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émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50531202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01278347


An additive Schwarz method type theory for

Lions’ algorithm and Optimized Schwarz

Methods

Ryadh Haferssas ∗1, Pierre Jolivet †2, and Frédéric Nataf ‡1

1Laboratory J.L. Lions, UPMC, CNRS UMR7598 and INRIA
Team Alpines, France

2Toulouse Institute of Computer Science Research, France

4 février 2016

Résumé

Optimized Schwarz methods (OSM) are very popular methods which
were introduced by P.L. Lions in [27] for elliptic problems and by B. Després
in [8] for propagative wave phenomena. We give here a theory for Lions’
algorithm that is the genuine counterpart of the theory developed over
the years for the Schwarz algorithm. The first step is to introduce a sym-
metric variant of the ORAS (Optimized Restricted Additive Schwarz) al-
gorithm [37] that is suitable for the analysis of a two-level method. Then
we build a coarse space for which the convergence rate of the two-level
method is guaranteed regardless of the regularity of the coefficients. We
show scalability results for thousands of cores for nearly incompressible
elasticity and the Stokes systems with a continuous discretization of the
pressure.

1 Introduction

Substructuring algorithms such as BNN or FETI are defined for nonover-
lapping domain decompositions but not for overlapping subdomains. Schwarz
method [34] is defined only for overlapping subdomains. With the help of a co-
arse space correction, the two-level versions of both type of methods are weakly
scalable, see [38] and references therein. The domain decomposition method in-
troduced by P.L. Lions [27] is a third type of methods. It can be applied to both
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overlapping and nonoverlapping subdomains. It is based on improving Schwarz
methods by replacing the Dirichlet interface conditions by Robin interface condi-
tions. This algorithm was extended to Helmholtz problem by Després [9]. Robin
interface conditions can be replaced by more general interface conditions that
can be optimized (Optimized Schwarz methods, OSM) for a better convergence,
see [18, 17] and references therein.

P.L. Lions proved the convergence of his algorithm in the elliptic case for
a nonoverlapping domain decomposition. The proof is based on energy esti-
mates and a summation technique. These results were extended to Helmholtz
and Maxwell equations in [2, 10]. Over the last years, a lot of results have been
obtained for different classes of equations and optimized algorithms based on
carefully chosen parameters in the transmission conditions, have been derived,
see e.g. [21, 17, 18, 11] and references therein. Most of these works are valid
for nonoverlapping decomposition or for simple overlapping domain decompo-
sitions. When the domain is decomposed into a large number of subdomains,
these methods are, on a practical point of view, scalable if a second level is ad-
ded to the algorithm via the introduction of a coarse space [21, 15, 7]. But there
is no systematic procedure to build coarse spaces with a provable efficiency.

The purpose of this article is to define a general framework for building adap-
tive coarse space for OSM methods for decomposition into overlapping subdo-
mains. We prove that we can achieve the same robustness that what was done
for Schwarz [35] and FETI-BDD [36] domain decomposition methods with so
called GenEO (Generalized Eigenvalue in the Overlap) coarse spaces. Compared
to these previous works, we have to introduce SORAS (symmetrized ORAS) a
non standard symmetric variant of the ORAS method as well as two generalized
eigenvalue problems. As numerical results will show in § 6.3, the method scales
very well for saddle point problems such as highly heterogeneous nearly incom-
pressible elasticity problems as well as the Stokes system. More precisely, in
§ 2, we give a short presentation of the current theory for the additive Schwarz
method. Then, in section 3, we present algebraic variants to the P.L. Lions’
domain decomposition method. In § 4, we build a coarse space so that the two-
level SORAS method achieves a targeted condition number. In § 5, the method
is applied to saddle point problems.

2 Short introduction to ASM theory

In order to appraise the theory developed in § 3, we first give a short presenta-
tion of the current theory for two-level additive Schwarz methods. The starting
point was the original Schwarz algorithm [34] for proving the well-posedness
of the Poisson problem −∆u = f with Dirichlet boundary conditions in some
domain Ω decomposed into two subdomains Ω1 and Ω2, Ω = Ω1 ∪ Ω2.

Definition 2.1 (Original Schwarz algorithm) The Schwarz algorithm is an
iterative method based on solving alternatively sub-problems in domains Ω1 and
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Ω2. It updates (un1 , u
n
2 )→ (un+1

1 , un+1
2 ) by :

−∆(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω
un+1

1 = un2 on ∂Ω1 ∩ Ω2.

then,
−∆(un+1

2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω
un+1

2 = un+1
1 on ∂Ω2 ∩ Ω1.

(1)

H. Schwarz proved the convergence of the algorithm and thus the well-posedness
of the Poisson problem in complex geometries. A small modification of the al-
gorithm [28] makes it suited to parallel architectures. Its convergence can be
proved using the maximum principle [26].

Definition 2.2 (Parallel Schwarz algorithm) Iterative method which solves
concurrently in all subdomains, i = 1, 2 :

−∆(un+1
i ) = f in Ωi
un+1
i = 0 on ∂Ωi ∩ ∂Ω
un+1
i = un3−i on ∂Ωi ∩ Ω3−i.

(2)

The discretization of this algorithm yields a parallel algebraic method for solving
the linear system AU = F ∈ R#N (N is the set of degrees of freedom) arising
from the discretization of the original Poisson problem set on domain Ω. Due to
the duplication of the unknowns in the overlapping region Ω1 ∩ Ω2, this direct
discretization involves a matrix of size larger than that of matrix A, see e.g. [19]
for more details. Actually, it is much simpler and as efficient to use the RAS
preconditioner [6]

M−1
RAS :=

N∑
i=1

RTi DiA
−1
i Ri , (3)

where N is the number of subdomains, Ri for some 1 ≤ i ≤ N is the Boolean
matrix that restricts a global vector to its degrees of freedom in subdomain Ωi,
matrix

Ai := RiAiR
T
i

is the Dirichlet matrix of subdomain Ωi and Di is a local diagonal matrix that
yields an algebraic partition of unity on R#N :

Id =

N∑
i=1

RTi DiRi . (4)

Indeed, it is proved in [14] that the following fixed point algorithm

Un+1 = Un +M−1
RAS(F−AUn) (5)

yields iterates that are equivalent to that of the discretization of Algorithm (2).
The RAS preconditioner (3) is not symmetric. In order to develop a theory

for it when used as preconditioner in a Krylov method, its symmetric variant,
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the ASM preconditioner :

M−1
ASM =

N∑
i=1

RTi A
−1
i Ri , (6)

was studied extensively, see [38] and references therein. Starting with the pio-
neering work [33], a lot of effort has been devoted to the design and analysis of
two-level methods that are the key ingredient to scalable methods. In adaptive
methods, the coarse space in the two-level method is built by solving local ge-
neralized eigenvalue problems [16, 13, 31, 35] . This way, it is possible to target
a user defined condition number of the preconditioned system. Here we focus
on the GenEO approach [35] where the coarse space is based on solving Gene-
ralized Eigenvalue problems for the set of degrees of freedom Nj of subdomain
1 ≤ j ≤ N . Let ANeuj denote the matrix of the local Neumann problem, we have
to find the eigenpairs (Vj,k, λj,k)k such that :
Vj,k ∈ RNj and λj,k ≥ 0 :

Dj AjDjVj,k = λj,k A
Neu
j Vj,k (7)

By combining the eigenvectors corresponding to eigenvalues larger than some
given threshold τ > 0 into a coarse space, it is proved in [35, 12] that the
eigenvalues of the hybrid Schwarz preconditioned system satisfy the following
estimate

1

1 + k1 τ
≤ λ(M−1

HSM A) ≤ k0 . (8)

where k0 is the maximum number of neighbors of a subdomain and k1 is the
maximum multiplicity of the intersections of subdomains.

To sum up, the current theory for the two-level Schwarz method is based on
the following four steps :

1. Schwarz algorithm at the continuous level (1)

2. An equivalent algebraic formulation (5) with the introduction of the RAS
preconditioner (3)

3. A symmetrized variant named ASM (6) of the RAS preconditioner

4. A two-level method with an adaptive coarse space with prescribed tar-
geted convergence rate .

3 Symmetrized ORAS method

Our goal here is to develop a theory and computational framework for
P.L. Lions algorithm similar to what was done for the Schwarz algorithm for a
SPD matrix A. We follow the steps recalled above.
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First we introduce the P.L. Lions’ algorithm which is based on improving
Schwarz methods by replacing the Dirichlet interface conditions by Robin inter-
face conditions. Let α be a positive number, the modified algorithm reads

−∆(un+1
1 ) = f in Ω1,
un+1

1 = 0 on ∂Ω1 ∩ ∂Ω,(
∂

∂n1
+ α

)
(un+1

1 ) =

(
∂

∂n1
+ α

)
(un2 ) on ∂Ω1 ∩ Ω2 ,

(9)

and

−∆(un+1
2 ) = f in Ω2,
un+1

2 = 0 on ∂Ω2 ∩ ∂Ω(
∂

∂n2
+ α

)
(un+1

2 ) =

(
∂

∂n2
+ α

)
(un1 ) on ∂Ω2 ∩ Ω1

(10)

where n1 and n2 are the outward normals on the boundary of the subdomains.
The second step is an algebraic equivalent formulation of the P.L. Lions

algorithm in the case of overlapping subdomains. It is based on the introduction
of the ORAS (Optimized Restricted Additive Schwarz) [37] preconditioner :

M−1
ORAS :=

N∑
i=1

RTi DiB
−1
i Ri , (11)

where (Bi)1≤i≤N is the discretization matrix of the Robin problem in subdomain
Ωi. The following fixed point method

Un+1 = Un +M−1
ORAS(F−AUn) (12)

yields iterates that are equivalent to that of the discretization of P.L. Lions’
Algorithm (9)-(10), see [37].

The third step is the introduction of a symmetric variant that allows for a
comprehensive theoretical study. It seems at first glance that we should mimic
what was done for the RAS algorithm and study the following symmetrized
variant :

M−1
OAS,1 :=

N∑
i=1

RTi B
−1
i Ri . (13)

For reasons explained in Remark 1, we introduce another non standard variant
of the ORAS preconditioner (11), the symmetrized ORAS (SORAS) algorithm :

M−1
SORAS,1 :=

N∑
i=1

RTi DiB
−1
i DiRi . (14)

The missing step is the fourth one, namely to build an adaptive coarse space
for a two-level SORAS method. it is done in the next section.
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4 Two-level SORAS algorithm

Before designing and analyzing the two-level SORAS method, we precise our
mathematical framework.

4.1 Mathematical framework

The problem to be solved is defined via a variational formulation on a domain
Ω ⊂ Rd for d ∈ N :

Find u ∈ V such that : aΩ(u, v) = l(v) , ∀v ∈ V ,

where V is a Hilbert space of functions from Ω with real values, . The problem
we consider is given through a symmetric positive definite bilinear form aΩ that
is defined in terms of an integral over any open set ω ⊂ Ω. Typical examples
are the Darcy equation (K is a diffusion tensor)

aω(u, v) :=

∫
ω

K∇u · ∇v dx ,

or the elasticity system (C is the fourth-order stiffness tensor and ε(u) is the
strain tensor of a displacement field u) :

aω(u, v) :=

∫
ω

C : ε(u) : ε(v) dx .

The problem is discretized by a finite element method. Let N denote the set
of degrees of freedom and (φk)k∈N be a finite element basis on a mesh Th.
Let A ∈ R#N×#N be the associated finite element matrix, Akl := aΩ(φl, φk),
k, l ∈ N . For some given right hand side F ∈ R#N , we have to solve a linear
system in U of the form

AU = F .

Domain Ω is decomposed into N overlapping subdomains (Ωi)1≤i≤N so that
all subdomains are a union of cells of the mesh Th. This decomposition in-
duces a natural decomposition of the set of indices N into N subsets of indices
(Ni)1≤i≤N :

Ni := {k ∈ N | meas(supp(φk) ∩ Ωi) > 0} , 1 ≤ i ≤ N. (15)

For all 1 ≤ i ≤ N , let Ri be the restriction matrix from R#N to the subset R#Ni

and Di be a diagonal matrix of size #Ni ×#Ni, so that we have a partition of
unity at the algebraic level,

N∑
i=1

RTi DiRi = Id , (16)

where Id ∈ R#N×#N is the identity matrix.
For all subdomains 1 ≤ i ≤ N , let Bi be a SPD matrix of size #Ni × #Ni,
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which comes typically from the discretization of boundary value local problems
using optimized transmission conditions.

We also define for all subdomains 1 ≤ j ≤ N , Ãj , the #Nj ×#Nj matrix
defined by

VT
j Ã

jUj := aΩj

∑
l∈Nj

Ujlφl,
∑
l∈Nj

Vjlφl

 , Uj , Vj ∈ RNj . (17)

When the bilinear form a results from the variational solve of a Laplace pro-
blem, the previous matrix corresponds to the discretization of local Neumann
boundary value problems. For this reason we will call it “Neumann” matrix even
in a more general setting.

We also make use of two numbers k0 and k1 related to the domain decom-
position. Let

k0 := max
1≤i≤N

#
{
j | RjARTi 6= 0

}
(18)

be the maximum multiplicity of the interaction between subdomains plus one.
Let k1 be the maximal multiplicity of subdomains intersection, i.e. the largest
integer m such that there exists m different subdomains whose intersection has
a non zero measure.

4.2 SORAS with GenEO-2

We now consider a two-level method based on enriching the one-level SORAS
preconditioner (11) by introducing two generalized eigenvalue problems which
allow us to control the spectrum of the preconditioned operator as written in
Theorem 4.10.

4.2.1 Coarse Space for the lower bound

More precisely, we define the following generalized eigenvalue problem :

Definition 4.1 (Generalized Eigenvalue Problem for the lower bound)
For each subdomain 1 ≤ j ≤ N , we introduce the generalized eigenvalue problem

Find (Vjk, λjk) ∈ R#Nj \ {0} × R such that

ÃjVjk = λjkBjVjk .
(19)

Let τ > 0 be a user-defined threshold, we define Zτgeneo ⊂ R#N as the vector

space spanned by the family of vectors (RTj DjVjk)λjk<τ ,1≤j≤N corresponding
to eigenvalues smaller than τ .

Let π̃j be the projection from R#Nj on Span{Vjk|λjk < τ} parallel to Span{Vjk|λjk ≥
τ}. In the present case of the SORAS-2 method, Lemma 7.6, page 167 in [12]
translates into :

Lemma 4.2 (Intermediate Lemma for GenEO-SORAS-2) For all subdo-
mains 1 ≤ j ≤ N and Uj ∈ RNj , we have :

τ ((Id − π̃j)Uj)
TBj(Id − π̃j)Uj ≤ UT

j Ã
jUj . (20)
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4.2.2 Coarse space for the upper bound

We introduce the following generalized eigenvalue problem :

Definition 4.3 (Generalized Eigenvalue Problem for the upper bound)

Find (Uik, µik) ∈ R#Ni \ {0} × R such that

DiRiAR
T
i DiUik = µikBi Uik .

(21)

Let γ > 0 be a user-defined threshold, we define Zγgeneo ⊂ R#N as the vector

space spanned by the family of vectors (RTi DiUik)µik>γ ,1≤i≤N corresponding to
eigenvalues larger than γ.

Now, let ξi denote the projection from RNi on Span {Uik | γ > µik} parallel
to Span {Uik | γ ≤ µik}. From these definitions, Lemma 7.6, page 167 in [12]
leads to :

Lemma 4.4 For all subdomain 1 ≤ i ≤ N and Ui ∈ R#Ni , we have :(
RTi Di(Id − ξi)Ui

)T
ARTi Di(Id − ξi)Ui) ≤ γ UT

i BiUi . (22)

4.3 SORAS-GENEO-2 method

We are now ready to define the SORAS two level preconditioner

Definition 4.5 (Two level SORAS-GENEO-2 preconditioner) Let P0 de-
note the a-orthogonal projection on the SORAS-GENEO-2 coarse space

ZGenEO-2 := Zτgeneo
⊕

Zγgeneo ,

the two-level SORAS-GENEO-2 preconditioner is defined as follows, see [29] :

M−1
SORAS,2 := P0A

−1 + (Id − P0)

N∑
i=1

RTi DiB
−1
i DiRi(Id − PT0 ) . (23)

Let Z0 be a matrix whose columns are a basis of ZGenEO-2 and let denote its
transpose by R0 := ZT0 . It is easily checked that

P0A
−1 = RT0 (R0AR

T
0 )−1R0 .

This definition is reminiscent of the balancing domain decomposition precon-
ditioner [29] introduced for Schur complement based methods. Note that the
coarse space is now defined by two generalized eigenvalue problems instead of
one in [35, 36] for ASM and FETI-BDD methods.

The proof of Theorem 4.10 is based on the Fictitious Space [32] Lemma 7.4
in [12] , page 164.
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Definition 4.6 (Two-level SORAS in the Fictitious Space Lemma) Two
Hilbert spaces H and HD, two other associated bilinear forms and induced scalar
products as well as the RSORAS,2 operator between them are defined as follows.

— Space H := R#N endowed with the standard Euclidian scalar product.
We consider another bilinear form a defined by :

a : H ×H → R, (U,V) 7−→ a(U,V) := VTAU. (24)

where A is the matrix of the problem we want to solve.
— Space HD, defined as the product space

HD := R#N0 ×
N∏
i=1

R#Ni (25)

is endowed with standard scalar Euclidian product. For U = (Ui)1≤i≤N ,
V = (Vi)1≤i≤N with Ui,Vi ∈ R#Ni , the bilinear form b is defined by

b : HD ×HD −→ R

(U ,V) 7−→ b(U ,V) := (RT0 V0)TA (RT0 U0) +

N∑
i=1

VT
i BiUi,

(26)
Let B denote the block-diagonal operator such that for all U ,V ∈ HD, we
have :

(BU ,V) = b(U ,V)

— For any U = (Ui)0≤i≤N the linear operator RSORAS,2 is defined as

RSORAS,2 : HD −→ H, RSORAS,2(U) := RT0 U0 +

N∑
i=1

(Id − P0)RTi Di Ui.

(27)

It can easily be checked that

M−1
SORAS,2 = RSORAS,2B−1R∗SORAS,2 .

We now check the assumptions of the Fictitious Space Lemma.

Lemma 4.7 (Surjectivity of RSORAS,2) Operator RSORAS,2 is surjective.

Proof
For all U ∈ H, we have :

U = P0 U + (Id − P0) U = P0 U +

N∑
i=1

(Id − P0)RTi DiRiU .

Since P0 U ∈ Span(RT0 ), there exists U0 ∈ R#N0 such that P0 U = RT0 U0.
Thus, we have

U = RT0 U0 +
N∑
i=1

(Id − P0)RTi Di(RiU) ,

9



or, in other words

RSORAS,2(U0, (RiU)1≤i≤N ) = U ,

which proves the surjectivity.

We now prove

Lemma 4.8 (Continuity of RSORAS,2) Let U = (Ui)0≤i≤N ∈ HD. We have
the following continuity estimate

a(RSORAS,2(U),RSORAS,2(U)) ≤ max(1, k0 γ) b(U , U) .

Proof Since P0 and Id − P0 are a-orthogonal projections, we have by a-
orthogonality :

a(RSORAS,2(U),RSORAS,2(U)) = a
(
P0R

T
0 U0, P0R

T
0 U0

)
+ a

(
(Id − P0)

N∑
i=1

RTi Di Ui, (Id − P0)

N∑
i=1

RTi Di Ui

)
Since P0 is the a-orthogonal projection on ZGenEO-2 and that

N∑
i=1

RTi DiξiUi ∈ Zγgeneo ⊂ ZGenEO-2 ,

we have

(Id − P0)

N∑
i=1

RTi DiξiUi = 0 ,

and thus

a

(
(Id − P0)

N∑
i=1

RTi Di Ui, (Id − P0)

N∑
i=1

RTi Di Ui

)

= a

(
(Id − P0)

N∑
i=1

RTi Di (Id − ξi)Ui, (Id − P0)

N∑
i=1

RTi Di (Id − ξi)Ui

)
.

Finally, using k0 defined as in in Lemma 7.11, page 174 in [12] , we have

a(RSORAS,2(U),RSORAS,2(U)) ≤ a
(
RT0 U0, R

T
0 U0

)
+a
(∑N

i=1R
T
i Di (Id − ξi)Ui,

∑N
i=1R

T
i Di (Id − ξi)Ui

)
≤ a

(
RT0 U0, R

T
0 U0

)
+k0

∑N
i=1 a

(
RTi Di (Id − ξi)Ui, R

T
i Di (Id − ξi)Ui

)
.

Then, using estimate (22), we have :

a(RSORAS,2(U),RSORAS,2(U)) ≤ a(RT0 U0, R
T
0 U0) + k0 γ

N∑
i=1

(Bi Ui, Ui)

≤ max(1, k0 γ) b(U , U) .
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which concludes the estimate of the continuity of RSORAS,2.

Lemma 4.9 (Stable decomposition with RSORAS,2) Let U be a vector in
H. We define :

Uj := (Id − π̃j)Rj U

and U0 ∈ R#N0 such that :

RT0 U0 = P0 U .

We define U := (Ui)0≤i≤N .
Then, the stable decomposition property is verified with a constant (1+k1 τ

−1)−1,
since we have :

—
RSORAS,2(U) = U ,

—
1

(1 + k1 τ−1)
b(U ,U) ≤ a(U,U).

Proof We first check that we have indeed a decomposition RSORAS,2(U) = U.
Note that for all 1 ≤ j ≤ N we have

RTj Dj π̃j Rj U ∈ Zτgeneo ⊂ ZGenEO-2 ⇒ (Id − P0)RTj Dj π̃j Rj U = 0 .

We have :

U = P0U + (Id − P0)U = P0U + (Id − P0)

N∑
j=1

RTj Dj Rj U

= P0R
T
0 U0 + (Id − P0)

N∑
j=1

RTj Dj (Id − π̃j)Rj U = RSORAS,2(U) .

The last thing to do is to check the stability of this decomposition. Using (20)
and then Lemma 7.13, page 175 in [12] . , we have

b(U ,U) = a(RT0 U0, R
T
0 U0)

+

N∑
j=1

((Id − π̃j)Rj U)
T
Bj ((Id − π̃j)Rj U))

≤ a(P0U, P0U) + τ−1
N∑
j=1

(R̃jU)T Ãj(RjU)

≤ a(U,U) + k1 τ
−1a(U,U) ≤ (1 + k1 τ

−1) a(U,U).

The assumptions of the Fictitious Space Lemma are verified and thus we have
just proved the following
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Theorem 4.10 (Spectral estimate for the two level SORAS-GenEO-2)
Let γ be a chosen threshold in Definition 4.3, τ be a chosen threshold in Defi-
nition (4.1) of the GenEO-2 coarse space and the two-level SORAS-GenEO-2
preconditioner defined by (23). Then, the eigenvalues of the two-level SORAS-
GenEO-2 preconditioned system satisfy the following estimate

1

1 + k1
τ

≤ λ(M−1
SORAS,2A) ≤ max(1, k0 γ)

We have the

Remark 1 An analysis of a two-level version of the preconditioner M−1
OAS (13)

following the same path yields the following two generalized eigenvalue problems :

Find (Ujk, µjk) ∈ R#Ni \ {0} × R such that
AiUik = µikBiUik ,

and
Find (Vjk, λjk) ∈ R#Ni \ {0} × R such that

ÃiVik = λikDiBiDiVik .
.

In the general case for 1 ≤ i ≤ N , matrices Di may have zero entries for boun-
dary degrees of freedom since they are related to a partition of unity. Moreover
very often matrices Bi and Ai differ only by the interface conditions that is for
entries corresponding to boundary degrees of freedom. Therefore, matrix DiBiDi

on the right hand side of the last generalized eigenvalue problem is not impac-
ted by the choice of the interface conditions of the one level optimized Schwarz
method. This cannot lead to efficient adaptive coarse spaces.

5 Saddle point problems

Many applications in science and engineering require solving large linear al-
gebraic systems in saddle point form ; see [3] for an extensive survey. Although
our theory does not apply in a straightforward manner to saddle point pro-
blems, we use it for these difficult problems for which it is not always possible
to preserve both symmetry and positivity of the problem, see [25]. Note that
generalized eigenvalue problems (21) and (19) still make sense if A is the matrix

of a saddle point problem and local matrices Ai, Bi and Ãi, 1 ≤ i ≤ N , are
based on a partition of unity and on variational formulations.

We start by the global problem defined via variational formulation see for
instance § 6.1 for the systems of almost incompressible elasticity and of Stokes.
As in § 4.1, these formulations are written in terms of integrals of differential
quantities (gradient, divergence, . . .) over some domain Ω ⊂ Rd for d ∈ N :
Find (u, p) ∈ V × Λ such that :

aΩ(u, v) + bΩ(v, p) = l1(v) , ∀v ∈ V ,
bΩ(u, q)− cΩ(p, q) = l2(q) , ∀q ∈ Λ ,

12



where V and Λ are Hilbert spaces of functions from Ω with real values, aΩ, bΩ
and cΩ are bilinear forms, aΩ and bΩ being symmetric. Discretization by a finite
element method yields a saddle point system of the form :

A :=

[
H BT

B −C

] [
u
p

]
=

[
f
g

]
, (28)

where H = HT is positive definite, C = CT is positive semidefinite. The set of
degrees of freedom is decomposed into subsets (Ni)1≤i≤N . The matrices involved
in the partition of unity (16) have a block diagonal form

Di :=

[
Du
i 0

0 Dp
i

]
and Ri :=

[
Rui 0
0 Rpi

]
.

The local “Dirichlet” matrices have the following block form :

Ai := RiAR
T
i =

[
Hi BTi
Bi −Ci

]
where

Hi := RuiHR
uT
i , Ci := RpiCR

p T
i and Bi := RpiBR

uT
i .

The local “Neumann” problems arise from the variational formulation restricted
the finite element space of a subdomain as in (17). We use the following block
notation

Ãi :=

[
H̃i B̃Ti
B̃i −C̃i

]
.

For each subdomain 1 ≤ i ≤ N , the “Robin” matrix is

Bi = Ãi + Zi

where Zi = ZTi is positive semidefinite and is such that matrix Bi is symmetric
positive definite. For sake of simplicity the “Robin” boundary condition will
only apply to the u term, that is :

Zi =

[
Zui 0
0 0

]
.

5.1 GenEO eigenvalue problem for saddle point problems

Eigenvalue problem for saddle point problem has been considered by various
authors, see [4] and references therein. We cannot use directly their results since
we consider generalized eigenvalue problems where both left and right matrices
have saddle point structures. In order to prove that the GenEO eigenvalues are
real and non negative, we need the following assumption :

Assumption 1

(H̃iu, u) + (Zui u, u) + (C̃ip, p) = 0⇒ u = 0 and p = 0. (29)

13



Consider the generalized eigenvalue problem that controls the lower bound
of the spectrum of the preconditioned system :[

H̃i B̃Ti
B̃i −C̃i

] [
u
p

]
= λ

[
H̃i + Zui B̃Ti
B̃i −C̃i

] [
u
p

]
. (30)

We take the scalar product of (30) with
[
u − p

]T
. The cross product terms

(B̃Ti u, p) cancel and we get :

(H̃iu, u) + (C̃ip, p) = λ [(H̃iu, u) + (Zui u, u) + (C̃ip, p)] . (31)

All terms above are non negative. From Assumption 1, the right term cannot
be zero. Therefore, λ ∈ [0, 1].

Consider now the eigenvalue problem that controls the upper bound of the
spectrum of the preconditioned system :[

Du
i HiD

u
i Du

i B
T
i D

p
i

Dp
iBiD

u
i −Dp

iCi D
p
i

] [
u
p

]
= µ

[
H̃i + Zui B̃Ti
B̃i −C̃i

] [
u
p

]
. (32)

We take the scalar product of (32) with
[
u − p

]T
and we get :

(HiD
u
i u, D

u
i u) + (CiD

p
i p, D

p
i p) = µ [(H̃iu, u) + (Zui u, u) + (C̃ip, p)] (33)

All terms above are non negative. From Assumption 1, the right term cannot
be zero. Therefore, µ ≥ 0.

6 Application to the systems of Stokes and of
Nearly Incompressible elasticity

Mixed finite elements are often used to solve incompressible Stokes and
nearly incompressible elasticity problems. Continuous pressures have been used
in many mixed finite elements. However, most domain decomposition methods
require that the pressure be discontinuous when they are used to solve the
indefinite linear systems arising from such mixed finite element discretizations.
Several domain decomposition algorithms allow one to use continuous pressures,
see [39] and references therein. To our knowledge, our method is the first one
to exhibit scalability for a highly heterogeneous nearly incompressible elasticity
problems with continuous pressures.

6.1 Variational formulations

The mechanical properties of a solid can be characterized by its Young mo-
dulus E and Poisson ratio ν or alternatively by its Lamé coefficients λ and µ.
These coefficients relate to each other by the following formulas :

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (34)
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The variational problem consists in finding (uh, ph) ∈ Vh := Pd2∩H1
0 (Ω)×P1

such that for all (vh, qh) ∈ Vh
∫

Ω
2µε(uh) : ε(vh)dx −

∫
Ω
phdiv (vh)dx =

∫
Ω
fvhdx

−
∫

Ω
div (uh)qhdx −

∫
Ω

1
λphqh = 0

(35)

Let u denote the degrees of freedom of uh and p that of ph, they satisfy a linear
system denoted as follows :

AU =

[
H BT

B −C

] [
u
p

]
=

[
f
0

]
= F. (36)

Matrix Ãi arises from the variational formulation (35) where the integration
over domain Ω is replaced by the integration over subdomain Ωi and finite
element space Vh is restricted to subdomain Ωi. Matrix Bi corresponds to a
Robin problem and is the sum of matrix Ãi and of the matrix of the following
variational formulation restricted to the same finite element space :∫

∂Ωi\∂Ω

2αµ(2µ+ λ)

λ+ 3µ
uh · vh with α = 10 in our test. (37)

In the next section, we explain the origin of the term (37).

6.2 Interface conditions

We touch here another peculiarity of the P.L. Lions algorithm. In some situa-
tions, it is possible to choose the interface condition in order to have convergence
in a number of steps equal to the number of subdomains, see [30]. In our case,
let the global domain Ω be the whole plane R2 decomposed into two half planes
Ω1 := (−∞, δ)×R and Ω2 := (0, ∞)×R where δ ≥ 0 is the width of the over-
lap, k denote the Fourier transform in the y direction, the following interface
condition yields to a convergence in two iterations :

σ · n+ F−1




2|k|µ(2µ+λ)
λ+3µ

2ikµ2

λ+3µ

−2ikµ2

λ+3µ
2|k|µ(2µ+λ)

λ+3µ


F(ux)

F(uy)


 (38)

where σ · n is the normal component of the stress tensor, the velocity is de-

composed into its normal ux and tangential component uy u = [ux, uy]T and
F denotes the Fourier transform in the y direction. Due to the absolute value
|k| this interface condition is non local in space and also difficult to apply in the
general domain decompositions we have here. For sake of simplicity, we choose
some frequency k0 and we approximate the optimal interface condition (38) as
follows :

σ · n+ F−1




2|k0|µ(2µ+λ)
λ+3µ 0

0 2|k0|µ(2µ+λ)
λ+3µ


F(ux)

F(uy)
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Figure 1 – Convergence rate vs Fourier number k for various interface condi-
tions – Poisson ratio ν = 0.4999 – overlap δ = 0.1.

which simplifies in :

σ · n+ |k0|
2µ(2µ+ λ)

λ+ 3µ
u . (39)

This approximation has an impact on the convergence rate of the P.L. Lions’
algorithm. On Figure 1, we plot the convergence as a function of the Fourier
mode in the y direction for various interface conditions for an almost incompres-
sible elasticity system ν = 0.4999 and an overlap of size δ = 0.1. Although the
Robin interface condition (39) is never exact even for k = k0, the convergence
rate is quite close to zero (of the order of 10−4) for k = k0. Note that Dirichlet
or Neumann (stress free) interface conditions yield the same convergence rates.
For small Fourier numbers, the convergence rate is very close to 1 which is bad.
Overall, Robin interface conditions perform much better than simple Dirichlet
or Neumann interface conditions. The interface condition (39) can be used for
arbitrary domain decompositions since its variational formulation is the one of
a stress free BVP to which we add the variational formulation of (37) where
α := |k0| for some chosen Fourier number k0. Thus although the Fourier analysis
has a limited domain of validity, the interface condition (39) can be used for
arbitrary domain decompositions.

6.3 Numerical results

The new coarse space was tested quite successfully on nearly incompres-
sible elasticity and Stokes problems with a discretization based on saddle point
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Figure 2 – 2D Elasticity : coefficient distribution of steel and rubber.

AS SORAS AS+ZEM SORAS +ZEM AS-GenEO SORAS GenEO2
d.o.f. N iter iter iter dim iter dim iter dim iter dim
35841 8 150 184 117 24 79 24 110 184 13 145
70590 16 276 337 170 48 144 48 153 400 17 303

141375 32 497 >1000 261 96 200 96 171 800 22 561
279561 64 >1000 >1000 333 192 335 192 496 1600 24 855
561531 128 >1000 >1000 329 384 400 384 >1000 2304 29 1220

1077141 256 >1000 >1000 369 768 >1000 768 >1000 3840 36 1971

Table 1 – 2D Elasticity. GMRES iteration counts for a solid made of steel and
rubber.

formulations in order to avoid locking phenomena.

6.3.1 Tests against other algorithms

We first report 2D results for a heterogeneous beam of eight layers of steel
(E1, ν1) = (210 · 109, 0.3) and rubber (E2, ν2) = (0.1 · 109, 0.4999), see Figure 2.
The beam is clamped on its left and right sides. Simulations were made with
FreeFem++ [20]. Iteration counts for various domain decomposition methods
for a relative tolerance of 10−6 are given in Table 1. We compare the one level
Additive Schwarz (AS) and SORAS methods, the two level AS and SORAS
methods with a coarse space consisting of rigid body motions which are zero
energy modes (ZEM) and finally AS with a GenEO coarse space as defined
in [35] and SORAS with the GenEO-2 coarse space defined in Definition 4.1
with τ = 0.4 and γ = 103. Columns dim refer to the total size of the coarse
space of a two-level method. Eigenvalue problem (19) accounts for roughly 90%
of the GenEO-2 coarse space size. We see that only the last method scales well
with respect to the number of subdomains denoted by N .

6.3.2 3D and 2D highly heterogeneous linear elasticity equations

Throughout this section we look at a linear elasticity problem with highly
heterogeneous Lamé coefficients corresponding to steel and rubber materials. In
the case of rubber which is nearly incompressible material the Poisson ratio ν
approaches 1/2 and λ/µ = 2ν/(1 − 2ν) approaches infinity. In order to avoid
the resulting locking phenomena with finite element discretization, the pure
displacement problem is replaced by a mixed formulation as proposed in [5]. We
performed a large 2D and 3D simulations, on an heterogeneous beam, where the
Lamé (E, ν) vary discontinuously over the domain in eight alternating layers
of steel material with (E1, ν1) = (210 × 109, 0.3) and rubber material with
(E2, ν2) = (0.1× 109, 0.4999) submitted to an external forces, see Figure 3. The
system is discretized using a Taylor-Hood mixed finite element discretization
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Figure 3 – Material coefficient, alternating layers of steel and rubber (left) and
domain decomposition into 8 subdomains with a graph partitioner (right)

which are inf-sup stable. P3/P2 for the 2D case and P2/P1 for the 3D case.
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Figure 4 – Weak scaling experiments.

The problem is solved with a minimal geometric overlap of one mesh element
and a preconditioned GMRES is used to solve the resulting linear system where
the stopping criteria for the relative residual norm is fixed to 10−6. All the
test cases were performed inside FreeFem++ code interfaced with the domain
decomposition library HPDDM [22, 23]. The factorizations are computed for
each local problem and also for the global coarse problem using MUMPS [1].
Generalized eigenvalue problems to generate the GenEO space are solved using
ARPACK [24]. The coarse space is formed only with the generalized eigenvalue
problem (19) since we noticed that the second one (21) has only a little effect on
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N Factorization Deflation Solution # of it. Total # of d.o.f.

3D

256 25.2 s 76.0 s 37.2 s 46 145.2 s 6.1 · 106
512 26.5 s 81.1 s 39.8 s 47 155.1 s 12.4 · 106
1 024 29.2 s 82.6 s 41.7 s 45 165.5 s 25.0 · 106
2 048 26.9 s 83.5 s 46.3 s 47 171.0 s 48.8 · 106
4 096 28.3 s 88.8 s 54.5 s 53 177.7 s 97.9 · 106
8 192 29.0 s 78.3 s 79.8 s 60 196.1 s 197.6 · 106

2D

256 4.8 s 72.9 s 39.9 s 46 123.9 s 22.1 · 106
512 4.7 s 65.9 s 45.0 s 51 121.3 s 44.0 · 106
1 024 4.8 s 70.0 s 46.1 s 51 127.0 s 88.3 · 106
2 048 4.8 s 69.0 s 46.5 s 51 127.4 s 176.8 · 106
4 096 4.8 s 65.8 s 52.8 s 56 132.6 s 351.0 · 106
8 192 4.8 s 65.4 s 53.0 s 54 134.8 s 704.1 · 106

Figure 5 – Weak scaling experiments elasticity timings tab .

the convergence. All the results of this section were obtained on Turing machine
which is an IBM/Blue Gene/Q machine composed of 1024 compute nodes where
each one is made of 16 cores PowerPC A2 clocked at 1.6 GHz.

These computations, see Figure 4, assess the weak scalability of the algorithm
with respect to the problem size and the number of subdomains. All times are
wall clock times. The domain is decomposed automatically into subdomains with
a graph partitioner, ranging from 256 subdomains to 8192. and the problem size
is increased by mesh refinement. In 3D the initial problem is about 6 millions
d.o.f decomposed into 256 subdomains and solved in 145.2s and the final problem
is about 197 millions of d.o.f decomposed into 8192 subdomains and solved in
196s which gives an efficiency near to 75%. For the 2D case, the initial problem
is approximatively of size 22 millions unknowns (d.o.f) decomposed into 256
subdomains and solved in 123.9s and we end up with a bigger problem about 704
millions unknowns (d.o.f) decomposed into 8192 subdomains and solved in 134s.
The efficiency is close to 90%. In figure table 5, we report the number of GMRES
iterations. Thanks to the robustness of the two-level domain decomposition
preconditioner we can observe that they are quite good stable. We report in the
same table all the timings concerning the algorithm, column ”Factorization”
concerns the local subdomains, the assembling and the factorization of the coarse
operator are in column ”Deflation” and in column ”Solution” we display the time
spent by GMRES.

6.4 3D and 2D incompressible Stokes system

Using the same libraries, we also performed a strong scaling test for an
incompressible Stokes system of equations for a driven cavity problem :
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Find (u,p) ∈ H(Ω)d=2,3 × L0(Ω) such that

− divσ
F

(u,p) = 0, and div (u) = 0 in Ω, (40)

with {
σ
F

(u,p) = −pI + 2µε(u),

ε(u) = 1
2 (∇u+

(
∇u)T

)
and εi,j = 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

(41)

As a boundary conditions, we consider a continuous velocity on the upper face
and zero Dirichlet otherwise. The computations are done in both two and three
dimensions on a domain Ω = [0, 1]2 and Ω = [0, 1]3, respectively. Once more
the problems are discretized via Taylor-Hood finite element P2/P1 with a conti-
nuous pressure.
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Figure 6 – Timings of various simulations Stokes.

We assess here the strong scalability of the algorithm. For this, we make the
number of subdomains vary for a fixed global system size. In our test case the
system size is fixed to 50 millions unknowns (d.o.f) in 3D and to 100 millions
unknowns (d.o.f) in 2D, as we can show in figure 6, from 1024 subdomains
to 8192 subdomains we get a quite good speed up. In the three dimensional
case, we pass from 387.5s using 1024 subdomains to 56.8s when using 8192
subdomains. In figure table 7 we display all timings relative to this test, column
“Factorization” gives the time spent in the factorization of the local submatrices,
column “Deflation” corresponds to local eigenvalue solvers and the coarse space
correction construction, column “Solution” is the time taken by the GMRES
solve of the global linear system by the domain decomposition algorithm.
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N Factorization Deflation Solution # of it. Total # of d.o.f.

3D

1 024 79.2 s 229.0 s 76.3 s 45 387.5 s

50.63 · 1062 048 29.5 s 76.5 s 34.8 s 42 143.9 s
4 096 11.1 s 45.8 s 19.8 s 42 80.9 s
8 192 4.7 s 26.1 s 14.9 s 41 56.8 s

2D

1 024 5.2 s 37.9 s 51.5 s 51 95.6 s

100.13 · 1062 048 2.4 s 19.3 s 22.1 s 42 44.5 s
4 096 1.1 s 10.4 s 10.2 s 35 22.6 s
8 192 0.5 s 4.6 s 6.9 s 38 12.7 s

Figure 7 – Strong scaling experiments Stokes.

7 Conclusion

We developed a theory for the overlapping P.L. Lions’ algorithm similar
to the existing one for the Schwarz algorithm in that we show how to build
adaptively a coarse space so that the two-level preconditioner achieves a targeted
condition number. The theory is based on the introduction of the SORAS (14)
algorithm which is a new symmetric variant of the ORAS preconditioner. The
two-level method is implemented in the HPDDM library that is interfaced with
finite element solvers such as FreeFem++ and Feel++.

Note that for a given targeted condition number, the size of the coarse space
depends on the interface condition. A small coarse space is important in order
to achieve good scalability results. Thus, it might be interesting to optimize this
condition with respect to the coarse space size.
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