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ABSTRACT

Bayesian sparse signal recovery has been widely investigated
during the last decade due to its ability to automatically es-
timate regularization parameters. Prior based on mixtures
of Bernoulli and continuous distributions have recently been
used in a number of recent works to model the target sig-
nals, often leading to complicated posteriors. Inference is
therefore usually performed using Markov chain Monte Carlo
algorithms. In this paper, a Bernoulli-generalized Gaussian
distribution is used in a sparse Bayesian regularization frame-
work to promote a two-level flexible sparsity. Since the result-
ing conditional posterior has a non-differentiable energy func-
tion, the inference is conducted using the recently proposed
non-smooth Hamiltonian Monte Carlo algorithm. Promising
results obtained with synthetic data show the efficiency of the
proposed regularization scheme.

Index Terms— Sparse Bayesian regularization, MCMC,
ns-HMC, restoration

1. INTRODUCTION

Sparse signal and image restoration has been of increasing in-
terest during the last decades. This issue arises especially in
large data applications where regularization is essential to re-
cover a stable solution of the related inverse problem. These
applications include remote sensing and medical image re-
construction. Since observation systems are mostly ill-posed,
regularization is usually needed to improve the quality of the
reconstructed signals. The underlying idea of regularization
is to constrain the search space through some prior informa-
tion added to the model in order to stabilize the inverse prob-
lem. This prior information usually involves additional pa-
rameters that have to be tuned. Fixing these parameters can
be a problem since they can have a deep impact on the quality
of the target solution. However, they can be estimated using
Bayesian methods that have already shown their efficiency in
a number of recent works [1, 2]. As regards regularization,
Bayesian techniques have also been widely investigated in a
number of recent works using hierarchical Bayesian models,
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e.g., for medical [3] and hyperspectral imaging [4]. In the re-
cent literature, priors constructed from mixtures of Bernoulli
and continuous distributions have gained a significant inter-
est due to their ability to approach the `0 penalization [3, 5].
These priors are generally combined with the likelihood to
derive the posterior distribution of the parameters of inter-
est. The resulting posterior is then used to derive estima-
tors for the model parameters such as the maximum a pos-
teriori (MAP) estimator. Since the target posterior is difficult
to handle in most cases, Markov chain Monte Carlo (MCMC)
sampling schemes can be used to draw samples according to
the posterior. The Metropolis-Hastings (MH) algorithm [6] is
one of the most used sampling techniques, even if it requires
to design efficient proposal distributions especially for high-
dimensional signals or images. This task is not always easy to
perform, which has led to the emergence of the Hamiltonian
Monte Carlo (HMC) technique [7].
In this paper, we propose a sparse Bayesian regularization
scheme involving a Bernoulli-generalized Gaussian (BGG)
prior. This prior has the advantage to promote a two-level
structured sparsity. The first level is due to the Bernoulli ran-
dom variable, while the second one is due to the `p-like en-
ergy function of the GG distribution. For the same reasons
aforementioned, sampling techniques are required to build the
inference and derive the MAP estimator. However, the tar-
get distribution involves a non-differentiable energy function,
which makes the use of the HMC technique impossible. We
therefore resort to the recently proposed non-smooth HMC
technique (ns-HMC) which handles such kind of posterior
distributions [8] (see also [9] for similar techniques). This
technique presents the advantage of fast convergence speed
and reduced correlation between the generated samples.
The rest of this paper is organized as follows. The addressed
problem is formulated in Section 2. The proposed hierarchi-
cal Bayesian model is detailed in Section 3 before introducing
the inference scheme in Section 4. Experimental results are
presented in Section 5. Finally, some conclusions and per-
spectives are drawn in Section 6.

2. PROBLEM FORMULATION

Let x ∈ RM be the target signal measured by y ∈ RN
through a linear distortion operator K. Accounting for a pos-



sible additive noise n, the observation model writes

y = Kx+ n. (1)

When the above inverse problem is ill-posed, its direct inver-
sion yields distorted solutions. We propose here a framework
for sparse Bayesian regularization involving suitable priors
for estimating high-dimensional signals x from the observed
vector y. Without loss of generality, we focus in this paper on
linear observation problems with an additive Gaussian noise
of covariance matrix σ2

nIN , where IN is the identity matrix.

3. HIERARCHICAL BAYESIAN MODEL

By adopting a probabilistic approach, y and x in (1) are as-
sumed to be realizations of random vectors Y and X . In this
context, our goal is to characterize the probability distribution
ofX|Y , by considering a parametric probabilistic model and
by estimating the associated hyperparameters.

3.1. Likelihood

Assuming that the observation noise n is additive and Gaus-
sian with variance σ2

n, the likelihood can be expressed as

f(y|x, σ2
n) =

(
1

2πσ2
n

)N/2
exp

(
− ‖y −Kx‖

2
2

2σ2
n

)
(2)

where ‖.‖2 denotes the Euclidean norm.

3.2. Priors

In our model, the vector of unknown parameters is denoted by
θ = {x, σ2

n}. As regards the noise variance, the only avail-
able knowledge is the positivity of this parameter. Therefore,
and as motivated in [10], we use a Jeffrey’s prior defined as

f(σ2
n) ∝ 1

σ2
n

1R+(σ2
n) (3)

where 1R+ is the indicator function on R+, i.e., 1R+(ξ) = 1
if ξ ∈ R+ and 0 otherwise. For the signal x, we define a prior
denoted as f(x|Φ), where Φ is a hyperparameter vector. As-
suming that the signal components xi are a priori indepen-
dent, the resulting prior distribution for x writes

f(x|Φ) =

M∏
i=1

f(xi|Φ). (4)

Promoting the sparsity of the target signal, one can use a
Bernoulli-Gaussian (BG) prior for every xi (i = 1, . . . ,M ).
To better capture the zero signal coefficients and well regu-
larize the non-zero part, we use here a Bernoulli-Generalized
Gaussian prior (BGG) for xi which is defined as

f(xi|Φ) = (1− ω)δ(xi) + ωGG(xi|λ, p) (5)

with Φ = {ω, λ, p} and

GG(xi|λ, p) =
p

2λΓ(1/p)
exp

(
−|xi|

p

λp

)
(6)

where λ > 0 and p > 0 are the scale and shape parame-
ters, and Γ(.) denotes the gamma function. In (5), δ(.) is the
Dirac delta function and ω is a weight belonging to [0, 1]. The
adopted BGG model promotes a two-level structured sparsity.
The first level is guaranteed due to the Bernoulli model and
the Dirac delta function. The second level is ensured by the
GG distribution, especially when p ≤ 1. This distribution has
been widely used in sparse signal recovery [11–13]. When p
varies between 0 and 2, the GG distribution gives more flexi-
bility to represent signals with different sparsity levels. BGG
regularization therefore approaches the `0 + `p one.
Using a BGG model for every xi, and assuming independence
between the different priors, the prior in (4) reduces to

f(x|Φ) =

M∏
i=1

[
(1− ω)δ(xi) + ω

p

2λΓ(1/p)
exp

(
−|xi|

p

λp

)]
.

(7)
3.3. Hyperparameter priors

Separable non-informative priors are used for each variable
of the hyperparameter vector Φ = {ω, λ, p}. A uniform dis-
tribution on the simplex [0, 1] may be used for ω, i.e., ω ∼
U[0,1]. As regards λ ∈ R∗

+, a suitable prior is the conjugate
inverse-gamma (IG) distribution denoted as IG(λ|α, β)

f(λ|α, β) =
βα

Γ(α)
λ−α−1 exp

(
−β
λ

)
1R+(λ) (8)

where α and β are fixed hyperparameters (in our experiments
these hyperparameters were empirically set to α = β =
10−3). For the shape parameter p, a uniform prior on the
simplex [0, 2] is considered. Setting p ∼ U[0,2] guarantees
a high level of sparsity for the target solution while using a
non-informative prior at the same time.

4. INFERENCE SCHEME

Adopting a MAP strategy, the joint posterior distribution of
{θ,Φ} can be expressed as

f(θ,Φ|y) ∝ f(y|θ)f(θ|Φ)f(Φ) (9)

∝ f(y|x, σ2
n)f(x|ω, p, λ)f(σ2

n)f(ω)f(p)f(λ|α, β).

Based on the hierarchical Bayesian model described in Sec-
tion 3, the joint posterior can be written

f(θ,Φ|y) ∝
(

1

2πσ2
n

)N/2
exp

(
− ‖y −Kx‖

2
2

2σ2
n

)
×

M∏
i=1

[
(1− ω)δ(xi) + ω

p

2λΓ(1/p)
exp

(
−|xi|

p

λp

)]
×

1

σ2
n

1R+(σ2
n)U[0,1](ω)

βα

Γ(α)
λ−α−1 exp

(
−β
λ

)
U[0,2](p).

(10)



Unfortunately, no closed-form expression for the Bayesian
estimators associated with (10) can be obtained. Thus, we
propose to design a Gibbs sampler (GS) that generates sam-
ples asymptotically distributed according to (10). The GS
iteratively generates samples distributed according to the
conditional distributions associated with the target distribu-
tion. More precisely, the GS iteratively samples according
to f(σ2

n|y,x), f(ω|x), f(p|x, ω, λ), f(λ|x, p, α, β) and
f(x|y,Φ) as detailed below.

4.1. Gibbs sampler

Following the strategy detailed above, the main steps of
the proposed sampling algorithm are summarized in Algo-
rithm 1. The adopted sampling strategy generates samples

Algorithm 1: Gibbs sampler for Sparse Bayesian regu-
larization.

- Initialize with some θ(0) and Φ(0) and set r = 0;
for r = 1 . . . S do

À Sample σ2
n
(r) according to its posterior

f(σ2
n|x,y);

Á Sample ω according to its posterior f(ω|x);
Â Sample p according to its posterior f(p|x);
Ã Sample λ according to its posterior f(λ|x, α, β);
Ä Sample x(r) according to its posterior
f(x|y, ω, λ, σ2

n, p);
Å Set r ← r + 1 ;

end

{x(r)}r=1,...,S that will be used to estimate the target sig-
nal/image, where S is the total number of generated samples.
Using the sampled chain {x(r)}r=1,...,S , x̂ can therefore be
approximated by calculating the MAP or the MMSE estimate
not over RM , but only over a part of the sampled values
which theoretically form a representative sample of the space
in which x is living. The retained part must exclude, from the
sampled chain, vectors generated during the burn-in period.
Results below are given using the MAP estimator since it
helps retreiving more precise estimates for the zero coeffi-
cients with our model.
In addition to x, and using the same strategy, the proposed
algorithm will also allow the estimation of σ2

n, λ and ω based
on the sampled chains {σ2

n
(r)}r=1,...,S , {λ(r)}r=1,...,S and

{ω(r)}r=1,...,S , respectively. The conditional distributions
used in the GS are detailed below.

4.2. Conditional distributions of f(θ,Φ|y)

4.2.1. Sampling according to f(σ2
n|y,x)

From the posterior in (10), straightforward calculations lead
to the following conditional distribution for the noise variance

σ2
n|x,y ∼ IG

(
σ2
n|N/2, ‖y −Kx‖22/2

)
(11)

which is easy to sample.

4.2.2. Sampling according to f(ω|x)

Starting from (10), we can show that the posterior of ω is the
following beta distribution

ω ∼ B(1 + ‖x‖0, 1 +M − ‖x‖0) (12)

which is also easy to sample.

4.2.3. Sampling according to f(p|x, ω, λ)

The conditional distribution associated with the hyperparam-
eter p can be written as

f(p|x) ∝
M∏
i=1

[
(1− ω)δ(xi) +

ωp

2λΓ(1/p)
exp

(
−|xi|

p

λp

)]
× U[0,2](p). (13)

An MH step with a positive truncated Gaussian proposal can
be used to sample according to (13).

4.2.4. Sampling according to f(λ|x, p, α, β)

The conditional distribution of λ is

f(λ|x, α, β) ∝
M∏
i=1

[
(1− ω)δ(xi) +

ωp

2λΓ(1/p)
exp

(
−|xi|

p

λp

)]
× βα

Γ(α)
λ−α−1 exp

(
−β
λ

)
. (14)

We propose to use a standard MH move with a positive trun-
cated Gaussian proposal to sample according to f(λ|x, α, β).

4.2.5. Sampling according to f(x|y, ω, λ, σ2
n, p)

Because of the sophisticated prior used for x, sampling ac-
cording to f(x|y, ω, λ, σ2

n, p) is not straightforward. How-
ever, we can derive the conditional distribution of each el-
ement xi given all the other parameters. Precisely, we de-
compose x onto the orthonormal basis B = {e1, . . . , eM}
such that x = x̃−i + xiei. We denote by x̃−i the vector x
whose ith element is set to 0 denoted as vi = y−Kx−i, and
ki = Kei. Straightforward calculations lead to

f(xi|y,x−i, ω, λ, p) ∝ (1− ω) exp

(
−‖vi‖

2
2

2σ2
n

)
δ(xi)+

ω
p

2λΓ(1/p)
exp

(
−|xi|

p

λp
− ‖vi − kixi‖

2
2

2σ2
n

)
∝ (1− ω) exp

(
−‖vi‖

2
2

2σ2
n

)
δ(xi)+

ωp

2λΓ(1/p)
exp

(
−|xi|

p

λp
− v

T
ivi + kT

ikix
2
i − 2vT

ikixi
2σ2

n

)
∝ (1− ωi)δ(xi) +

ωi
Zi(λ, p)

exp [−Ui(xi)] (15)



where Ui(xi) =
|xi|p

λp
+
kT
ikix

2
i − 2vT

ikixi
2σ2

n

(16)

and ωi =
ui

ui + (1− ω)
, ui = ωZi(λ, p)

p

2λΓ(1/p)
. (17)

In (15) and (17), Zi(λ, p) is a normalizing constant such that
D(xi|λ, p) = Zi(λ, p) exp [−Ui(xi)] defines a probability
density function. Sampling according to the conditional dis-
tribution in (15) can be performed in two steps

1- Generate zi according to a Bernoulli distribution, i.e.,
set zi = 0 with probability 1 − ωi, and zi = 1 with
probability ωi.

2- set

{
xi = 0 if zi = 0

xi ∼ D(xi|λ, p) if zi = 1.

For efficiency reasons, we resort to ns-HMC to sample from
D(xi|λ, p). Indeed, ns-HMC has recently been proposed [8]
to make feasible the use Hamiltonian dynamics for sampling
from non-differentiable log-concave distributions such as
D(xi|λ, p). The resulting schemes are therefore more effi-
cient than the standard MH algorithm both in terms of con-
vergence speed and decorrelation properties [8]. As detailed
in [8], to sample according to D(xi|λ, p), we need to calcu-
late the proximity operator [14] of U(xi) in (16). If p ≥ 1
so that U remains convex, following [15, Lemma 2.5(i)], the
proximity operator of U can be obtained as follows

∀s ∈ R, proxU (s) = proxϕ/(κ+1) [(s− u)/(κ+ 1)] (18)

where κ = ‖ki‖22/σ2
n, u = −vT

iki/σ
2
n and ϕ(·) = | · |p/λp.

The proximity operator for the function ϕ is given by

∀x ∈ R, proxϕ(x) = sign(x)ρ (19)

where ρ is the unique minimizer of ρ + p
λp ρ

p−1. Note that
proxϕ reduces to the soft thresholding operator for p = 1, i.e.

proxϕ(x) = sign(x) max

{
|x| − 1

λ
, 0

}
. (20)

Other forms for different values of p can be found in [15].

5. EXPERIMENTAL VALIDATION

This section validates the proposed Bayesian sparse regular-
ization model both for 1D and 2D signal recovery problems.

5.1. 1D sparse signal recovery

In this experiment, a 1D synthetic sparse signal x of size 100
is recovered from its distorted version y observed according
to (1), where the observation operator K is the second order
difference operator1 and the additive noise n is Gaussian with
diagonal covariance matrix Σ = σ2

nIM , with σ2
n = 1. In

1One can also cosider other linear operators such as uniform blur

addition to the reference signal, Fig. 1 shows the recovered
signal obtained with the proposed algorithm (ns-HMC). For
the sake of comparison, a Bernoulli-Gaussian model has been
used in a Bayesian approach similar to the one in [5]. This
model approaches the variational `0 + `2 regularization re-
cently investigated in [16].
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Fig. 1. Original and restored signals using the proposed model (ns-HMC)
and the BG regularization.

Fig. 1 clearly shows that the proposed model gives very close
results to the reference, especially where the original signal
is exactly zero. From a quantitative point of view, results are
evaluated in terms of signal to noise ratio (SNR). SNR values
are given in Table 1 and confirm the good performance of
the proposed method. To further evaluate the robustness of
the proposed method, sparsity cardinalities are also given in
Table 1 through the pseudo-norm ‖x̂‖0. The reported values
indicate that the prox-MC method allows the support of the
reference to be recovered very accurately. Note that the shape
parameter p has been fixed to 1 in the above simulations.

Table 1. SNR values and sparsity measures for the reference
1D signal, ns-HMC and BG.

SNR (dB) ‖x̂‖0
Reference - 25

Observation -5.59 100
ns-HMC 23.41 26

BG 20.88 26

Regarding the computational cost, using a Matlab implemen-
tation on a 64-bit 3.2GHz Xeon architecture, the ns-HMC re-
sults have been obtained in 17 seconds, while the BG algo-
rithm required only 4 seconds. The same burn-in period of
300 iterations has been considered for both algorithms. After
the burn-in, 300 more iterations are collected to calculate the
MAP estimators (S = 600).

5.2. 2D sparse image recovery

In this experiment, a 2D sparse image of size 26 × 26 is re-
covered from its distorted version y observed according to the
model (1), with the same linear operator as in the previous ex-



Table 2. SNR values and sparsity measures for the reference
image, ns-HMC and BG.

SNR (dB) ‖x̂‖0
Reference - 156

Observation -8.68 676
ns-HMC 15.63 126

BG 11.89 138

periment and σ2
n = 10−2. Under these assumptions, the orig-

inal and distorted images obtained with SNR=-8.68 dB are
displayed in Fig. 2. This figure also shows restored images us-
ing ns-HMC and the BG regularization. From a visual view-
point, both methods provide similar performance except for
some non-zero pixels where the dynamic is better recovered
with the proposed model. This is better explained through the
quantitative evaluation in Table 2 which provides the SNR
and support cardinalities of the recovered signals.

Ground truth Observed

ns-HMC BG

Fig. 2. Ground truth, observed and restored images using the proposed
method (ns-HMC) and the BG regularization.

Indeed, our model and the BG regularization recover
the same number of non-zero coefficients, while the SNR is
higher using our approach. Regarding computational burden,
and keeping the same burn-in period and physical architec-
ture, the proposed algorithm takes a reasonable time with 115
seconds while the BG regularization required 48 seconds.

6. CONCLUSION

This paper proposed a new method for Bayesian sparse reg-
ularization using a Bernoulli generalized Gaussian prior pro-
moting a two-level structured sparsity. The proposed method
is based on a hierarchical Bayesian model and the recent ns-
HMC technique is used for sampling the posterior of this
model and to build estimators for its unknown parameters and

hyperparameters. Promising results obtained with signal and
image restoration experiments showed the good performance
of the proposed technique. Future work will be focused on
the application of this technique to large-scale real data for
medical image reconstruction.
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