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Abstract—The power consumption of large-scale high
performance computing (HPC) systems is becoming a crucial
challenge in the context of increasing the performance regardless
of energy consumption [1]. Therefore, finding ways to improve
energy efficiency has become a main issue for HPC applications.
Dynamic voltage and frequency scaling (DVFS) is a widely
used and powerful technique for reducing energy consumption
in modern processors. The present paper investigates energy
efficiency of 3D Classical Spin Glass [2], [3] application using
the performance, ondemand and powersave modes of DVFS
method. The series of experiments show that the execution time
of OnDemand and PowerSave is the same, while the OnDemand
mode is better due to the power consumption and frequency
balance for the system.
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I. INTRODUCTION

The power consumption of large-scale HPC systems is

becoming a crucial challenge in the context of increasing

the performance regardless of energy consumption. Therefore,

finding ways to improve energy efficiency becomes a main

issue for HPC applications.

The Monte Carlo method is widely used not only by

3D Classical Spin Glass (SG) application [4] but also by

many scientific applications, which allows researchers to solve

very complicated problems that are not possible to solve

analytically. In this paper we analyze the performance and

energy consumption of 3D Classical SG application using the

DVFS method, which allows changing the frequency of the

system and reduce power consumption.

Several experiments have been conducted to achieve better

performance of SG application [5] using the computational

resources (128 processors, Myrinet inter-node communication)

of Armcluster [6] without taking into account the power

consumption aspect. To measure power consumption hardware

facilities have to be used, and for each frequency change there

is a need to reboot all cluster nodes. To avoid this problem a

cloud simulation environment is used for accomplishment of

the following tasks:

• The CloudSim DVFS package to obtain the power con-

sumption.

• Changing the frequency rate automatically during the

simulation.

The remaining content of the paper is organized as follows.

The introduction of 3D SG application is presented in the

Section 2. The experimental methodology in details can be

found in Section 3 and the experimental results are given in

Section 4. Finally, the conclusion and directives for future

research are drawn in Section 5.

II. 3D SPIN GLASS DESCRIPTION

The object of our investigation is the solid-state dielectrics,

type of SiO2 glass (amorphous silicon dioxide). According

to the numerical ab initio simulations [7], the structure of

this type compound can be well described by 3D random

network. The red and brown lattice points on the figure below

correspond to different atoms, while the links between them

correspond to covalent bounds [8].

Fig. 1. The structure of amorphous silicon dioxide SiO2 is described by 3D
random network with covalent bonds. Every silicon vertex (gold sphere) has
4 edges and every oxygen vertex (red sphere) has 2 edges.

As a result of charge redistribution in outer electronic shells,

atoms of Si acquire the positive charge and atoms of O

correspondingly the negative charge. Thus, we can consider

compounds of this type as a disordered 3D system of similar

rigid dipoles (hereinafter termed as a system of 3D disordered

spins). Let us remind that under the similar rigid dipoles are

meant the dipoles for which the absolute values are equal, and

they don’t vary under the influence of an external field.

We consider a classical ensemble of disordered 1D spatial

spin-chains (SSC), where it is supposed that interactions

between spin-chains are absent (later it will be called an ideal

ensemble) and that there are Nx spins in each chain.



Despite some ideality of the model it can be interesting

enough and rather convenient for investigation of a number of

important and difficult applied problems of physics, chemistry,

material science, biology, evolution, organization dynamics,

hard-optimization, environmental and social structures, human

logic systems, financial mathematics, etc., [9], [10]. Above

mentioned type of ideal ensemble can be mathematically gen-

erated by the 1D Heisenberg spin-glass Hamiltonian without

the external field:

H0(Nx) = −

Nx−1
∑

i=0

Ji i+1SiSi+1. (1)

where Si describes the i-th spin, which is a unit length

vector and has a random orientation. In the expression (1)

Ji i+1 characterizes a random interaction constant between i

and i+1 spins, which can have positive and negative values

as well. For further investigations it is useful to rewrite the

Hamiltonian (1) in spherical coordinates:

H0(Nx) = −

Nx−1
∑

i=0

Ji i+1

[

cosψi cosψi+1 cos(ϕi − ϕi+1)

+ sinψi sinψi+1

]

.

A stationary point of the Hamiltonian is given by the system

of trigonometrical equations:

∂H0

∂ψi
= 0,

∂H0

∂ϕi
= 0,

Afterwards using the Hamiltonian and the above mentioned

equations it is easy to find the following system of trigono-

metrical equations:

i+1
∑

ν=i−1; ν 6=i

Jνi
[

sinψν − tanψi cosψν cos(ϕi − ϕν)
]

= 0,

i+1
∑

ν=i−1; ν 6=i

Jνi cosψν sin(ϕi − ϕν) = 0, Jνi ≡ Jiν .

(2)

Also, in order to satisfy the condition of local minimum for

H0, it is necessary that the following inequalities (Sylvester

conditions) are carried out:

Aψiψi
(Θ0

i ) > 0, Aψiψi
(Θ0

i )Aφiφi
(Θ0

i )−A2
ψiφi

(Θ0
i ) > 0,

(3)

where Aαiαi
= ∂2H0

∂α2

i

and Aαiβi
= Aαiβi

= ∂2H0

∂αi∂βi

.

Here Θ0
i = (ψ0

i , φ
0
i ) denotes the angular configuration of

the spin in case the condition of local minimum for H0 is

satisfied.

Finally, with the help of the equations (2) and the conditions

(3) a huge number of stable 1D SSCs may be calculated and

on its basis it is possible to further construct the statistical

properties of 1D SSCs ensemble.

Let us note that exactly similar equations of stationary

points also can be obtained if the full 3D Hamiltonian is used

in the framework of short-range interaction model. That allows

us to construct step by step a spin-chain of the specified length

with taking into account the random surroundings. It is proved

that at the limit of Birkhoff’s ergodic hypothesis performance,

3D SG can be generated by Hamiltonian of disordered 1D

SSC with random environment.

We have proved that it is always possible to construct a

spin-chain in any given random environment, which will be

in ground state energy (direct problem). We have also proved

the inverse problem, namely, an environment can surround

every spin-chain of the random environment so that it will

be the solution in the ground state. Due to the series of

experiments all the necessary numerical data were obtained

via a large number of parallel simulations of the auxiliary

problem in order to construct all the statistical parameters

of 3D SG at the limit of ergodicity of 1D SSCs nonideal

ensemble. As numerical simulations show, the distributions

of all statistical parameters become stable after Nx X Nx
independent calculations that are realized in parallel. The idea

of 1D spin-chains parallel simulations, based on this simple

and clear logic, greatly simplifies the calculations of 3D SG,

which are still considered as a subset of difficult simulation

problems.

SGs are the prototypical glassy systems most widely studied

theoretically. Simulating SGs is a computing grand challenge,

as their deceivingly simple dynamical equations are at the

basis of complex dynamics, whose numerical study requires

HPC resources. In a typical spin-glass model, the dynamical

variables, one calls them spins, are discrete and sit at the nodes

of discrete D-dimensional lattices. In order to make a contact

with the experiments, we need to follow the evolution of a

large enough lattice, say a 3D system with 80x80x80 sites, for

time periods of the order of 1 s. One Monte Carlo step (MCS)

- the update of all the 80x80x80 spins in the lattice - roughly

corresponds to 10-12 s, so we need some 1012 such steps,

that is ∼ 1018 spin-updates. One typically wants to collect

statistics on several ∼ 10x10 copies of the system, adding up

to ∼ 1020 Monte Carlo spin updates. Therefore, performing

this simulation program in an acceptable time frame (say, less

than 1 year) requires a computer system able to update on

average one spin per picosecond or less.

This analysis shows that accurate simulations of SGs have

been a major computational challenge; and needs a very huge

number of computational resources. Also it’s very beneficial

to mention that most of available algorithms are based on

Monte Carlo Simulations. If we increase the size of each SG

chain, the Monte Carlo simulations count is being significantly

increased which also in its turn requires a lot of computations.

Therefore, the energy consumption must be taken into account.

Having a deep vision on this application, the main focus will

be is to create a customized and acceptable DVFS policy to

have best performance with minimal energy consumption.



III. EXPERIMENTAL METHODOLOGY

Classical model of power consumption of a server is often

assumed to be quite simple

PowerConsumed = Pmin(Fi) + (Pmax(Fi)− Pmin(Fi))

∗Utilization

(4)

where Fi is the fixed frequency, Pmin(Fi) is the minimum

power consumed at idle state at the fixed frequency and

Pmax(Fi) is the maximum power consumed at peak load at

the fixed frequency. Utilization is between 0 and 1. We use the

affine model because the aim of the article is not on the power

model choice, but that we could use other more precise model

[11]. In our study we use affine model that contains one static

part (fix cost) and a dynamic part which vary proportionally

to the CPU load.

HPC systems are usually getting the maximum available

frequency as the goal is to produce a maximum throughput.

But waiting for communications at the maximum speed is

not necessary. The classical approach is to compute for each

task the optimal frequency depending on the ratio communi-

cation/computation.

By reducing the frequency we will have some time penalty

which is not only due to the lower frequency but also due to

the load imbalance created by the different processor speeds.

In HPC applications, where there is an interdependence of

tasks across processors, if one processor is slowed down, the

entire application may consequently be slowed down. Even if

there are no such dependencies, there will be load imbalance

between the processors. As a result, decreasing the frequency

will result in degradation of performance and increase in the

total execution time. So it is important to have a well defined

policy for changing the frequency using DVFS. In this case,

when a particular application needs raw computing power, the

frequency will be maximum, but the frequency will be lower

for each communication [12], [13].

For conducting the experiment the CloudSim framework

has been used [14], which is a framework for modeling and

simulation of cloud computing infrastructures and services. It

additionally provisions hosts to VMs, application execution

management and dynamic system state monitoring. The char-

acteristics of the main components of the CloudSim framework

we used are the following:

• In cloud analysis, there are six regions that correspond to

six continents in the world. We used the region Asia as

Armenia located in that region.

• The Data center encapsulates a set of computing hosts

or servers that are either heterogeneous or homogeneous

in nature, based on their hardware configurations. The

center which has been created is corresponding to the

Armcluster resources, the DataCenterArmCluster consist

of the following architecture: System architecture is x86,

Operation system is Linux, 48 cores, 48Gb RAM, band-

width 60000Mb and 3000Gb HDD.

• The types of the Hosts, which describe the physical

resources (compute or storage) is the following: 8 cores,

8Gb RAM, 10000Mb bandwidth and 20 Gb image size.

The service which adjusts frequency in the operating system

is known as a governor. Distinctive governors can be executed

with diverse approaches in regard to frequency management,

where each mode has a governor to decide whether the fre-

quency must be changed (increased or decreased) or not. The

following three DVFS modes have been taken into account:

• Performance: the frequency is always fixed at the highest

level, even if the processor is not utilized.

• Ondemand: the frequency is balanced according to the

workload behavior.

• Powersave: the frequency is always fixed at the lowest

level.

The processors have only three frequency rates: 2.0GHz,

2.33GHz, 2.5GHz. The experiment will be conducted for about

ten times with each frequency rate, and the average value will

be taken in term of execution time in seconds and energy

consumption in watts. The experiment will be run using an

XML file as an input which contains the input parameters of

the experiment and the three available frequency rates. We

have static and dynamic governors enabling to analyze the

behavior and impact of the execution. The static governors

do not perform any frequency change during the execution

but the dynamic ones are able to do this. The main aim of

the experiment is to perform a series of simulations based on

several DVFS modes in order to study the behavior of DVFS

on SG performance. The Tables 1 and 2 show available modes

and Powers at 0% and 100% of CPU load for each frequency.

TABLE I
AVAILABLE MODES OF DVFS USING THE MIPS IN CLOUDSIM.

HOST powersave ondemand perf.

%*Fmax 80.0 93.2 100.0

CloudSim(MIPS) 5464 6304 6830

TABLE II
POWERS IN WATT AT 0% AND 100% OF CPU LOAD FOR EACH

FREQUENCIES.

Frequency (GHz) 2.0 2.33 2.5

Pmin 140 146 153

Pmax 228 238 249

IV. RESULTS AND DISCUSSIONS

After running the simulation for each DVFS mode for

ten times, the average result has been obtained for time

execution in second and power consumption in W/h which

are represented in the following table:

The figure 2 illustrates the difference between the conser-

vative and ondemand governors.

From the result we can see that the execution time is the

same in any DVFS mode, but in OnDemand and PowerSave

mode we have an appropriate saving in power consumption.



TABLE III
SIMULATION RESULTS USING THREE DVFS MODE.

DVFS mode Duration (s) Energy (W h)

Performance 48.0 17.86

OnDemand 48.0 17.64

PowerSave 48.0 17.64

Fig. 2. the difference between the conservative and ondemand governors: the
red line represents the Frequency, the green one represents the CPU load.

Depending on the result we can say that this experiment can

be run automatically in OnDemand mode because it will give

the system the possibility to balance the frequency depending

on the operation system and all other processes in the system

and the best energy saving will be achieved.

V. CONCLUSION

The purpose of this article was to study the behavior of

DVFS method for 3D Classical SG problem. The results and

discussions sections give interesting conclusions about DVFS

behavior,which was found to be closely linked with the internal

architecture of the hosts within the data center. Because the

execution time of OnDemand and PowerSave is the same the

OnDemand mode is the best DVFS mode for SG experiment

due to the power consumption and frequency balance for the

system.
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