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Abstract—We study a deep/multi-layer structured matrix fac-
torization problem. It approximates a given matrix by the
product of K matrices (called factors). Each factor is obtained by
applying a fixed linear operator to a short vector of parameters
(thus the name ”structured”). We call the model deep or multi-
layer because the number of factors is not limited. In the practical
situations we have in mind, we typically have K = 10 or 20.

We provide necessary and sufficient conditions for the iden-
tifiability of the factors (up to a scale rearrangement). We also
provide a sufficient condition that guarantees that the recovery
of the factors is stable. A practical example where the deep
structured factorization is a convolutional tree is provided in an
accompanying paper.

I. INTRODUCTION

A. Content of the paper

We consider the following matrix factorization problem:
let m1 . . .mK+1 ∈ N, write m1 = m, mK+1 = n, and
let X ∈ Rm×n be a matrix. We study the approximation
of X by the product of factors X1 · · ·XK where Xj ∈
Rmj×mj+1 . As usual, to avoid trivial solutions and construct
useful factorizations, it is important that the factors are subject
to strong restrictions (such as computational constraints or
sparsity). In this paper, we impose the factors to be structured
matrices defined by a small number S of unknown parameters.
In practical application X contains some data and is only
specified indirectly and/or approximately.

More precisely, for k = 1 . . .K, let

Mk : RS −→ Rmk×mk+1 , (1)
h 7−→ Mk(h) (2)

be a linear map.
We consider the structured matrix factorization problem

involving K layers whose outputs are matrices Mk(h∗k) where
the vectors (h∗k)k=1..K are such that

M1(h∗1) . . .MK(h∗K) = X, (3)

when such a factorization exists.
We establish simple conditions on the structure of the oper-

ators Mk and X such that, up to obvious scale rearrangement,
the solution of (3) is unique.

When (3) has a solution, the set of all solutions coincides
with the set of minimizers

argmin(hk)k=1..K∈RKS ‖M1(h1) . . .MK(hK)−X‖2. (4)

However, when (3) does not have a solution but the operators
Mk are such that the function

(hk)k=1..K 7−→ ‖M1(h1) . . .MK(hK)−X‖2

is coercive (it clearly is continuous so (4) has solutions), a
solution of (4) can be useful even when (3) does not have any
solution. Therefore, the latter problem therefore appears to be
slightly more general and it still makes sense to study whether
(4) has a unique solution of not.

One motivation for this project was to understand whether
the kernels of convolutional trees [1] can be recovered and
to make progress concerning the recovery of deep sparse
factorizations [2]. These topics will be discussed in an ac-
companying paper, together with complementary results and
detailed proofs of the statements made in the publication.

The difficulty, when studying (3) and (4), comes from the
fact that, because of the product of the factors, they are in
general highly non-linear/non-convex. The non-uniqueness of
the solution if therefore not easy to characterize and, to the best
of our knowledge, there does not exists any general uniqueness
guarantee for this problem.

In this article, we first provide known and preliminary
results related to the considered structured deep factorization
model. Then we establish simple geometric necessary and suf-
ficient conditions guaranteeing the uniqueness of the solution
to (4) (see Corollary 2). The condition is then relaxed to obtain
a simpler sufficient condition (see Theorem 2)1. Then, we
generalize these properties and provide sufficient conditions
guaranteeing the stable recovery of the factors (up to scaling
ambiguity).

B. Examples of Multi-layer/deep structured matrix factoriza-
tion

Matrix factorization problems are ubiquitous in statistics
and data representation. In its simplest form, the model only

1Notice that this condition is not truly sufficient, since it fails to provide
the conclusion on a set of problems of measure 0. It, however, illustrates very
well the situations in which identifiability should hold.



contains one layer (i.e. K = 1). This is for instance the case
in linear approximation. In this case, X can be vectorized to
form a column vector and the operator M1 simply multiplies
the column vector h1 by a fixed (rectangular) matrix. Typically,
in this setting, the latter matrix has more rows than columns
and the uniqueness of the solution to (3) naturally relates to
its column rank.

Notice that the above linear approximation is often im-
proved using a ”non-linear approximation” [3]. In this frame-
work, the fixed matrix has more columns than rows and h1
contains the inputs of a sparse vector whose support is also
optimized to better approximate the data. This so called ”non-
linear approximation” is not under the scope of the present
paper. The knowledge of the support is a good example of the
kind of structure that we assume fixed in the present work.
The main focus of the present work is not to study if the
support is efficiently estimated (as is common in compressed
sensing and in other work providing quantitative estimates of
the reconstruction error).

The questions we are studying are mostly relevant when
K ≥ 2. In the case of such models, the non-linearity comes
from the multiplicative nature of (3) and the identifiability
is not easily guaranteed. Recently, in sparse coding and
dictionary learning (see [4] for an overview), X contains the
data and (most of the time) people consider two layers: K = 2.
The layer M1(h1) is an optimized dictionary of atoms and
each column of M2(h2) contains the code (or coordinates) of
the corresponding column in X . In this case, the mapping M2

maps a vector from a small vector space into a sparse matrix
having a prescribed support. Again, we make the simplifying
assumption that the supports are known (this is a strong
restriction that rules the dictionary learning models out of the
present study). Factorizations with K = 2 have also been
considered for the purpose of blind deconvolution [5], [6] and
blind deconvolution in random mask imaging [7].

Handcrafted deep matrix factorization of a few particular
matrices are used in many fields of mathematics and engi-
neering. In particular, most fast transforms are deep matrix
factorization. This is for instance the case of the Cooley-Tukey
Fast Fourier Transform, the Discrete Cosine Transform or the
Wavelet transform.

The construction of optimized deep matrix factorization
only started recently (see [8], [1] and references therein). In
[8], [1], the authors consider compositions of sparse convolu-
tions organized according to a tree, that is: a convolutional
tree. In the simplified case studied in [8], X is a vector,
the vectors hk are the convolution kernels and each operator
Mk maps hk in a circulant (or block-circulant) matrix. The
first layer corresponds to the coordinates/code of X in the
frame obtained by computing the compositions of convolutions
along the unique branch of the tree. Also, in [2], the authors
consider a factorization involving several sparse layers. In that
work, the authors simultaneously estimate the support and the
coefficients of each sparse factor.

C. Identifiability of the matrix factors

When K = 1, the identifiability of the matrix factors is a
simple, well investigated, issue.

When K = 2, the identifiability of the factors has been
studied in many dictionary learning contexts and provides
guarantees on the approximate recovery of both an incoherent
dictionary and sparse coefficients when the number of samples
is sufficiently large (i.e. n is large, in our setting). For instance,
[9] provides such guarantees under general conditions which
cover many practical settings. The problem significantly differs
from the present setting, since the support of the sparse factor
is assumed unknown while we assume it known.

When K = 2 some papers use the same lifting property we
are using. They further propose to convexify the problem and
provide sufficient conditions for obtaining the identifiability
and stability in specific contexts: Blind deconvolution in
random mask imaging [7] and Blind deconvolution [5]. A
more general bilinear framework is considered in [6], where
the analysis shares similarities with the results presented here
but are restricted to the identifiability when K = 2. Our work
extends these results by considering the identifiability and the
stability of the recovery for any K ≥ 2.

To the best of our knowledge, nothing is known concerning
the identifiability and the stability of a matrix factorization
when K > 2.

II. NOTATION

We continue to use the notation introduced in the introduc-
tion. For any integer k ∈ N, the set Nk = {1, . . . , k}.

We consider real valued tensors of order K whose axis are
of size S, denoted by T ∈ RS×...×S . The space of tensors is
abbreviated RSK

. The entries of T are denoted by Ti1,...,iK ,
where (i1, . . . , iK) ∈ (NS)K . The index set is simply denoted
NKS . For i ∈ NKS , the entries of i are i = (i1, . . . , iK) (for
j ∈ NKS we let j = (j1, . . . , jK) etc.). We either write Ti or
Ti1,...,iK .

A collection of vectors is denoted h ∈ RKS (i.e. using bold
fonts). Our collections are composed of K vectors of size S
and the kth vector is denoted hk ∈ RS . The ith entry of the
kth vector is denoted hk,i ∈ R. A vector not related to a
collection of vectors is denoted by h ∈ RS (i.e. using a light
font).

All the vector spaces RSK

, RKS , RS etc. are equipped with
the usual Euclidean norm. This norm is denoted ‖.‖ and the
scalar product 〈., .〉. In the particular case of matrices, ‖.‖
therefore corresponds to the Frobenius norm . We also use the
usual infinity norm and denote it by ‖.‖∞.

Set

RKS∗ = {h ∈ RKS ,∀k ∈ NK , ‖hk‖ 6= 0}. (5)

Define an equivalence relation in RKS∗ : for any h , g ∈ RKS ,
h ∼ g if and only if there exists (λk)k∈NK

∈ RK such that

ΠK
k=1λk = 1 and ∀k ∈ NK ,hk = λkgk.

Denote the equivalence class of h ∈ RKS∗ by [h].



We say that a tensor T ∈ RSK

is2 of rank 1 if and only if
there exists a collection of vectors h ∈ RKS such that T is
the outer product of the vectors hk, for k ∈ NK , that is, for
any i ∈ NKS ,

Ti = h1,i1 . . .hK,iK .

The set of all the tensors of rank 1 is denoted by Σ1.
The rank of any tensor T ∈ RSK

is defined to be

rk (T ) = min{r ∈ N| there exists T1, . . . , Tr ∈ Σ1

such that T = T1 + . . .+ Tr}.

For r ∈ N, let

Σr = {T ∈ RS
K

, rk (T ) ≤ r}.

The ∗ superscript refers to optimal solutions. A set with a
∗ subscript means that 0 is ruled out of the set. In particular,
Σ1,∗ denotes the non zero tensors of rank 1. Attention should
be paid to RKS∗ since its definition is not straightforward (see
(5)).

III. FACTS ON THE SEGRE EMBEDDING AND TENSORS OF
RANK 1 AND 2

Parametrize Σ1 ⊂ RSK

by the map

P : RKS −→ Σ1 ⊂ RSK

h 7−→ (h1,i1h2,i2 . . .hK,iK )i∈NK
S

(6)

The map P is called the Segre embedding and is often
denoted by Ŝeg in the algebraic geometry literature. We use
a simpler notation in the present paper since it is the only
non-linear mapping we are considering.

We will use the following standard facts:
1) Identifiability of [h] from P (h): For h and g ∈ RKS∗ ,

P (h) = P (g) if and only if [h] = [g].
2) Geometrical description of Σ1,∗: Σ1,∗ is a smooth

(i.e. C∞) manifold of dimension K(S − 1) + 1 (see,
e.g., [10], chapter 4, pp. 103).

3) Geometrical description of Σ2: When K = 2, Σ2 is
a smooth manifold of dimension 4(S − 1). When K ≥
3, there exists a closed set C ⊂ Σ2, whose Haudorff
measure of dimension 2K(S − 1) + 2 is 0, such that
Σ2\C is a smooth manifold of dimension 2K(S−1)+2.
See, e.g., [10], chapter 5.

Define

‖[h]− [g]‖∞ = inf
h′∈[h],g′∈[g]

‖h′ − g′‖∞. (7)

Theorem 1. Stability of [h] from P (h)
Let h and g ∈ RKS∗ be such that ‖P (h)‖∞ ≥ ‖P (g)‖∞

and
‖P (g)− P (h)‖∞ ≤

1

2
‖P (h)‖∞.

We have

‖[h]− [g]‖∞ ≤ 5‖P (h)‖
1
K−1∞ ‖P (h)− P (g)‖∞. (8)

2These tensors are also called decomposable.

It is not difficult to build a simple example for which,
modulo the 5 factor, the bound is reached. The upper bound
in (8) is therefore tight, modulo a universal constant factor.

Notice that, if h and g ∈ RKS∗ are such that (for instance)
h1 = g1, we have ‖[h] − [g]‖∞ = 0 even though we might
have h2 6= g2. In that case, typically, the infimum in (7) is not
reached. This implies that our definition of ‖[.]− [.]‖∞ is not a
distance between equivalence classes. Using this property we
can easily build two collections of vectors h and g ∈ RKS∗
such that ‖[h]− [g]‖∞ = 0 but ‖P (h)− P (g)‖∞ 6= 0.

IV. THE LIFTING PRINCIPLE

We return to problem (4) and make the link between this
problem and a problem involving tensors of rank 1. We begin
with the following elementary observation (that can be shown
by induction on K):

Proposition 1. The entries of the matrix

M1(h1)M2(h2) . . .MK(hK)

are multivariate polynomials whose variables are the entries
of h ∈ RKS . Moreover, every polynomial is the sum of
monomials of degree K. Each monomial is a constant times
h1,i1 . . .hK,iK , for some i ∈ NKS .

Notice that any monomial h1,i1 . . .hK,iK is the entry P (h)i
in the tensor P (h). Therefore every polynomial in the previous
proposition take the form

∑
i∈NK

S
ciP (h)i for some constants

(ci)i∈NK
S

independent of h. In words, every entry of the matrix
M1(h1)M2(h2) . . .MK(hK) is obtained by applying a linear
form to P (h). This leads to the following statement.

Corollary 1. Let Mk, k ∈ NK be as in (1). The map

(h1 . . .hK) 7→M1(h1)M2(h2) . . .MK(hK),

uniquely determines a linear map

A : RS
K

−→ Rm×n,

such that for all h ∈ RKS

M1(h1)M2(h2) . . .MK(hK) = AP (h). (9)

Notice that it is most of the time very difficult to provide
a closed form expression for the operator A. However, when
the operators Mk are known, we can compute AP (h), using
(9). Said differently, we can compute A for any rank 1 entry.
Therefore, since A is linear, we can compute AT for any low
rank tensor T . In practice, if the dimensionality of the problem
permits it, it is possible to build a basis of RSK

made of rank
1 tensors. It is then possible to manipulate A in this basis.

Using Corollary 1, we rewrite the problem (4) in the form

h∗ ∈ argminh∈RKS ‖AP (h)−X‖2. (10)

We now decompose this problem into two sub-problems: A
least-squares problem

T ∗ ∈ argminT∈RSK ‖AT −X‖2 (11)



and a non-convex problem

h′∗ ∈ argminh∈RKS ‖A(P (h)− T ∗)‖2. (12)

Proposition 2. For any X , A and any T ∗ solving (11):
1) Any solution h′∗ of (12) also minimizes (10) and (4).
2) Any solution h∗ of (4) and (10) also minimizes (12).

Proof. The proof relies on the fact that for any T ∗ ∈
argminT∈RSK ‖AT −X‖2, we have

At(AT ∗ −X) = 0,

where At is the adjoint of A, which implies that for any T ∗ ∈
argminT∈RSK ‖AT −X‖2 and any h ∈ RKS

‖AP (h)−X‖2 = ‖A(P (h)− T ∗) + (AT ∗ −X)‖2,
= ‖A(P (h)− T ∗)‖2 + ‖AT ∗ −X‖2

+2〈A(P (h)− T ∗), (AT ∗ −X)〉,
= ‖A(P (h)− T ∗)‖2 + ‖AT ∗ −X‖2.

In words, ‖AP (h)−X‖2 and ‖A(P (h)− T ∗)‖2 only differ
by an additive constant. Moreover, since the value of the
objective function ‖AT ∗−X‖2 is independent of the particu-
lar minimizer T ∗ we are considering, this additive constant
is independent of T ∗. As a consequence, a minimizer of
‖AP (h) − X‖2 also minimizes ‖A(P (h) − T ∗)‖2 and vice
versa.

From now on, because of the equivalence between solutions
of (12) and (10), we stop using the notation h′∗ and write
h∗ ∈ argminh∈RKS ‖A(P (h)− T ∗)‖2.

V. IDENTIFIABILITY IN THE NOISE FREE CASE

Throughout this section, we assume that X is such that there
exists h ∈ RKS such that

X = M1(h1) . . .MK(hK). (13)

Under this assumption, X = AP (h), so

P (h) ∈ argminT∈RSK ‖AT −X‖2.

Moreover, we trivially have P (h) ∈ Σ1 and therefore h
minimizes (12), (4) and (10).

We ask whether there exist guarantees that the resolution of
(4) allows one to recover h (up to the usual uncertainties).

In this regard, for any h ∈ [h], we have P (h) = P (h)
and therefore AP (h) = AP (h) = X . Thus unless we make
further assumptions on h, we cannot expect to distinguish
any particular element of [h] using only X . In other words,
recovering an element of [h] is the best we can hope for.

Definition 1. We say that [h] is identifiable if the elements of
[h] are the only solutions of (4).

We say that RKS is identifiable if [h] is identifiable for every
h ∈ RKS .

Proposition 3. Characterization of the global minimizers
For any h∗ ∈ RKS , h∗ ∈ argminh∈RKS ‖AP (h)−X‖2 if

and only if
P (h∗) ∈ P (h) + Ker (A) .

Corollary 2. Necessary and sufficient conditions of identi-
fiability

1) For any h ∈ RKS: [h] is identifiable if and only if

(P (h) + Ker (A)) ∩ Σ1 = P (h).

2) RKS is identifiable if and only if

Ker (A) ∩ Σ2 = {0}. (14)

The drawback of Corollary 2 is that, given a factorization
model described by A, it might be difficult to check whether
the condition (14) holds or not. In reasonably small cases, one
can use tools from numerical algebraic geometry such as those
described in [11], [12].

We now establish a simpler condition on the rank of
the operator A related to the identifiability of RKS . More
precisely, there is a set3 of matrices A of measure 0 such that
for any A outside this set, the condition on the rank of A is
sufficient to guarantee the identifiability of RKS . The Theorem
therefore provides a simple clue telling us if a factorization
model can recover any h.

Theorem 2. Almost surely sufficient condition for Identi-
fiability

When K = 2, for almost every A such that rk(A) ≥
2K(S − 1), RKS is identifiable.

When K ≥ 3, for almost every A such that rk(A) ≥
2K(S − 1) + 2, RKS is identifiable.

Proof. We only provide the proof when K ≥ 3 since the proof
when K = 2 is similar.

When rk(A) ≥ 2K(S − 1) + 2, we have dim(Ker (A)) =
SK − rk(A) ≤ SK − (2K(S − 2) + 2) = SK − dim(Σ2). As
a consequence,

dim (Ker (A)) + dim(Σ2) ≤ SK .

where we remind that SK is the dimension of the ambient
space. Therefore, by taking the Zariski closure of Σ2 over
the complex numbers, and since everything is invariant under
rescaling, the non-intersection follows from a standard result
of algebraic geometry (see [13], Thm 17.24). Since the man-
ifolds do not intersect when defined using complex numbers,
their restriction over R will not intersect either.

VI. STABLE RECOVERY IN THE NOISY CASE

In this section, we assume that X is such that there exists
h ∈ RKS and some error e satisfying

X = M1(h1) . . .MK(hK) + e

with
‖e‖ ≤ δ. (15)

This can equivalently be written

X = AP (h) + e.

3It seems unfortunately difficult to know whether a particular matrix is in
this set or not.



The question we address is : Can we establish guarantees
that any solution of (4) is close to h (up to the usual
uncertainties)?

First note that for any minimizer

h∗ ∈ argminh∈RKS ‖AP (h)−X‖2,

we have

‖A(P (h∗)− P (h))‖ ≤ ‖AP (h∗)−X‖+ ‖AP (h)−X‖
≤ 2‖AP (h)−X‖
≤ 2δ

Geometrically, this means that P (h∗) belongs to a cylinder
centered at P (h) whose direction is Ker (A) and whose
section is defined using the operator A.

If we further decompose (the decomposition is unique)

P (h∗)− P (h) = T + T ′,

where T ∈ Ker (A) and T ′ is orthogonal to Ker (A), we have

‖A(P (h∗)− P (h))‖ = ‖AT ′‖ ≥ σmin‖T ′‖, (16)

where σmin is the smallest non-zero eigenvalue of A. We
finally obtain

‖P (h∗)− P (h)− T‖ ≤ 2δ

σmin
. (17)

The term on the left-hand side corresponds to the distance
between a point in Σ2 (namely P (h∗) − P (h)) and a point
in Ker (A) (namely T ). As already illustrated in the previous
section, if the two manifolds intersect away from 0, ‖P (h∗)−
P (h)− T‖ might be small while both ‖P (h∗)− P (h)‖ and
‖T‖ are large. This is neither compatible with the identifiabil-
ity nor, of course, with the stable recovery of h. In order to
exclude this scenario, we define the following hypothesis on
Ker (A).

Definition 2. Let γ > 0, we say that Ker (A) is γ-transverse
to Σ2 if there exists ε > 0 such that for any T ∈ Σ2 and any
T ′ ∈ Ker (A) satisfying ‖T − T ′‖ ≤ ε, we have

γ(‖T‖+ ‖T ′‖) ≤ ‖T − T ′‖.

This means that, for T ∈ Σ2 and T ′ ∈ Ker (A), the only
option in order to get ‖T − T ′‖ ≤ ε is that both ‖T‖ and
‖T ′‖ are small. Moreover, this implies that, in the vicinity of
0, Ker (A) and Σ2 are not tangential. This can be understood
as some kind of Restricted Isometry Property for our structured
multi-layer matrix factorization problem.

Theorem 3. Sufficient condition for stable recovery
Assume Ker (A) is γ-transverse to Σ2, for γ > 0, for any

h∗ ∈ argminh∈RKS ‖AP (h)−X‖2,

and for δ sufficiently small,

‖P (h∗)− P (h)‖ ≤ 2

γ σmin
δ,

where σmin is defined in (16) and δ is defined in (15).
Moreover, if [h] 6= 0

‖[h∗]− [h]‖∞ ≤
10

γ σmin
‖P (h)‖

1
K−1∞ δ, (18)

Proof. Using (17) and the γ-transversality, we know that for
2δ
σmin

≤ ε, we have

2δ

σmin
≥ γ ‖P (h∗)− P (h)‖.

Using Theorem 1 and the fact that ‖P (h∗) − P (h)‖∞ ≤
‖P (h∗)− P (h)‖, we finally get (18).

This proposition provides a sufficient condition to get stable
recovery. The only significant hypothesis made on the factor-
ization problem is that Ker (A) is γ-transverse to Σ2. One
might ask whether this hypothesis is sharp or not. In this
regard, it seems clear that if it does not hold:
• either, away from 0, Ker (A) and Σ2 become arbitrary

close: Again two situations might occur: either their
closures intersect and we cannot expect stable recovery;
or they become close, at infinity. The latter situation
should not occur sinse the objective function is coercive.

• or near 0, Ker (A) and Σ2 are tangential. Again this is
not compatible with stable recovery.

REFERENCES

[1] H. W. J. T. O. Chabiron, F. Malgouyres, “Optimization of a fast
transform structured as a convolutional tree,” preprint HAL, no. hal-
01258514, 2016.

[2] L. L. Magoarou and R. Gribonval, “Flexible multi-layer sparse approxi-
mations of matrices and applications,” arXiv preprint arXiv:1506.07300,
2015.

[3] R. Devore, “Nonlinear approximation,” Acta Numerica, vol. 7, pp. 51–
150, 1998.

[4] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse
representation,” Proc. IEEE - Special issue on applications of sparse
representation and compressive sensing, vol. 98, no. 6, pp. 1045–1057,
2010.

[5] A. Ahmed, B. Recht, and J. Romberg, “Blind deconvolution using con-
vex programming,” Information Theory, IEEE Transactions on, vol. 60,
no. 3, pp. 1711–1732, 2014.

[6] S. Choudhary and U. Mitra, “Identifiability scaling laws in bilinear
inverse problems,” arXiv preprint arXiv:1402.2637, 2014.

[7] S. Bahmani and J. Romberg, “Lifting for blind deconvolution in random
mask imaging: Identifiability and convex relaxation,” SIAM Journal on
Imaging Sciences, vol. 8, no. 4, pp. 2203–2238, 2015.

[8] O. Chabiron, F. Malgouyres, J.-Y. Tourneret, and N. Dobigeon, “Toward
fast transform learning,” International Journal of Computer Vision, pp.
1–22, 2014. [Online]. Available: http://dx.doi.org/10.1007/s11263-014-
0771-z

[9] R. Gribonval, R. Jenatton, F. Bach, M. Kleinsteuber, and M. Seibert,
“Sample complexity of dictionary learning and other matrix factoriza-
tions,” Information Theory, IEEE Transactions on, vol. 61, no. 6, pp.
3469–3486, June 2015.

[10] J. Landsberg, Tensors: Geometry and Applications, ser. Graduate
studies in mathematics. American Mathematical Soc., 2012, vol. 128.
[Online]. Available: https://books.google.fr/books?id=JTjv3DTvxZIC

[11] J. D. Hauenstein and A. J. Sommese, “Witness sets of projections,”
Applied Mathematics and Computation, vol. 217, no. 7, pp. 3349 –
3354, 2010.

[12] ——, “Membership tests for images of algebraic sets by linear pro-
jections,” Applied Mathematics and Computation, vol. 219, no. 12, pp.
6809 – 6818, 2013.

[13] J. Harris, Algebraic geometry: a first course. Springer Science &
Business Media, 2013, vol. 133.


