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Abstract: The aim of this paper is to improve the operational response of the Fire and Rescue
Services (SDIS). More precisely, the allocation of emergency vehicle (EV) to Rescue Center
(RC) in department(France) is studied. The problem is to allocate the capacity (number of EV
by RC) under random apparition of accidents and random durations. A mathematical model
based on the notion of simultaneous requirements of EV is proposed. This notion allows us
to dispense with the time dimension and just focus on the probability to have simultaneous
required quantity of EVs. Hence, the problem can be formulated as a kind of transportation
problem under random demand. An approximation of the model is done using the simulation
approach and an algorithm to find the optimal solution of approximate model is proposed.

Keywords: Rescue Center, minimization problems, Transport.

1. INTRODUCTION

In France, a public service called SDIS (Fire and Rescue
Services) exists in each department. A fire fighting unit
(professional as well as voluntary), technical and admin-
istrative staff make up this service. Its main missions are
as follows: Operations, Preparation and Prevention. The
SDIS prevents all risks for civil security, like accidents,
damage and natural hazards ; it prepares protective mea-
sures and organises special equipment and also fights fires
of any kind, offers emergency aid.

The SDIS is composed by Rescue Centers (RCs), so the
department is divided into sectors and each town(1) is
protected by one or several RCs (which can be located
in the neighbour town) and (2) linked to all RCs of
department by priority list calling ”Deployment plan”.
The first RC of deployment plan, called ”first call center”,
are those normally called to intervene on the town. The
second ones on the deployment plan, called ”second call
center”, are those called in case of the unavailability of
the first call center or can be required for help in the event
of an important disaster and so on to the last RC. The
deployment plan are built automatically using the time
needed to go from RC to the town: first center is the closer
second center is the second closer and so on. The aim of a
SDIS is, for 80% of interventions, to have a set of centers
which are able to intervene within 10 and 20 minutes (in
function of predefined zones) in the case of human rescue,
fire and various operations. In this context, a strong area of
improvement is to parametrize the capacity management
of each RC under random demand.

In the literature, models have been proposed to optimize
the static and deterministic covering problem in facility
location (see the reviews Farahani et al. 2012, Brotcorne

et al. 2003 and Dasin et al. 2004). They models are based
on:

• A Location Set Covering Problem (LSCP) is studied
by (Tonegas et al. 1971) to minimize the number of
facilities (centers) to cover the set of demand points
short of the indicated coverage.

• A Maximal Covering Location Problem (MCLP) and
a Modular Capacited Maximal Covering Location
Problem (MCMCLP) are studied by (Church and
Revelle 1974) to determine the number of facilities
required to maximize the number of demand points
served by limited fixed number of facilities.

In these models all facilities are independent, are consid-
ered as a resource center (ie. a facility is a fire station).
They have infinite capacity or are considered as a single
resource (ie. a facility is an ambulance) and they are always
considered available. To take into account the availabil-
ity of resources, probabilistic models have been proposed
which determine the location to maximize, with a given
probability, the covered population that can be satisfied
by an available facility (Daskin, 1983, Revelle and Hogan,
1989). To introduce capacity constraints, a capacitated
MCLP has been proposed with a fixed capacity level of
the facility for each potential facility site (Current and
Storbeck 1988) and more recently, (Yin et al. 2012) pro-
pose a Modular Capacitated MCLP with different capacity
levels (varied numbers of stationed emergency vehicles).
Moreover in these two models, it is not specified which
demand can be covered by which facility. To cope with this
limitation, Generalized MCPL (GMCPL) models (Berman
and Krass, 2002), Gradual coverage models (Berman et
al. 2010) or Backup Cover in Location Problems models
BCLP (Hogan and Revelle, 1986) have been developed.



This literature focus on localization of facilities and the
first center allocation with deterministic demand. In our
case the localization of facilities (RCs), the deployment
plans (hence the ordered list of facilities which can cover
the demands) and the total number of resources (EVs) are
known. Besides, the demand is stochastic and the problem
is to determine the allocation of the resources (EVs) to the
different facilities (RCs).

In our case, we consider a set of given facilities (RC).
In each facility a set of resources (EVs) is available to
response to the demand. A demand is not satisfied by a
given facility but by a priority list of facilities (deployment
plans). The total number of resources is known and the
problem consists in a re-allocation of this given number
of resources to the different utilities. Thus this problem
can be considered as a specific dynamic facility location
problem where the facility location is known and a given
number of resources have to be re-allocated to these
facilities.

Furthermore, in the field of ambulance relocation problems
(Brotcorne,et al. 2003), the location problem mostly con-
sists in a covering facility location problem which consider
the ambulances as the facilities to be located. In addition,
the relocation problem is mostly treated as a real time
problem.

Our problem can be situated between these strategic cov-
ering facility location problem and the real time relocation
problem. It is closed to the problem addressed by (Beraldi
and al. 2004) who developed a stochastic programming
model with probabilistic constraints which aims to solve
both location of facilities (which are emergency service
sites) and allocation of emergency vehicles to each site.

Our study of data of department ”Haute-Garonne” (France)
and an analysis of department ”Ille-et-Vilaine” (SDACR
35) show that the probability that a number of EVs are
needed in the simultaneously follows a Poisson distribu-
tion. Schmauch (2007) proposes an heuristic which consists
too affected the EVs to RCs using the probability of
simultaneity requirement of EV of the first center. This
approach does not take into account others RCs of de-
ployment plan which are crucial to estimate the maximal
time needed to arrive on the accident. In fact, The analysis
of the activity of a given RC is not pertinent to know the
best size of a given sector: a center can often be engaged
in other sectors (sectors not belong to the set of town
which have RC as first center). Conversely, a sector may
be frequently covered by the second call center or the
third. This problem is a kind of transportation problem
(explaining in section 3.8) under stochastic demand. In the
literature, the problem of determining the transportation
quantities under stochastic demand has been studied by
(Szwarc, 1964). In our case the transportation quantities
are determined under crisp demand, but the capacity of
RCs under stochastic demand that is different. As far as
we know, our problem has not be studied in the literature.

In this paper, we propose a model to affect the EVs to
RCs based on the simultaneity of requirement of EV taking
into account the notion of deployment plans. The aim is to
minimize the degradation of the case where all accidents
are treated by the first center of deployment plan. In other
worlds, we want to minimize the degradation of the opti-

mal solutions of this problem without capacity constraints.
Since we have random simultaneous requirements and we
want to minimize the expected value of the degradation.
The rest of the paper is organized as follow: Firstly, we
describe the problem (section 2). The mathematical model
is given in section 3. Section 4 shows the optimization
method which is used to resolve this problem. Finally, as
conclusion, some perspectives of future research are given.

2. PROBLEM DESCRIPTION

In this paper, we focus on the optimization of the EV
number by RS. We note that both the sum of EVs and
the set of RC are given.

2.1 Deployment plans

Each town is associated to a deployment plan which gives
the priorities of intervention of each RC. Usually, the
nearest to the furthest RC. For example, the town 2
(striped area with fine lines in figure 1) has the following
deployment plan: the RC of the town 3 then the RC of
the town 1 then the RC of the town 6; the town 3 (area
composed from horizontal dashed lines): the RC of the
town 3 then the RC of the town 6 then the RC of the
town 1: We note that the first RC in a deployment plan is
considered as the first call center.

Fig. 1. Deployment plans
2.2 Operational coverage

The primary objective of fire fighting unit is to arrive as
soon as possible to the accident place. In an unconstrained
resource context, it would have enough vehicles in each RC
to satisfy the demand of all towns which are this RC as
a first call center. We note that the first call center in a
deployment plan is the nearest RC to the accident place.
Under resources constraint, the operational coverage can
be formulated as follows: To minimize the mean number
of interventions from RC when these RCs are not first
call centers. Our aim is also to reassignment vehicles in a
given area. We supposed that if the requirement in a given
area is not satisfied by available vehicles in this area, other
vehicles from other areas will be called in reinforcement.

2.3 Simultaneous requirement of EV

In fact, the requirement of EVs in each RC depends on
the number of accidents that happened simultaneously
in towns which have this RC as a first call centre. This
simultaneity of requirements is due to the appearance of



one or several accidents that need one or several EVs
during the time that one or several others EV are occupied
by one or more other accidents.

Otherwise, the number of simultaneous requirements
(noted n) is a random number since both accidents hap-
pening and durations of use of EVs are random.

More precisely, a study of data of RCs (SDARC 35, 2010)
shows that the probability distribution of simultaneous
requirements for a given deployment plan (noted d̃π)
follows a Poisson distribution:

P ([d̃π = nπ]) = exp(−γπ)×
γnπ
π

nπ!

where γπ = Nπ×tπ
8760 , Nπ is the number of accidents during

one year on the municipalities under the same deployment
plan π, tπ the average of duration for the municipalities
under the same deployment plan π and 8760 the total
number of hours by year.

3. MATHEMATICAL FORMULATION

Firstly, a mathematical formulation is proposed to allocate
EVs to a RC for a given deployment plan and for a given
number of simultaneous requirements. Then this model
will be extended to the case of re-affectation of EVs to
all RCs. Finally, the model of re-affectation of EVs under
random simultaneous requirements will be presented.

Let C the set of RCs, card(C) = c and IP the set of
deployment plans. Each deployment plan is denoted π =
(π(1), π(2), · · · ) where π(1) is the first RC called, π(2) the
second RC called if the first one has no available EV etc.

3.1 Data

Assume that an accident took place in the town whose
deployment plan is π = (π(1), π(2), · · · , π(i), · · · ). For
i ∈ C, j ∈ C and π ∈ IP:

• ti,π : the average time needed for a EV from the RC
i to arrive to the scene of the accident. if the RC i is
the first called center, ti,π = tπ(1),π,

• ai,π : the average lost time if a EV from a RC i is used.
It is equal to ti,π − tπ(1),π. ai,π = 0 if π(1) = i and
ai,π < aj,π if i precedes j in the deployment plan π,

• ae,π : the penalty to use a EV outside the considered
department,

• dπ : the number of simultaneous required EVs for a
deployment plan π.

• Q: the total number of available EVs on the studied
department.

3.2 Variables

All considered variables are positive integers.

• hi,π : the number of EVs from the RC i allocated to
the deployment plan π,

• he,π : the number of EVs outside the considered de-
partment allocated to the deployment plan π

• Ki: the capacity of the RC i in terms of the number
of EVs.

3.3 Model under known capacities and fixed simultaneous
required EV

To help understand this problem, a sub problem under
simplifications conditions is presented: (1) the capacity of
each RC is given and is not variable to be determined
by the system and (2) simultaneous required EVs of
deployment plans are known.

Under these conditions, the problem is equivalent to a
classical transportation problem where each demand of a
customer is replaced by the simultaneous required EVs
of the deployment plans (dπ), the production is replaced
by the capacity of the RC (Ki) and the transportation
quantities are replaced by the EVs allowed from RCs to
deployment plans (hi,π, he,π). The costs of transportation
are the lost times (ai,π).

So, this problem can be formulated as follow:

min
{hi,π}

i∈C,π∈IP
F (hi,π) =

∑

π∈IP

∑

i∈C

ai,πhi,π

s.t.

(a)
∑

i∈C

hi,π = dπ ∀π ∈ IP

(b)
∑

π∈IP

hi,π = Ki ∀i ∈ C

(1)

where the constraint (a) guarantees that, for an accident
happened in a given town whole the deployment plan is π,
a EV has be allocated and the constraint (b) guarantees
that each EV from a RC is allocated to an accident.
This problem can be efficiently solved by a specific dual
algorithm (Teghem, 2012).

3.4 Model of capacity affectation under random simultaneous
required EV of deployment plan

In our problem, the global number of EVs is equal to
Q and the number of simultaneous required EVs for a
deployment plan is not determinist. It follows a Poisson
distribution (SDARC 2010, and the analysis of data issued
from Toulouse SDIS). Thus, the objective is to find the
best affectation of capacities which minimizes the expected
value of transportation duration.

Such that after affecting the capacity and knowing simul-
taneous required EVs of deployment plans (dπ , ∀π ∈ IP,
are crisp), the optimal transportation plan will be used.

The problem can be formulated as a nonlinear program-
ming problem:

min
{Ki}

i∈C

E



 min
{hi,π}

i∈C,π∈IP

∑

π∈IP

∑

i∈C

ai,πhi,π





s.t.

(a)
∑

i∈C

hi,π = dπ ∀π ∈ IP

(b)
∑

π∈IP

hi,π = Ki ∀i ∈ C

(c)
∑

i∈C

Ki = Q

(2)

In order to linearise the expected value, an approach based
on the simulation of independent scenarios is developed.



 

To have a good estimation of E [F (hi,π , Ki)] (estimation
with a good confidence level), a big number of scenarios
(n) is needed. To estimate n, probability theory is used
(Rubinstein and Y., 1981 and Fishman, 1996).

Moreover, both decision variables hi,π and data dπ depend
on the scenario. Hence they become hi,π,s and dπ,s, ∀s ∈ Γ
with s the index of the scenario and Γ the set of scenarios.
The model (2) can be approximated by the model (3):

min
{Ki}

i∈C
,{hi,π,s}

i∈C,π∈IP,s∈Γ

∑

s∈Γ

∑

π∈IP

∑

i∈C

ai,πhi,π,s

s.t.

(a)
∑

i∈C

hi,π,s = dπ,s ∀π ∈ IP, ∀s ∈ Γ

(b)
∑

π∈IP

hi,π,s = Ki ∀i ∈ C, ∀s ∈ Γ

(c)
∑

i∈C

Ki = Q

(3)

4. RESOLUTION APPROACH

In this section, we propose an algorithm to solve the prob-
lem of affectation of capacities and to optimize an average
criterion under discrete demands scenarios (see model 3).
We note that in the case of the second model, scenarios
of demands are generated by simulation using Poisson dis-
tribution. In fact, this problem cannot be formulated as a
min-cost-flow problem, and in the literature, this problem
has not still be solved. The proposed algorithm is inspired
by the dual algorithm for transportation problems. To
explain it, we define new variables:

• ∆: the capacity not allocated to a RC.

• asi,π =

{

ai,π if hi,π,s > 0

−1 else.
the cost of using trans-

portation arcs
• gi,π,s: the best gain to treat an accident for the
deployment plan π by RC i in the place of another
RC for the scenario s.

• Gi,s: the best gain to increase the capacity of the RC
i for the scenario s.

• i∗i,π,s: the index of the RC from which the quantity is
transferred to the RC i for the scenario s and for the
deployment plan π with the best gain

• π∗

i,s: the index of the deployment plan which maxi-
mizes the gain if the transported quantity is trans-
ferred from i∗i,π,s to i

• c∗: the index of the RC which the capacity have to be
increased

4.1 General framework

The algorithm started with the initial solution of capacity
Ki = 0, ∀i ∈ C and ∆ = Q, hence this solution does not
satisfy the constraint

∑

i∈CKi = Q. Therefore, the initial
solution which composed from transportation variables is
hi,π,s = 0, ∀i ∈ C, π ∈ IP, s ∈ Γ due to the fact that the
capacities of RCs are equal to zero and he,π,s = dπ,s, ∀π ∈

IP, s ∈ Γ because each accident of each deployment plan
has to be satisfied (Step 0, Algorithm 1). At each iteration,
capacity is transferred from ∆ to only one RC i,∈ C (Step

1 to 3). The algorithm is stopped when all the capacities of
∆ are re-affected to RCs (hence, the constraint c in model
3 is satisfied, Step 4).

Input: Q: capacity to be affected, ai,π: lost time to satisfy
an accident for the deployment plan π by a EV from the
RC i, dπ,s: number of accidents of the deployment plan
π of the scenario s.

Output: An optimal capacity allocation Ki and a trans-
portation solution hi,π,s for each scenario s.

Step 0: Ki := 0, ∀i ∈ C, ∆ := Q, hi,π,s = 0, ∀i ∈ C, ∀π ∈

IP, ∀s ∈ Γ, he,π,s = dπ,s, ∀π ∈ IP, ∀s ∈ Γ.
Step 1: Find the best RC to increase its capacity (c∗).
Step 2: Compute the maximal value of capacity to trans-
fer from ∆ to c∗.

Step 3: Update the solution (Ki and hi,π,s)and asi,π.
Step 4: If ∆ > 0 then go to Step 1 else STOP.

Algorithm 1. Optimal affectation of capacity

Therefore we are forced, at each iterations, to answer two
questions: to which RC the capacity have to be transferred
(Step 1)? and how many capacities (Step 2)?

4.2 Research of the best RC: c∗

To answer to the first question, we have to evaluate the
gain when the capacity of RCs is increased. Noted that,
increasing capacity of a given RC means that this center
has EVs which can be assigned to a deployment plan. So it
is more interesting to treat accidents happened in towns,
which have the same deployment plan, by this RC and
not by the previous one. More formally, the equation (4)
is used to compute the gain of each deployment plan (for a
given RC i and a given scenario s) and to choose the best
one (equation 5, the symbol ⊠ means that they are not a
more interesting center to treat accidents).

gi,π,s = max
j∈C

+

i

(0, asj,π − ai,π : asj,π 6= −1)

with
C

+

i = C ∪ {e} \ i (4)

i∗i,π,s =







arg max
j∈C

+

i

(0, ash,π − ai,π : ash,j 6= −1) if gi,π,s > 0

⊠ else.

(5)

The gain obtained by increasing the capacity of a RC i
for a scenario s ∈ Γ is the best transfer whatever the
deployment plan π ∈ IP, so it can be computed using
equation (6). Moreover, we have to keep the index of the
optimal transfer to update the transportation variables.
The optimal transfer is the one which has the better gain so
the one which maximizes the difference between transport
quantity from (i∗i,π,s to π∗

i,s) and transport quantity from
i to π∗

i,s , with π∗

i,s defined in equation 7 (the symbol ⊠

means that they are not a more interesting transfer).

Gi,s = max
π∈IP

(gi,π,s) (6)

π∗

i,s =

{

argmax
π∈IP

(gi,π,s) if Gi,s > 0

⊠ else.
(7)



The gain Gi,s means that if the capacity of the RC i
is increased by a value y, the cost function of previous
solution decreases by y ×

∑

s∈Γ

Gi,s. The best RC c∗ which

increases the capacity is the one which maximizes the gain
(equation 8 and 9)

GT = max
i∈C

(
∑

s∈Γ

Gi,s) (8)

c∗ =







argmax
i∈C

(
∑

s∈Γ

Gi,s) if GT > 0

⊠ else.
(9)

c∗ = ⊠ arrives when ∀s ∈ Γ and Gi,s = 0. So, c∗ = ⊠

means that the function can be minimized by adding
capacity. In other words, we have too much capacity. The
excess of capacity is transferred by default to first one RC,
i = 1 (equation 10 of section 4.3).

4.3 Evaluation of maximal quantity to transfer

We have answered to the first question by choosing the RC
c∗. Now, the maximal capacity than can be transfer from ∆
to c∗ with the same gain has to be find. The gain depends
on the accident transferred from the RC i∗c∗,π,s to the RC
c∗. Then, if this transfer is made for all scenarios, the gain
is constant. Hence the maximal transfer is computed using
equation (10):

Tc∗ = min
s∈Γ

(∆, hi∗
c∗,π∗

c∗,s
,s
,π∗

c∗,s
,s : i

∗

c∗,π∗

c∗,s
,s, π

∗

c∗,s 6= ⊠)

(10)

Noted that, c∗ = ⊠ arrives when Gi,s = 0, ∀s ∈ Γ. So,
all π∗

i,s = ⊠ (equation 7) and all i∗i,π,s = ⊠ (equation
(5)). Then ∄hi∗

c∗,π∗

c∗,s

,π∗

c∗,s
,s such that i∗c∗,s,π∗

c∗,s

, π∗

c∗,s 6= ⊠.

Hence T⊠ = ∆.

Finally, we actualize the current solution:

• Kc∗ := Kc∗ + Tc∗

• ∆ := ∆− Tc∗

• hi∗
c∗,π,s

,π∗

c∗,s
,s := hi∗

c∗,π,s
,π∗

c∗,s
,s − Tc∗ , ∀s ∈ Γ

• hc∗,π∗

c∗,s
,s := hc∗,π∗

c∗,s
,s + Tc∗ , ∀s ∈ Γ

Remark: the solutions are integers: Ki, hi,π,s ∈ N, ∀i ∈

C, π ∈ IP, s ∈ Γ if and only if dπ,s ∈ N, ∀π ∈ IP, s ∈ Γ and
Q ∈ N.

5. ILLUSTRATION OF ALGORITHM

In this section we illustrate the algorithm, to facilitate
understanding of the algorithm we represent the data in
table 1 where a first part of the table represent the penalty
coefficient (the column are the deployment plan and the
line the RC), the last column is affectation of capacity
(Ki, ∆) and the last line of the table are the scenarios of
demand.
Remark: When simultaneous requirements follow a Pois-
son distribution the scenarios of demand are simulated
using this distribution.

π = 1 π = ... π = P Ki

i = 1 a1,1 a1,... a1,P ...

i = ... a...,1 a...,... a...,P ...

i = C aC,1 aC,... aC,P ...

e ae,1 ae,... ae,P ∆ = ...

ds=1 d1,1 d...,1 dP,1

ds=... d1,... d...,... dP,...

ds=S d1,S d...,S dP,S

Table 1. general table
For simplicity of illustration, we apply the algorithm to a
example with 2 scenario of demand, 3 deployment plans,
3 RCs and Q = 20. The data are given in the table
(2). Let M a big number. Moreover, the initial solution
of transportation quantity from RC which is different
than zero, is presented in the table (2). M(4) means that
he,1,1 = 10 and he,1,2 = 4.

π = 1 π = 2 π = 3 Ki

i = 1 0 10 2 0

i = 2 4 0 3 0

i = 3 15 1 0 0

e (10)M(4) (2)M(8) (14)M(6) ∆ = 20

ds=1 10 2 14

ds=2 4 8 6

Table 2. data and initial solution

First we compute the gain to increase the capacity for each
deployment plan π of each RC i, since at the beginning
only the RC e satisfies the demand (he,π,s = dπ,s). The
gains for i = 1 and s = 1 are g1,1,1 = (M − 0) (for
π = 1), g1,2,1 = (M − 10) and g1,3,1 = (M − 2). So
i∗1,π,1 = e, ∀π ∈ IP and Gi,s = M with π∗

i,s = 1. We
repeat this for all scenarios and for others RCs. Then
we obtain:

∑

s∈Γ
Gi,s = 2M, ∀i ∈ C. Hence, we choose

arbitrary the RC c∗ = 1. The maximal capacity which
can be transferred with this gain is the minimal quantity
between he,1,1 = 10, he,1,2 = 4 and ∆ = 20 hence T1 = 4.
To finish this iteration, we update the initial solution (see
Table 3).

π = 1 π = 2 π = 3 Ki

i = 1 (4)0(4) 10 2 4

i = 2 4 0 3 0

i = 3 15 1 0 0

e (6)M(0) (2)M(8) (14)M(6) ∆ = 16

ds=1 10 2 14

ds=2 4 8 6

Table 3. data
The gain of the first RC becomes

∑

s∈Γ
G1,s = (M − 0) +

(M − 2) since he,1,2 = 0 and he,2,2 and he,3,2 > 0. But
others RCs still have a gain of 2M . So we increase the
capacity of RC 2 and then 3, with T2 = 2, and T3 = 6.
The result of these two iterations is given in the Table (4).

π = 1 π = 2 π = 3 Ki

i = 1 (4)0(4) 10 2 4

i = 2 4 (2)0(2) 3 2

i = 3 15 1 (6)0(6) 6

e (6)M(0) (0)M(6) (8)M(0) ∆ = 8

ds=1 10 2 14

ds=2 4 8 6

Table 4. Results iteration 1
First we compute the gain to increase the capacity for
each deployment plan π of each RC i. The best gains are:
g1,1,1 = (M − 0) for RC 1 and scenario 1 with π∗

1,1 = 1,
g1,2,2 = (M − 10) for RC 1 and scenario 2 with π∗

1,2 = 2,



g2,3,1 = (M − 3), g2,2,2 = (M − 0), g3,3,1 = (M − 0)
and g3,2,2 = (M − 1). So we have

∑

s∈Γ
G1,s = 2M − 10,

∑

s∈Γ
G2,s = 2M − 3 and

∑

s∈Γ
G1,s = 2M − 1. The RC

to be increased is c∗ = 3. The maximal capacity which
can be transferred with this gain is the minimal quantity
between he,3,1 = 8, he,2,2 = 6 and ∆ = 8 hence T3 = 6.
To finish this iteration, we update the initial solution (see
Table 5).

π = 1 π = 2 π = 3 Ki

i = 1 (4)0(4) 10 2 4

i = 2 4 (2)0(2) 3 2

i = 3 15 (0)1(6) (12)0(6) 12

e (6)M(0) (0)M(0) (2)M(0) ∆ = 2

ds=1 10 2 14

ds=2 4 8 6

Table 5. Results iteration 4
We repeat the same thing than the previous iteration. The
temporally results are:

• The best gains are: g1,1,1 = M , g1,⊠,2 = 0, g2,3,1 =
M − 3, g2,2,2 = 1, g3,3,1 = M and g3,⊠,2 = 0

• So we have
∑

s∈Γ
G1,s = M ,

∑

s∈Γ
G2,s = M − 2 and

∑

s∈Γ
G3,s = M T1 = min(he,1,1 = 6,∆ = 2) = 2

Since ∆ = 0 we update the solution (see Table 6) and the
algorithm stops.

π = 1 π = 2 π = 3 Ki

i = 1 (6)0(4) 10 2 6

i = 2 4 (2)0(2) 3 2

i = 3 15 (0)1(6) (12)0(6) 12

e (4)M(0) (0)M(0) (2)M(0) ∆ = 0

ds=1 10 2 14

ds=2 4 8 6

Table 6. Final results

6. CONCLUSION

This paper deals with the affectation of EVs to RCs
under random demand. The aim is to determinate optimal
capacity of each RC to minimize the expected value of
transportation duration. A tactical aggregated model and
an algorithm are proposed. The deployment plans are
supposed fixed. Both the total number of EVs and the
set of RCs are known. An example is given to illustrate
the resolution method.

In the real world an initial solution of capacity affectation
is done. Indeed it is not truly realistic to determine
these capacities from scratch. A high modification of this
affectation impacts fire fighting units (professionals as well
as volunteers) and it is expensive to relocated EVs. Thus,
our future work will focus on the modification of the
current affectation of capacities under random demand
and relocation costs. Costs which take into account the
mobility of Fireman and the transfer of EVs from RC i
to j will be integrated. The main objective will be the
use of these techniques to help the SDIS to optimize both
deployment plans and RCs capacities.
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