIA �p MINIMIZATION

Ideally, our aim in this Section should be to reconstruct a
sparse vector x, the ultrasound echo in our case, with the small-
est number of non-zero components, that is, with the smallest
�0 pseudo-norm. Although the problem of finding such an x
is NP-hard, there exist several sub-optimal strategies which are
used in practice. Most of them solve a constrained optimiza-
tion problem by employing the �1 norm. On the other hand,
CS reconstruction methods were developed in recent work
(e.g., [16], [29], [30]) by employing �p with p < 1, with the
goal of approximating the ideal �0 case. Specifically, the prob-
lem consists in finding the vector x with the minimum �p by
minimizing

x̂ = min ‖x‖p subject to Φx = y. (6)

However, very few authors attempt to devise a principled strat-
egy for choosing the optimal p or to relate the �p minimization
to the actual statistics of the signal to reconstruct. Indeed, for
alpha-stable signals, which do not possess finite second- or
higher-order moments, the minimum dispersion criterion [27],
[31] can be defined as an alternative to the classical minimum
mean square error for Gaussian signals. This leads naturally to
a least �p estimation problem, an approach that can enhance the
reconstruction of heavy-tailed signals from their measurement
projections [12]. Although finding a global minimizer of (6)
is NP-hard, many algorithms with polynomial time have been
proposed to find a local minimizer [16], [32].

Denote by X ∈ R
N×J an US RF image formed by J RF

signals of length N , x1, x2, . . . xJ . One possible approach to
�p minimization, first introduced in [7], relies on the iteratively
reweighted least squares method (IRLS) [16] but is modified
to incorporate the assumption of SαS distributed signals. The
hallmark of the IRLS algorithm is to replace the �p objective



Fig. 2. Example RF signal modeling with SαS distributions. (a) An RF signal in time domain (α = 1.36). (b) The real part of its 1D Fourier transform
(α = 0.71). The SαS model offers a very accurate fit in both cases but the distribution in the Fourier domain has heavier tails, which correspond to a much lower
value of α.

function in (6) by a weighted �2 norm

min

N∑
k=1

wkx
2
k,j subject to Φxj = yj . (7)

As shown in [16] and references therein, the solution to (7) is
given explicitly as the next iterate x̂(n)

x̂(n) = QnΦ
T
(
ΦQnΦ

T
)−1

y, (8)

where Qn is a diagonal matrix with entries 1
wk

= |x(n−1)
k |2−p.

This solution is obtained using a direct method by solving the
Euler-Lagrange equation in (7).

The whole algorithm is provided in pseudo-code below. For
better readability, we drop the index j for the time being, but
keep in mind that the algorithm is applied to each RF line j,
j ∈ {1, 2, . . . J}.

Algorithm 1. SαS -IRLS algorithm

1) Initialization (n = 0): x̂(0) = min ‖y − Φx‖2. Set the
damping factor ε = 1.

2) Estimate α from y using (4).
3) Determine p as p = α− 0.01.
4) while ε is greater than a pre-defined value do

(a) n = n+ 1

(b) Find the weights wk = ((x
(n−1)
k )2 + ε)

p
2−1

(c) Form a diagonal matrix Qn whose entries are 1
wi

(d) Form the solution to (7) as in (8)
(e) if the norm of the residual, ‖x̂(n) − x̂(n−1)‖2, was

reduced by a certain factor, then decrease ε.
(f) x̂(n−1) = x̂(n)

In the table above, the damping factor, ε, is used to regularize
the optimization problem in situations where the weights, wk,
are undefined because x(n−1)

k = 0.
Note that in theory, since the measurements y are merely

linear combinations of the elements of x, by employing the sta-
bility property for stable random variable [27], one can use y to

estimate directly the parameter α of x (step 2 in the algorithm
above). In practice however, because of our use of Gaussian
measurement matrices, we find sometimes the estimated param-
eter α̂ to be attracted in the vicinity of 2 (y is also a linear
combination of elements of Φ). We circumvent this problem
by employing a block of many adjacent RF lines and assum-
ing that neighbouring RF lines are characterized by the same
characteristic exponent. This is not an unreasonable assump-
tion since we have already shown [33] that there are advantages
to be had by exploiting temporal correlations between distinct
RF echoes. Our measurement model can then be written as

Y = ΦX

where X is now N × L, Y is M × L and L is the number of
RF lines used in the estimation. Each line of Y is now a linear
combination of elements x and hence provides the estimate α
corresponding to x.

Finally, let us note that the actual estimation method used
can be any of the existing techniques for SαS parameter esti-
mation, only applied on the compressive measurements, y.
Consequently, its accuracy is not peculiar to this application. In
Section II-B1 we have described the estimation method based
on the method of log-cumulants but any existing approach
would have been an equally valid choice.

A. IRLS with dual prior information

Our new approach to RF signal reconstruction still relies on
SαS-IRLS [7] but is implemented in the frequency domain
as in [9] and modified (following [10], [18]) to incorporate
information on the support of RF signals. Implementing the
SαS-IRLS algorithm in the Fourier domain is motivated by
the higher degree of compressibility exhibited by ultrasound
echoes in the frequency domain. This can be clearly deduced by
observing the shape of the histograms in Fig. 2, which shows
the distribution of a single RF line from an ultrasound image
being more heavy-tailed in the frequency domain. The more



Fig. 3. Characteristic exponent, α, estimated both in time and in frequency for
successive RF lines of an ultrasound image.

heavy-tailed a distribution is, the sparser (more compressible)
the data modeled by that distribution. To further support this
idea, in Fig. 3, we show graphs demonstrating that the char-
acteristic exponent, α, is consistently lower in the frequency
domain. Specifically, for the same ultrasound image, for each
line in a block of 128 RF signals, we estimate α directly from
the data, in both time and frequency domains. The resulting
traces, plotted in Fig. 3, show clearly α being consistently
smaller in the Fourier domain than in time domain. Note that
this behaviour is observed due to the non-random nature of RF
signals, which have a structure determined by acoustic reflec-
tions from inside the tissue being imaged. In the case of a purely
random alpha-stable distributed signal, applying the Fourier
transform would determine a higher value of the characteristic
exponent in the frequency domain.

In addition, in the Fourier domain, it is also easier to infer
the support of ultrasound signals, through knowledge of the
transducer bandwidth. Indeed, the bandwidth, that directly
influences the axial resolution, depends mostly on the trans-
ducer characteristics. It is inversely proportional to the length
of the emitted pulse, also known as the spatial pulse length.
The latter is calculated as the product between the wave-
length (a function of the central frequency of the probe and
known in practice) and the number of cycles within the pulse
(also known a priori). Thus, for a given scanner, the band-
width depends on known parameters and may be calculated
theoretically.

Several two-dimensional transforms have been considered
in existing approaches, such as 2D Fourier, wavelets or
waveatoms. Our own work showed that by exploiting tempo-
ral correlations between distinct RF echoes (which exist in the
spatial domain [33] as well as in the frequency domain [34]),
one can take advantage of block sparsity and that can lead to
improved reconstruction results. Nevertheless, processing the
reconstruction RF line by RF line (image column by image col-
umn) is a natural choice in US imaging. Indeed, acquisition and
standard post-processing techniques such as beamforming or
demodulation are already done sequentially line by line. In this
work, we restrict our investigations to the 1D Fourier transform.

The 1D Fourier transforms of all individual RF echoes xj can
be written as

ξj = Fxj , j ∈ {1, 2, . . . J}, (9)

where F ∈ C
N×N is the 1D Fourier matrix. In the frequency

domain, the measurement model becomes

mj = Φjξj = ΦjFxj , j ∈ {1, 2, . . . , J}, (10)

where Φj are Gaussian matrices of sizeM ×N (M � N) and
mj ∈ C

M×1.
Now denote by Θj the subset of points in {1, 2, . . . N} that

defines the support of ξj :

ξ̂j,k 	= 0, ∀k ∈ Θj , j ∈ {1, 2, . . . , J}. (11)

Following the arguments in [18], the information represented
by (11) can be added to the IRLS algorithm for the minimiza-
tion of the lp by solving the following problem instead of (6)
(or its frequency domain equivalent)

min
ξ̂

1

2

N∑
k=1
k/∈Θ

|ξ̂j,k|p subject to Φjξj = mj , j ∈ {1, 2, . . . , J}.

(12)

Intuitively, (12) will offer a better solution than (7) because it
will attempt to minimize the number of nonzero elements in ξ̂
only outside the set Θ.

To solve (12) we use the modified IRLS algorithm proposed
in [18]. Specifically, a solution can be obtained by solving
iteratively

min
ξ̂

1

2

N∑
k=1
k/∈Θ

wk ξ̂
2
k, subject to Φξ̂ = m (13)

so that wk ξ̂
2
k is sufficiently close to |ξ̂k|p ∀k /∈ Θ and as before,

for simplicity we have dropped the index j.
Since wk = 0, ∀k ∈ Θj and wk must approach ξ̂k for k /∈

Θj , we can define the weights to be used in the algorithm as

wk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∣∣∣ξ̂(n−1)
k

∣∣∣2 + ε

) p
2−1

, if k /∈ Θ

τ2−p

(∣∣∣ξ̂(n−1)
k

∣∣∣2 + ε

) p
2−1

, otherwise

(14)

where τ is a small positive constant necessary to obtain a
closed solution to (13). Following the suggestion in [18], in our
implementation we used τ2−p = 10−3. As for SαS-IRLS, the
parameter p is set equal to α− 0.01, where α is obtained by
fitting an alpha-stable distribution to the data. With the newly
defined weights, wk, the IRLS with dual prior information
(IRLS-DP) can be implemented using the same pseudo-code
as for the SαS-IRLS algorithm.

Finally, the reconstructed RF lines are obtained by inverting
the corresponding Fourier transforms:

x̂j = F−1ξ̂j , j ∈ {1, 2, . . . , J}. (15)



Fig. 4. Monte Carlo simulations demonstrating that, in general, reconstruction errors are minimized when the value of p is just below α.

IV. SIMULATION RESULTS

In this section, we first present results of Monte-Carlo sim-
ulations performed in order to demonstrate that in designing
an �p minimization algorithm, the choice of p should be driven
by the value of the characteristic exponent of the signal to be
reconstructed. The second part of this section presents actual
reconstruction experiments conducted using real data corre-
sponding to a number of ultrasound images of thyroid glands.

A. Monte-Carlo experiments for p parameter estimation

The proposed lp minimization algorithms for ultrasound
image reconstruction rely on specifying the parameter p, whose
optimal value is related to the characteristic exponent, α. A
method for choosing the optimum value of p has been proposed
in [35], which was based on minimising the standard deviation
of a FLOM-based covariation estimator. Other authors suggest
the optimal p should be as close to zero as possible, in order to
approximate the ideal l0 case.

Here, we show through Monte Carlo simulations that the best
reconstruction results are obtained when p is chosen to be lower
but as close as possible to the value of α, which is estimated
from compressive measurements. For this purpose, CS mea-
surements were generated by projecting alpha-stable vectors
on M = 256 Gaussian random vectors. For each value of α,
the value of γ used for simulating SαS vectors was set to 1.

Twenty simulations were performed for each value of α, by
generating for each run a new random measurement matrix. The
normalized root mean square errors between the true and recon-
structed vectors, for α ∈ [0.5 : 0.05 : 1.6], were computed and
averaged for each simulation. To ensure that simulation results
were not biased, we used a high number of iterations (10,000) in
the IRLS algorithm. The average errors are presented in Fig. 4.
We observe that the best choice for p is a value slightly smaller
than that of α. Moreover, we observe that for α < 1 (which is
the case in US imaging when performing the reconstruction in
the Fourier domain), the choice of p is not too restrictive, the
errors being similar for a relatively large range of values p < α.

As noted above, although lower values of p would theoret-
ically increase the chance of finding the sparsest signal that
explains the measurements [18], for the analyzed ultrasound
data we considered, p should be linked to the true degree
of sparsity of the data in order to favor correct reconstruc-
tion based on the information about the distribution. The more
heavy-tailed a distribution is, the sparser (more compressible)
the data modelled by that distribution. In other words, a higher
value of α corresponds to a less compressible dataset and does
not justify the use of a smaller p.

B. Reconstruction Results

In this section we present reconstruction experiments con-
ducted using real data corresponding to in vivo healthy thyroid



TABLE I
OBJECTIVE EVALUATION OF FOUR RECONSTRUCTION METHODS FOR ULTRASOUND IMAGES FROM RF FRAMES

WITH SAMPLING RATES OF 33% AND 50% RELATIVE TO THE ORIGINAL

glands. The images were acquired with a Siemens Sonoline
Elegra scanner using a 7.5 MHz linear probe and a sampling
frequency of 50 MHz. The spectral support was estimated
to be between 4 and 11 MHz. Various sections of the origi-
nal images were cropped and patches of size 256× 512 were
obtained. These patches were then sampled line by line using
linear projections of random Gaussian bases at two levels. The
two levels correspond to the number of samples taken from
the original signal (the echo lines); these are 33% and 50%
(i.e. M = 0.33N and M = 0.5N ). Let us emphasise here, that
while we have used this strategy to simulate compressively
sampled ultrasound signals, we do not imply that this is the
strategy that needs to be adopted by a real compressive scanner.
Readers may refer to [36] for discussion on alternative sampling
schemes. On the other hand, the generality of our approach is
not in any way reduced through the adoption of this strategy.

Reconstruction of the samples was achieved by using the pro-
posed �p minimization scheme (as described in Section III-A)
and for comparison, reconstructions using �p minimization with
SαS -IRLS [7] and SαS-IRLS in the Fourier domain (FD-
SαS-IRLS) [9] are shown (Table I) along with reconstruction
results obtained through l1 norm minimization via Lasso [37].
The values of α for each line and so that of p (which is derived
from α), were estimated directly from the ultrasound RF sig-
nal while for our new approach (IRLS-DP) the support was
inferred through knowledge of the frequency of acquisition and
transducer bandpass as detailed above.

An analysis of the results was undertaken in terms of recon-
struction quality, which was measured by means of the struc-
tural similarity index (SSIM) [38] and normalized root mean
squared error (NRMSE) of the reconstructed echoes ensemble
compared with the original ensemble. SSIM resembles more
closely the human visual perception, and as such, it is often

preferred to the commonly used MSE-based metrics. For a
given image I and its reconstruction Î the SSIM is defined by:

SSIM =
(2μIμÎ + c1)(2σÎI + c2)

(μ2
I + μ2

Î
+ c1)(σ2

I + σ2
Î
+ c2)

(16)

where μI, σI are the mean and standard deviation of I (simi-
larly for Î), σÎI denotes the correlation coefficient of the two
images, and c1, c2 stabilize the division with a weak denom-
inator. In particular, when SSIM equals 0 the two images are
completely distinct, while when the two images are matched
perfectly SSIM is equal to 1.

It can be seen in Table I that according to both metrics
employed, the best results are obtained using the proposed
reconstruction algorithm, which exploits two types of prior
information. The results support the fact that reconstructing
ultrasound RF echoes in the Fourier domain produces better
results than directly in time domain. We attribute this to the
more compressible representations that can be achieved for RF
lines in the Fourier domain, which can also be ascertained by
comparing Fig. 2 (a) and (b). Taking into account prior informa-
tion of the signal in the form of its support is also confirmed to
optimise reconstruction. We should note however that, unlike
the observation made in [18], reducing further the order p
leads actually to worse reconstruction results. This observation
is consistent with the conclusions drawn based on the Monte
Carlo simulations.

For a qualitative analysis, reconstruction results obtained
with the three schemes discussed in this paper, with M =
0.33N measurements are also presented in Fig. 5 and Fig. 6.
Visually, it can be seen that the IRLS-DP reconstruction intro-
duces the least distortion, clearly producing the best result
compared to the original and confirming the results indicated
by the NRMSE and SSIM values obtained.



Fig. 5. Reconstruction results for a thyroid ultrasound image using 33% of the number of samples in the original. (a) B-mode ultrasound image. (b) Reconstruction
with Lasso. (c) SαS-IRLS reconstruction. (d) SαS-IRLS in the Fourier domain. (e) Fourier domain IRLS with dual prior.

Fig. 6. Reconstruction errors for one RF line sampled at 33%. Top to bottom: original signal and reconstructed using Lasso, SαS-IRLS, SαS-IRLS in the Fourier
domain, and IRLS with dual prior respectively. Left column: RF lines; right column: the corresponding errors.

V. CONCLUSIONS

In this paper, we extended our previously proposed frame-
work for ultrasound image reconstruction from compressive
measurements. We have shown through simulations that RF
echoes can be best reconstructed by driving an �p minimization
problem with dual prior information: the value of the charac-
teristic exponent of the RF line and its sparse support in the
frequency domain. The latter plays certainly a central role in
allowing a significant reduction in both the number of required
measurements and computational cost. Nevertheless, our exper-
iments strongly suggest that the optimal value of p in a �p
minimization procedure shouldn’t be arbitrarily small but rather
close to the characteristic exponent of the underlying alpha-
stable distribution of the data. We have devised a principled
strategy for choosing the optimal p by relating the �p minimiza-
tion to the actual SαS statistics of the RF signals. We achieved

that by observing that for alpha-stable signals, which do not
possess finite second- or higher-order moments, the minimum
dispersion criterion [23] can be defined as an alternative to
the classical minimum mean square error for Gaussian signals.
Our current research focusses on developing algorithms and
architectures for the actual acquisition of ultrasound images
in a compressive fashion. Results will be reported in a future
communication.
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