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Abstract

This paper deals with the derivation of a probabilistic
parametric model from interval or fuzzy data using
the maximum likelihood principle. In contrast with
classical techniques such as the EM algorithm, that
define a precise likelihood function by averaging inside
each imprecise observations, our approach presupposes
that each imprecise observation underlies a precise one,
and that the uncertainty that pervades its observation
is epistemic, rather than representing noise. We define
an interval-valued likelihood function and apply robust
optimisation methods to find a safe plausible estimate
of the statistical parameters. The resulting density has
a standard deviation that is large enough to cover the
imprecision of the observations, making a pessimistic
assumption on dispersion. This approach is extended
to fuzzy data by optimizing the average of lower likeli-
hoods over a collection of data sets obtained from cuts
of the fuzzy intervals, as a trade off between optimistic
and pessimistic interpretations of fuzzy data. The
principles of this method are compared with those of
other existing approaches to handle incompleteness of
observations, especially the EM technique.

Keywords. Possibility theory, fuzzy intervals, maxi-
mum likelihood, robust optimisation, epistemic uncer-
tainty

1 Introduction

Interval observations, and more generally, set-valued
ones, do not always refer to the same situation [1].
Intervals may either represent exact observations of
items taking the form of intervals (for instance, the
daily min-max temperature ranges across one year),
or, on the contrary, imprecise observations of precise
quantities. In the first situation, interval data are a
special kind of functional data where observations lie
in a space of characteristic functions equipped with
the suitable metric structure, enabling precise statis-
tical parameters to be derived [18]. In this paper we

are interested in the statistical analysis of data when
observations are imprecise, more specifically, when we
only know that the precise values of observations are
restricted by intervals or fuzzy intervals. This kind of
fuzzy interval is an epistemic set [1] which attaches to
each value the possibility that it is the true observed
value (unreachable for the observer). Under the epis-
temic approach, the expected value and the variance
of a set of fuzzy intervals are fuzzy intervals [2].

This paper presents a general iterative approach to
compute estimates of the parameters of a density func-
tion under imprecise observations, where the lack of
precision is an epistemic rather than an aleatory phe-
nomenon. To estimate the quality of parameters of
the underlying precise random process, we use the
maximum likelihood principle. Nevertheless, under
imprecise observations, the likelihood function itself
becomes imprecisely appraised too and is thus interval-
valued. In this paper we adopt a pessimistic point of
view and maximize the lower bound of the likelihood
function, with a view to obtain a robust probability
density whose standard variation accounts for poten-
tially extreme variability across imprecision intervals.

The paper is organized as follows. In Section 2, we
propose an algorithm that evaluates minimal and max-
imal bounds for the likelihood function. Then, we
formulate the estimation problem for interval data as
a robust optimization problem, which consists in max-
imizing the minimal expected likelihood. We study
the cases of unimodal and Gaussian distributions. In
Section 3, we define an extension of this approach to
fuzzy interval data. Especially we discuss how to de-
fine a likelihood function for fuzzy interval data. In the
literature, a classical approach to handling incomplete
data in estimation is the famous EM algorithm [3].
It considers that the likelihood function is a precise
function, even if observations are imprecise. In Sec-
tion 4 we briefly discuss the difference between the
two approaches, as well as the optimistic counterpart
of ours.



2 Interval Uncertainty

Before solving the problem with fuzzy intervals, we fo-
cus on the problem with classical intervals. Firstly, we
present a general framework for handing uncertainty
on observations whatever the parametrized family of
distributions. Secondly, we present an algorithm to
solve the problem for unimodal density distributions.
Finally, we study the case of normal density distribu-
tions.

2.1 General Framework

Let {xi : i ∈ N} with |N | = n, be a set of precise
observations. To evaluate the quality of the parameters
of the distribution that represents these observations,
the usual approach is to define a likelihood measure
f(xi|θ) for each piece of data. Note that f(xi|θ) can
be understood as the possibility that the generation
process for xi is based on the parameter value θ [4].
The density function with vector of parameters θ and
independent observations {xi : i ∈ N} takes the form
of a product of likelihood functions:

L =
∏

i∈N

f(xi|θ) (1)

A standard criterion to define the parameters of the
density function is the maximization of this likelihood
function

max
θ

∏

i∈N

f(xi|θ) (2)

Under uncertainty, observations are of limited preci-
sion, and take the form of intervals xi ∈ [xi, xi], ∀i ∈ N .
Let Γ = [x1, x1] × ... × [xn, xn] be the set of possible
n-tuples of observations, we call selections. Namely,
the selection X ∈ Γ with X = (x1, ..., xn) is a possible
realization of the imprecise observation Γ. Fixing the
parameter θ, one may argue that, in the spirit of [1],
if observations are imprecise, the likelihood evaluation
should become imprecise too, that is, L(θ) ∈ [L; L]
with L and L respectively defined by:

• Lower likelihood

L(θ) = min
X∈Γ

∏

i∈N

f(xi|θ). (3)

• Upper likelihood

L(θ) = max
X∈Γ

∏

i∈N

f(xi|θ). (4)

To find robust solutions that cover potential variability,
we can determine the parameter value (denoted by

θRob) which maximizes the lower likelihood. It can be
formulated as a robust optimization problem:

max
θ

min
X∈Γ

∏

i∈N

f(xi|θ) (5)

This is equivalent to the log-likelihood problem:

max
θ

min
X∈Γ

∑

i∈N

ln(f(xi|θ)) (6)

2.2 Resolution Method

In this section, we propose an algorithm that evaluates
the lower and upper bounds of the likelihood function
for given parameters θ for a density function under the
form (1). For a given data vector X∗ = (x∗

1, ..., x∗
n),

the log-likelihood function
∑

i∈N

ln(f(x∗
i |θ)) is supposed

to be convex with θ and to have a derivative.

Assumption 1 ∃xm ∈ R such that f(x∗
i |θ) is an in-

creasing function on ] − ∞, xm] and decreasing on
[xm, +∞[.

If the distribution is unimodal, xm is the mode of the
distribution.

2.2.1 Determining Upper and Lower

Likelihood Functions

Note that the upper and lower likelihoods are of the
form f(X|θ) for some X ∈ Γ. Moreover, from Property
1, we know that for a given parameter value θ, the
minimum of function f(xi|θ), where xi ∈ [xi, xi], is
attained at the boundary of the domain (xi = xi or
xi = xi). It is called a worst case selection. This is
not true for the best case selection obtained from the
upper likelihood. Since the observations are assumed
to be independent, the solution of problems (3) (worst
case Xw for L(θ)) and (4) (best case Xb for L(θ)) can
be computed using the following rules:

if xm ∈] − ∞; xi[ then

{
xw

i = xi

xb
i = xi

(7)

if xm ∈]xi; ∞[ then

{
xw

i = xi

xb
i = xi

(8)

if xm ∈ [xi; xi] then





xb
i = xm

xw
i = xi if f(xi|θ) > f(xi|θ),

xi otherwise.

(9)



2.2.2 Computing Robust Parameters

The worst case selection Xw(θ) ∈ Γ is the one that
minimizes the lower likelihood (L) with parameter θ.
If the density function is unimodal, it follows that the
maximum likelihood problem comes down to discrete
optimisation, that is we can restrict the selections of
observations to extreme selections Xw ∈ Γdis, with
Γdis = {x1, x1} × ... × {xn, xn}, the set of extreme
assignments of xi. Using Lagrange relaxation, problem
(5) can be transformed into the following problem:

h∗ = max
θ

∑

X∈Γdis

λX × (
∑

i∈N

ln(f(xi|θ))) (10)

where the Lagrange coefficients λX respect the condi-
tions

∀X ∈ Γdis, λX =





1 if hmin =
∑

i∈N

ln(f(xi|θ))

0 otherwise

(11)
hmin being the minimal value of the log-likelihood over
the selections:

hmin = min
X∈Γdis

∑

i∈N

ln(f(xi|θ)) (12)

Proposition 1 Expression (10) gives the optimal so-
lution of the problem (5) if the Lagrange coefficients
λX , ∀X ∈ Γdis satisfy the conditions (11).

Proof: Note that if the Lagrange coefficients respect
the conditions (11), the expression (10) is equivalent
to h∗ = max

θ
k×( min

X∈Γdis

∑
i∈N

ln(f(xi|θ))) where k is the

number of functions
∑

i∈N

ln(f(xi|θ)) that intersect at

the maximum; it is the number of Lagrange coefficients
λX = 1. Hence, the optimal solution of the previous
expression (10) is the same as the optimal solution
of problem h∗ = max

θ
min

X∈Γdis

∑
i∈N

ln(f(xi|θ))) which is

equivalent to the problem (5) �

To solve problem (10), we use an iterative algorithm
(Algorithm 1), which is an adaptation of the Uzawa
method [5] to our problem.

Nevertheless the number of extreme selections is equal
to 2n. So we construct an iterative algorithm for solv-
ing problem (5) based on iterative relaxation scheme
for min-max problems proposed in [6] and developed
for min-max regret linear programming problems with
an interval objective function [7, 8] coupled with Uzawa
method.

Let RX-ROB be the problem (10) with a given set
of assignments Γ∗

dis
⊆ Γdis. Obviously, the maximal

cost h∗ of problem RX-ROB over the discrete assign-
ment set Γ∗

dis
is an upper bound on the maximal cost

Algorithm 1: A robust solution under a set of discrete
scenarios

Input: Initial parameters k = 0, λ0
X , the set of

selections Γdis, and a convergence tolerance
parameter ρ > 0.

Output: An optimal solution θRob,hRob

Step 1. Compute θk the optimal solution of problem
(10) using λk

X , X ∈ Γdis

Step 2. If ∀X ∈ Γdis the condition (11) is satisfied,
then output θk, hmin and STOP.
Step 3. Compute the λk+1

X :

if hmin =
∑

i∈N

ln(f(xi|θk+1) then λk+1
X = 1 else

decrease the Lagrange parameter using
λk+1

X = max(0, λk
X − ρ × (

∑
i∈N

ln(f(xi|θk+1) − hmin))

Step 4. k := k + 1, and go to Step 1.

of problem (6). Our algorithm (Algorithm 2) starts
with zero upper bound UB = 0 and initial parame-
ters θ∗ (for instance the optimal parameter for the
assignment of the mid-points of intervals) and empty
discrete scenario set, Γ∗

dis
= ∅. At each iteration, a

worst case assignment Xw for θ∗ is computed using
rules (7, 8) and (9). Clearly, L(θ∗) is an upper bound
of L(θRob). If a termination criterion is fulfilled (usu-
ally L(θ∗) ≤ UB−ǫ, ǫ > 0 is a given constant) then the
algorithm stops with an optimal robust parameter θ∗.
Otherwise the worst case selection Xw is added to Γ∗

dis
.

Next the updated problem (RX-ROB) is solved to
obtain a better candidate θ∗ for an optimal solution
to (5) and a new upper bound UB = hmin, based on
Γ∗

dis
. Since set Γ∗

dis
is updated during the course of

the algorithm, the computed values are upper bounds
that form a nonincreasing sequence of values. Then, a
new iteration is started.

Algorithm 2: Finding optimal robust parameters.

Input: Observations xi = [xi; xi], ∀i ∈ N , initial
parameters θ∗, a convergence tolerance
parameter ǫ > 0.

Output: An optimal robust parameter θRob

Step 0. k := 0, UB := 0, Γ∗
dis

:= ∅.
Step 1. θk := θ∗.
Step 2. Compute a worst case selection Xw for θk by
solving problem (3) using rules (7), (8), (9). Then let
h =

∑
i∈N

ln(f(xw
i |θ))

Step 3. If (h ≤ UB − ǫ) then output θk and STOP.
Step 4. k := k + 1.
Step 5. Xk := Xw, Γ∗

dis
:= Γ∗

dis
∪ {Xk}

Step 6. Compute an optimal solution θ∗ by
Algorithm 1, using Γ∗

dis
; then set UB = hmin and go

to Step 1.



2.3 The Case of Normal Distributions

We suppose that the random variable follows a normal
distribution:

f(x|(µ, σ)) =
1

σ
√

2π
e

−

(x − µ)2

2σ2 . (13)

Upper and lower likelihoods can be reformulated into

L(µ, σ) = min
X∈Γ

∏

i∈N

1

σ
√

2π
e

−

(xi − µ)2

2σ2 . (14)

L(µ, σ) = max
X∈Γ

∏

i∈N

1

σ
√

2π
e

−

(xi − µ)2

2σ2 . (15)

2.3.1 Determining the Upper and Lower

Likelihoods

The lower log-likelihood in the case of normal distri-
butions becomes:

ln(L(µ, σ)) = −( Nln(σ2)
2 +

1

σ2
max
X∈Γ

∑
i∈N

(xi − µ)2)

Likewise, the upper log-likelihood in the case of normal
distributions becomes:

ln(L(µ, σ)) = −( Nln(σ2)
2 +

1

σ2
min
X∈Γ

∑
i∈N

(xi − µ)2)

In this case the mode xm = µ∗ is the mean, and
since the normal distribution is symmetric, the general
equations (7, 8) and (9) that compute the worst and
the best case selections become respectively:

if µ∗ ∈] − ∞; xi[ then

{
xw

i = xi

xb
i = xi

(16)

if µ∗ ∈]xi; ∞[ then

{
xb

i = xi

xw
i = xi

(17)

if µ∗ ∈ [xi; xi] then





xb
i = µ∗

xw
i = xi if (xi − µ∗)2 > (xi − µ∗)2,

xi otherwise

(18)

It follows that the complexity for evaluating the lower
and the upper likelihoods is O(n).

2.3.2 Computing Robust Parameters

We can further decompose the problem of finding
robust parameters into a sequence of two problems:

• first find the robust optimal µrob, solving the
problem

ROBN,µ : min
µ

max
X∈Γ

∑
i∈N

(xi − µ)2
(19)

• and then compute the robust optimal σrob. We
get the variance around µrob using the optimal
selection Xw obtained at the previous step:

ROBN,σ : σrob =

√ ∑
i∈N

(xw
i

−µrob)2

n

(20)

Let us now focus on the problem ROBN,µ. Let µ =
1

n

∑
i∈N

xi and µ =
1

n

∑
i∈N

xi.

Proposition 2 The optimal solution µrob of the prob-
lem ROBN lies in [µ, µ].

Proof Suppose ∃µrob < µ. We have two cases. The

first one is: the selection Xw associated to µrob is the
same as the one for µ. We also know that, if µrob < µ

then
∑

i∈N

(xi − µrob)2 >
∑

i∈N

(xi − µ)2, since ∀X ∈ Γ,

the optimal value µop ∈ [µ, µ], that contradicts the

assumption that µrob is the optimal robust solution.

The second case is Xw = Xw
µ + δ where Xw

µ is the

worst case selection induced by µ and δ is a vec-

tor of non-negative values. So
∑

i∈N

(xw
i − µrob)2 >

∑
i∈N

(yi − µrob)2 and yi = (Xw
µ )i. We know that if

µrob < µ then
∑

i∈N

(xi − µrob)2 >
∑

i∈N

(xi − µ)2. Hence,
∑

i∈N

(xw
i − µrob)2 >

∑
i∈N

(yi − µ)2, which contradicts the

assumption that µrob is the optimal robust solution.
The proof for the upper bound is similar. �

In the following Algorithm 3, we use the derivative

d(
∑

i∈N

(xi − µ)2)

dµ
= 2nµ − 2

∑

i∈N

xi

.

Theorem 1 Algorithm 3 finds the optimal robust pa-
rameter µrob.

Proposition 3 The complexity of computing the op-
timal robust solution µrob and σrob is O(n.ln(|µ|)



Algorithm 3: Finding optimal robust parameters for
normal distribution.
Input: Observations [xi; xi], ∀i ∈ N , a convergence

tolerance parameter ǫ > 0.
Output: An optimal robust parameter µRob

Step 0. k := 0, a = µ, b = µ.
Step 1. Compute a worst case selection Xw

c for the
value c = 1

2 (a + b).
Step 2. Compute the value D = 2nµ − 2

∑
i∈N

xi for

the worst case selection Xw
c

Step 3. If D < 0 then a := c, else b := c.
Step 4. If a − b > ǫ then go to Step 1 else return
1
2 (a + b) and STOP.

Proof: The major part of one iteration of the di-
chotomy algorithm is spent computing the worst case
selection, which is O(n). Since the dichotomy algo-
rithm is O(ln(|µ|)) where |µ| depends on the width of
the interval [µ, µ] and the precision parameter ǫ, the
complexity of Algorithm 3 is O(n.ln(|µ|)). And since
σrob is directly computed from µrob, the complexity of
computing the optimal robust solution µrob and σrob

is O(n.ln(|µ|)). �

2.3.3 Robust Solution vs. Maximal Variance

The robust solution can be understood as the param-
eter µ that minimizes the maximal possible variance
under uncertainty (across all scenarios compatible with
the interval data). Note that the problem ROBN,µ

is a relaxation of the problem of maximization of the
variance of interval data [9]:

max
X∈Γ

∑

i∈N

(xi −
∑

i∈N

xi/n)2 (21)

since, in the latter, µ =
∑

i∈N

xi/n, while in problem

ROBN,µ, µ is an independent variable. Let (σmax)2 be
the maximal variance in problem (21). An imprecise
probability solution to the estimation problem could
be the set of normal distributions with µ ∈ [µ, µ]
and σ = σmax. However the robust solution has the
following property:

Proposition 4 σrob ≥ σmax

Proof: It is enough to notice that

n(σmax)2 = max
X∈Γ

min
µ

∑

i∈N

(xi − µ)2

≤ min
µ

max
X∈Γ

∑

i∈N

(xi − µ)2 = n(σrob)2
�

Assume there is a single worst case solution Xw in
problem ROBN,µ. In that case, the minimum is at-

tained for the mean value µrob =
∑

i∈N

xw
i /n, hence

σrob = σmax. The maximal variance solution is then
robust. However if there are several worst case solu-
tions Xw

j , j = 1, . . . k in problem ROBN,µ, µrob is the
intersection point of k parabolas

fj(µ) =
∑

i∈N

(xw
ji − µ)2,

while the maximal variance corresponds to the max-
imal ordinate of the minima of each parabola whose
abscissa is

µj =
∑

i∈N

xw
ji/n.

So the robust solution is a kind of compromise between
extreme data selections, and is more pessimistic than
the maximal variance solution.

3 Fuzzy Interval Uncertainty

We now use a more refined modeling of uncertainty
pervading the observations. They are modeled by
fuzzy intervals x̃i, ∀i ∈ N .

3.1 Selected Notions of Possibility Theory

A fuzzy interval Ã is a fuzzy set in R whose member-
ship function µÃ is normal, quasi concave and upper
semicontinuous. Usually, it is assumed that the sup-
port of a fuzzy interval is compact. The main property
of a fuzzy interval is the fact that all its α-cuts, that is,
the sets Ã[α] = {x : µÃ(x) ≥ α}, α ∈ (0, 1], are closed
intervals. We will assume that Ã[0] is the smallest
closed set containing the support of Ã. So, every fuzzy
interval Ã can be represented as a family of closed
intervals Ã[α] = [a[α], a[α]], parametrized by the value
of α ∈ [0, 1].

Let us now recall the possibilistic interpretation of
fuzzy intervals. Possibility theory [10] is an approach
to handle incomplete information and it relies on two
dual measures: possibility and necessity, which express
plausibility and certainty of events. Both measures
are built from a possibility distribution. Let a fuzzy
interval Ã be attached with a single-valued variable a
(an uncertain real quantity). The membership func-
tion µ

Ã
is understood as a possibility distribution,

πa = µ
Ã

, which describes the set of more or less plau-
sible, mutually exclusive values of the variable a. It
can encode a family of probability functions [11]. In
particular, a degree of possibility can be viewed as
the upper bound of a degree of probability [11]. The
value of πa(v) represents the possibility degree of the
assignment a = v, i.e. Π(a = v) = πa(v) = µ

Ã
(v),

where Π(a = v) is the possibility of the event that a
will take the value of v. In particular, πa(v) = 0 means



that a = v is impossible and πa(v) = 1 means that
a = v is fully plausible. Equivalently, it means that
the value of a belongs to an α-cut Ã[α] with confidence
(or degree of necessity) 1 − α. It can be viewed as a
random set defined by a multi-mapping from the unit
interval equipped with Lebesgue measure to intervals
consisting of cuts Ã[α] [14]. Discrete approximations
of π can also be viewed as random sets (m, F )π, with
nested focal sets Ei and masses m(Ei), such that:

{
Ei = {x ∈ R|π(x) ≥ αi}
m(Ei) = αi − αi−1

(22)

The possibility distribution is then approximated by:
π′(x) =

∑
x∈Ei

m(Ei) [12].

3.2 Fuzzy Interval Datasets

A fuzzy interval data set is a collection of fuzzy in-
tervals x̃i, i = 1 . . . , N whose membership functions
are regarded as possibility distributions πi restricting
the values of the xi’s. The xi’s are stochastically in-
dependent but their uncertainties are non-interactive.
We have thus extended the scenario set Γ from in-
tervals (see Section 2) to the fuzzy case and now Γ̃
is a fuzzy set of scenarios with membership function
µ

Γ̃
(X) = π(X), X ∈ R

n. The value of π(X) stands
for the possibility of the event that scenario X ∈ R

n

has occurred. Hence, the possibility distributions as-
sociated with the observations xi, forming the vector
X, induce the following possibility distribution over
all assignments in X ∈ R

n (see [13]):

π(X) = min
i=1,...,n

πi(xi). (23)

We see at once that the α-cuts of Γ̃ for every α ∈
[0, 1] are such that: Γ̃[α] = {X : π(X) ≥ α} =

[x
−[α]
1 , x

+[α]
1 ] × · · · × [x

−[α]
T , x

+[α]
T ], from (23) and the

definition of α-cut. Notice that Γ̃α, α ∈ [0, 1], is the
Cartesian product containing all selections (scenarios)
whose possibility of occurrence is not less than α.

3.3 Formulations of Likelihood under Fuzzy

Observations

In this section, we extend the definition of interval
likelihood to the case of fuzzy intervals. There are
several ideas that can be implemented to bring the
fuzzy interval maximal likelihood problem back to a
standard interval problem:

1. The simplest one is to turn fuzzy intervals into
intervals by taking the interval mean [14], the Au-

mann integral I(x̃i) =
∫ 1

0
[x

−[α]
i , x

+[α]
i ]dα. How-

ever, one may then wonder why to start with
fuzzy intervals in the first place.

2. Alternatively, we can solve the interval maximum
likelihood problem for each α-cut, which would
provide a set of possible solutions. If we remember
that the fuzzy interval can also be interpreted in
terms of subjective uncertainty, whereby 1 − α is
the degree of certainty that [x−[α], x+[α]] contains
the actual observation x, the optimal parameter
θ∗

α obtained from applying the interval approach

to the α-cuts {[x
−[α]
i , x

+[α]
i ] : i = 1, . . . , n} can

be interpreted as the robust value of the model
parameter corresponding to certainty 1−α, which
can be viewed as a degree of pessimism of the
solution. Indeed, if α = 1 we take an optimistic
view on the precision of the data, while if α = 0,
we assume the data is very imprecise and we try to
be robust in the face of large interval uncertainty.

3. Yet another approach consists in considering all
cuts of all fuzzy data x̃i namely,

{[x
−[α]
i , x

+[α]
i ] : i = 1, . . . , n, α ∈ [0, 1]}

as an equivalent set of interval data. In practice,
this data set can be approximated using a finite
set of cuts using equation (22). This approach
considers the set of fuzzy data as a convex set
of probabilities, induced by a random set in the
spirit of Couso and Sanchez [15]. Indeed, the fuzzy
data set is viewed as equivalent to a set of inter-
vals generated as follows: Picking i at random in
{1, . . . , n} and picking an α-cut at random ([0, 1]
is equipped with Lebesgue measure), obtaining
the interval [x−[α], x+[α]].

All above approaches are amenable to a solution via
the above proposed algorithms. These methods can
be considered as somewhat extreme, as the first one
does away with gradual membership, the second is
difficult to use in practice (how to choose the best
cut), and the third one considers two cuts of the same
fuzzy observations as equivalent to two cuts each from
a different observation, or in other words, fuzzy ob-
servations are the result of grouping together nested
interval observations. Our next approach is a kind of
trade-off between these views. Here we rely not on the
mean interval of each fuzzy interval separately, but on
the average of interval likelihoods obtained from all
data sets Γ̃α, α ∈ [0, 1].

3.4 The Average Robust Estimation

Problem

We define a mean interval likelihood as follows:



Definition 1 The mean interval likelihood under
fuzzy observations is [

∫
α∈[0,1]

Lαdα,
∫

α∈[0,1]
L

α
dα].

It can be approximated using a finite set of cuts using
equation (22) and the average likelihood can then be
expressed as:

[

k∑

j=1

m(Γ̃α
j )Lαj ,

k∑

j=1

m(Γ̃α
j )L

αj
] (24)

The estimation of minimal and maximal likelihood
under fuzzy observations can then be computed using
the formulae (7, 8) and (9) ∀i ∈ N, ∀j = 1, .., k.

This average interval likelihood approach can be
viewed as a balanced solution between working with
the cores of the fuzzy intervals and their supports,
while not letting cuts of a single fuzzy interval play
the same role as cuts of different fuzzy intervals.

In the context of fuzzy information, the average robust
problem can be formulated as follows:

Lrob = max
θ

k∑

j=1

m(Γ̃α
j ) min

X∈Γ̃α
j

∑

i∈N

ln(f(xi|θ)) (25)

The reader may object to this formulation, as it seems
that we give up our pessimistic point of view on inter-
val data. However, it is not straightforward to define
pessimism in a simple way in the face of fuzzy intervals.
Indeed, fuzzy intervals carry two dimensions of pes-
simism, horizontal and vertical. On the one hand, the
vertical dimension pertains to the choice of a cut of a
fuzzy interval. Taking a cut at level 1, is optimistic in
the sense that it is a narrow plausible range. Taking
the support is safe but perhaps yields too imprecise an
interval. On the other hand, the horizontal dimension
(which end of the cut to choose ?) is the one at work
in our approach to interval data, leading to take a
pessimistic view on variance in the presence of impre-
cision. The approach proposed here achieves a global
trade-off between vertical optimism and pessimism,
and retains a pessimistic horizontal view.

3.4.1 The General Case

For simplicity we assume the discretisation of the
membership set is such that ∀j = 1, .., k, m(Γ̃α

j ) = 1/k
(equidistant cuts).

Proposition 5 The problem (25) can be reformulated
as follows,

h∗ = max
θ

k∑

j=1

∑

X∈Γ̃
αj

dis

λ
αj

X × (
∑

i∈N

ln(f(xi|θ))) (26)

under the conditions: ∀X ∈ Γdis,

λ
αj

X =





1
nαj

if h∗ =
∑

i∈N

ln(f(xi|θ)),

0, otherwise,
(27)

where nαj
is the number of non-zero coefficients λ

αj

X .

In fact, nαj
is the number of functions

∑
i∈N

ln(f(x
[α]
i |θ))

that intersect at the maximum.

Proof: Note that if the Lagrange coefficients respect
the conditions (27), the expression (26) is equivalent

to h∗ = max
θ

k∑
j=1

nαj

nαj

× ( min
X∈Γdis

∑
i∈N

ln(f(xi|θ))). Hence,

the optimal solution of the previous expression (26) is
the same as the optimal solution of problem (25). �

We can also generalize Algorithms 1 and 2 to the case
of fuzzy observations by modifying Step 3 of Algorithm
1. This step becomes, for all X ∈ Γ̃

αj

dis
:

• if hmin
j =

∑
i∈N

ln(f(xi|θ)), then λ
k+1,αj

X = 1
nαj

• else λ
k+1,αj

X = max(0, min(λ
k,αj

X , 1
nαj

) −
ρ(

∑
i∈N

ln(f(xi|θk+1) − hmin
j )).

And Step 2 of Algorithm 2 must be used to find the
worst case selection for each j = 1, .., k.

3.4.2 The Case of Normal Distributions

In the case of fuzzy observations, the optimal mean
µ∗ belongs to the set of means µ for scenarios with
α = 0.

Proposition 6 The optimal value of the mean µ of
the problem ROBN is µrob ∈ [µ[0], µ[0]] with µ[0] =
1

n

∑
i∈N

xi
[0] and µ[0] =

1

n

∑
i∈N

xi
[0]

To generalize Algorithm 3 to fuzzy observations, Step 1
becomes: Compute the worst case selection Xw

j , ∀j =

1, .., k for the value c = 1
2 (a + b). And the derivative

of the likelihood function becomes 2nkµ − 2
k∑

j=1

∑
i∈N

xk
i

Proposition 7 The complexity of computing the op-
timal robust solution µrob and σrob is O(n.k.ln(|µ[0]|).

It is the same complexity as in the interval case but
increased by a factor k (the number of cuts of the
fuzzy intervals used in the algorithm).



4 Related Works

In the literature, a definition of likelihood under incom-
plete observations have been proposed by Dempster et
al. [3]. This is the basis of the classical EM algorithm.
Applied to our interval observations, it comes down to

Definition 2 The likelihood of θ under one imprecise
observation (x ∈ [x; x]) is L(θ, [x; x]) = P ([x; x]|θ) =∫

x∈[x;x]
f(x|θ) dx.

The problem (5) is replaced by

max
θ

P (Γ|θ) = max
θ

∏

i∈N

Pi([xi, xi]|θ) (28)

The EM method relies on the choice of an initial proba-
bility density, then compute averages over the intervals
[xi, xi], which provides a precise dataset from which
another density is obtained via maximal likelihood,
and the process starts again until convergence.

However, this approach is often presented as handling
latent unobserved variables, or missing values, not
especially interval-valued observations. Namely, the
authors using the EM algorithm rather present the
framework as one with two kinds of variables: X , a set
of observed variables with precise realizations x and Z
a set of non-observed variables, while here we consider
a set of incomplete observations of the same variable.
In the setting of the EM algorithm, an incomplete
observation is thus of the form x × Dom(Z), where
Dom is short for domain. In other words, observations
are set-valued, but form a partition of Dom(X ∪ Z)
into disjoint classes. So, moving from X to X ∪ Z
corresponds to a change in granularity, whereby the
second space is finer and the first can be viewed as
a partition of the second. In such a situation, it
sounds natural to consider that the likelihood f(x|θ) is
equated to the integral

∫
Dom(Z)

f(x × z|θ)dz (because

the data Z is supposed to be missing at random, i.e.,
f(x|θ) = f(x|z, θ)). Insofar as one is only interested
in events in the algebra formed by the coarse partition,
the formulation of the likelihood function as in the
EM approach is justified.

Recently, the EM algorithm has been generalized by
Denoeux [16] to the case of data taking the form of
mass functions of belief functions, and he also uses a
scalar likelihood function defined as a weighted average
of the EM likelihood:

Definition 3 The likelihood of of a single imprecise
observation xi described by a belief function with mass
function mi bearing on intervals [xj ; xj ] is L(θ, m) =∑

j m([xj ; xj ])L(θ, [xj ; xj ]).

Note that this definition also applies to fuzzy interval
data viewed as consonant belief functions, and thus
leads to yet another extension of maximum likelihood
estimation to fuzzy data, studied by Denoeux [17].

In the case of interval-valued observations viewed as im-
precise data (dealt with in our paper), the formulation
of likelihood after the EM algorithm looks question-
able.

On the one hand, there seems to be no point averaging
the probabilities f(xi|θ) over the interval [xi; xi], as if
computing the frequency of this event from a sample
space. Indeed, each observation [xi; xi] is a disjunctive
set, one value of which is the real (unique) realization
xi. This defect in observing the xi’s leads to possibilis-
tic uncertainty about the actual probability of their
realizations (knowing θ), better expressed by the in-
terval likelihood function [L; L]. It contrasts with the
problem of computing a frequency P ([x; x]|θ) based
on a collection of precise observations. In the latter
case, all observations inside [x; x] have been observed
(it is a conjunctive set). In contrast, each interval
[xi, xi] is the incomplete description of a single precise
observation xi. The EM approach seems to interpret
the equal possibility of all values in [x; x] as being
an equal probability, or at least, it seems to admit
the existence of a random process generating precise
values inside this interval. In the case of latent or
unobserved variables, it makes sense if they are indeed
driven by an unobserved random process. But this is
not our assumption in the case of interval uncertainty.

On the other hand, the overlapping nature of the inter-
val valued data makes it hard to assume the existence
of auxiliary random processes inside each interval,
while if the incomplete observations partition the sam-
ple space, this assumption may look more natural.

Besides, Definition 2 does not generalize the definition
of likelihood in the context of perfect observations,
since under this definition, the likelihood of precise
values is 0.

Here we view the intervals as describing epistemic un-
certainty bearing on the observations that stem from a
random process generating precise (even if grossly ob-
served) data. Another option could be to assume that
there is a second random process generating the inter-
vals surrounding the outcomes of the first one. This
purely aleatory view of imprecise observations is also
at work in the trend on fuzzy random variables after
Puri and Ralescu where they are interpreted as stan-
dard random variables whose images are functions [18].
However in this case, there would be three random
variables, say x, u > 0, v > 0, such that the observed
intervals are realizations of the form [x−u, x+v]. Then



we could rightfully define the likelihood function:

P ([xi, xi]|θ) =

∫

x
i
=x−u,xi=x+v

P (x, u, v|θ)dxdudv

and apply the EM algorithm. However, here we con-
sider the uncertainty pervading the observations xi is
not aleatory at all, it is just sheer lack of information
due to the coarseness of the observation tool, and the
width of the interval surrounding the xi’s is supposedly
not generated by a random process.

More recently, Hüllermeier [19] proposed an approach
similar to ours for simultaneously optimizing a model
and disambiguating the (interval-valued) data. He
presents the approach in terms of minimizing a loss
function, and applies it to regression and classification
problems. However, his idea comes down to maxi-
mizing the product of upper likelihoods in our set-
ting, while our proposal, more in the spirit of robust
optimisation, takes a pessimistic view on imprecise
observations. Note that our approach also leads to
disambiguating the data, albeit taking an opposite
view, covering potential dispersion of the actual data,
as testified by the use of extreme selections induced
by rules (7, 8, 9).

Let us compare the two approaches on a simple case
with two interval observations x1 ∈ [20, 30] and x2 ∈
[30, 40]. The result of minimizing the loss function
(maximizing the upper likelihood) is x1 = 30, x2 =
30 so µ = 30 and σ = 0. In contrast, the robust
approach applied to normal distributions will select
the values x1 = 20, x2 = 40 so µ = 30 and σ = 10. The
Hüllermeier approach can be understood as the fusion
of information items x ∈ [20, 30] and x ∈ [30, 40],
privileging the common parts, which is optimistic,
while our approach tends to assume the information
could be very dissonant, with a variance equal to 100.
See [20] for more comments along this line on the
optimistic approach. Note that the EM approach on
this case would maximise the product

LEM (θ) = P ([20, 30]|θ) · P ([30, 40]|θ).

Using normal distributions, it would lead to the opti-
mistic solution of Hüllermeier (a Dirac measure at 30)
to ensure LEM = 1. Note that the algorithm, assum-
ing the initial distribution is fixed through the choice
of θ0, will compute the expectations x̂1 and x̂2 inside
their intervals, and perform a likelihood maximization
using these precise expectations as new data, based on
the product of densities, getting a new value θ1, and
so on. This process will tend to shrink the expected
interval [x̂1, x̂2]. However if the support of the current
symmetric distribution lies inside [20, 40], LEM (θ) will
remain constant (0.25) and jumps to 1 for the Dirac
function on 30.

A natural issue is whether in the case of missing data,
one may replace them by the whole range of the ran-
dom variable, say an interval [a, b], or not. This is
immaterial for the EM algorithm applied to our setting
as P ([a, b]|θ) = 1 in any case. So, in our setting, the
EM algorithm would just neglect missing observations,
whether unsuccessful experiments are carried out or
not. On the contrary, in our approach, it makes a
difference, as can be seen in the next example.

Consider the case when the range of x is [0, 200], 10
precise observations at 100 were made and the result
of one experiment could not be properly observed, so
its value lies in [0,200]. The mean value is µ = 100 for
the three approaches including the robust one, but the
resulting distribution is the Dirac for the optimistic
solution of Hüllermeier and the EM approach while
the σ value of the robust approach is around 30 (not
excluding a maximal deviation from 100 in the failed
experiment). If now we have 10 precise observations
at 100 and 10 completely imprecise ones modelled
by [0,200]. The solution returned by the optimistic
approach of Hüllermeier and the EM approach will
still be a Dirac measure at 100 while the σ value of the
robust approach becomes close to 70. In our approach,
the imprecision of observations directly impacts the
variance of the identified density. So, unsuccessful
observations are not treated as observations not yet
carried out. Whether this distinction is meaningful or
not in all situations is a matter of debate.

More generally, in the case (perhaps unlikely in prac-
tice) where the dataset consists of overlapping intervals,
it is clear that any density function with support inside
the intersection of the intervals will ensure that the EM
likelihood function LEM = 1 in (28) since each term
has probability 1 in the product (the same remark ap-
plies if one maximizes the upper likelihood). However
our method will give a density whose standard devi-
ation reflects the width of the uncertainty intervals.
In this case, though, using a possibility measure to
represent the data may sound more appropriate than
a density that turns incompleteness into variability.

5 Conclusion

In this paper we propose to propagate the epistemic
interval uncertainty pervading a data set over to the
estimation of the likelihood. Then we propose an it-
erative algorithm which finds parameter values that
maximize the lower likelihood values among all data
sets compatible with the interval observations, under
not too restrictive conditions on the density function.
We have studied the case of normal distribution and
have shown that the computation of optimal mean and
variance can be achieved efficiently. As perspectives,



first we plan to compute robust parameter estima-
tions for other classical distributions. In particular,
the algorithm that finds optimal solutions can be im-
proved taking into account the specificities of density
functions (as for the normal distribution in this pa-
per). Another perspective is the study of robust linear
regression under imprecise observations. Finally, an
experimental validation step will be useful to compare
our results to those obtained by optimizing upper like-
lihoods, and methods in the style of the EM algorithm.
This approach will be applied to the determination of
robust production plans under ill-known demand mod-
elled by fuzzy intervals, in the production engineering
environment.
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