
A Multi-Core Interference-Aware Schedulability Test for

IMA Systems, as a Guide for SW/HW Integration

Soukayna M’Sirdi, Wenceslas Godard, Marc Pantel

To cite this version:

Soukayna M’Sirdi, Wenceslas Godard, Marc Pantel. A Multi-Core Interference-Aware Schedu-
lability Test for IMA Systems, as a Guide for SW/HW Integration. 8th European Congress
on Embedded Real Time Software and Systems (ERTS 2016), Jan 2016, TOULOUSE, France.
Proceedings of the 8th European Congress on Embedded Real Time Software and Systems
(ERTS 2016), <http://www.erts2016.org/>. <hal-01289687>

HAL Id: hal-01289687

https://hal.archives-ouvertes.fr/hal-01289687

Submitted on 17 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01289687

A Multi-Core Interference-Aware Schedulability Test for IMA
Systems, as a Guide for SW/HW Integration

Soukayna M’Sirdi1,2, Wenceslas Godard1, and Marc Pantel2

1Airbus Group Innovations, Toulouse, France, surname.lastname@airbus.com
2IRIT, Toulouse, France, surname.lastname@irit.fr

Abstract—In this paper we propose a framework for
the automated integration and timing analysis of IMA
(Integrated Modular Avionics) applications on multi-core
environments. To do so, we present a derivation of the
response time analysis formulation by Kim et al. in [12]
that takes into account inter-task interference due to
sharing the access to the main memory. We adapt the
work in [12] to propose a sufficient schedulability test
that is adapted both to IMA systems and heterogeneous
multi-core platforms. We then exploit this test to guide the
design space exploration during the SW/HW integration
phase, to select a partition-to-core allocation so that
all deadlines are met despite the existence of hardware
interference.

Keywords: multi-core – IMA – interference – re-
sponse time analysis

I. INTRODUCTION

A. IMA Applications

Modern avionic software systems are designed ac-
cording to the Integrated Modular Avionics (IMA)
architecture model, where (i) applications are defined as
one or several software partitions; (ii) several partitions
can share the same hardware resources, provided that
constraints on time and space isolation are respected
between each partition. Such isolation requirements are
imposed for safety reasons, to prevent the propagation
of a fault that happened inside a specific partition, to all
other partitions in the software embedded in a system.

IMA software is organized in two layers: at the top
level, a schedule is set in advance to plan the executions
of the partitions in a TDMA-like fashion. To do so,
activation offsets and time windows are allocated to
each partition. We refer to this top level schedule as the
global schedule of the system. Within the boundaries of
the time window of a given partition, a local scheduler
dynamically executes the software tasks inside each
partition, usually according to fixed priority preemptive
policy. The local scheduler operates with no knowledge
about the global schedule. In the other hand, the global
schedule has to suit the tasks needs, in the sense that the
sizes of the partitions time windows must adapt to the
tasks running during these time interval. In this paper,
we compute the size of a partition’s time window such
that the task with the lowest priority level only executes
once per window. How we compute the activation
offsets of the time windows is out of the scope of
this paper though.

During the integration phase of a system design, the
allocation of the software platform onto the hardware

platform is done, as well as the generation of a valid
static global schedule. Setting in advance the global
schedule enables to enforce an execution plan that
has been verified and validated first. In particular, the
global schedule must fit the needs of the local schedule
inside the time window of each partition, and always
ensure the respect of every deadline defined in the entire
system. To verify and validate the global schedule,
a formal proof of correctness, such as with static
timing analysis, is the preferred choice for certification
authorities.

B. Multi-Cores and Inter-Task Interference

In multi-core processors, all cores have simultaneous
access to shared resources, through shared interconnec-
tions. All the requests made to one resource cannot be
processed at the same time, which results in waiting
delays at runtime. Such interference between tasks
of different partitions, simultaneously executing on
different cores, significantly extend the execution times
of the tasks, and thus, the sizes of the time windows of
the partitions. Since these interference delays may lead
to deadline violations, they must be bounded during
timing analysis.

However, the sharing level implied by multi-core
environments leads to an explosion of the number of
possible situations to consider to find the Worst Case
Execution Times (WCET) of the tasks, so that static
timing analysis at code level on multi-core is quite
difficult and not solved today. On the other hand, the
electronic market is evolving so fast that single-core
processors will soon become obsolete, and will not be
produced anymore. Avionic system designers will then
have no choice but to move to multi/many-core designs.
This represents a major challenge for IMA systems,
since no consolidated approach to guide the transition of
IMA applications from single- to multi-core platforms
has been put forward so far.

C. Contributions

In this paper, we propose a framework for automated
integration and timing analysis, of legacy IMA software
on multi-core processors. To do so, we first present
a sufficient schedulability test that is interference-
aware, and compatible both with IMA applications and
heterogeneous multi-core processors. The test is based
on an extension of the response time analysis presented
in [12], and computes safe bounds on inter-task memory
interference.

As a second contribution, we exploit the resulting
IMA, multi-core interference-aware response time anal-
ysis, in an optimization framework to automate the
SW/HW allocation and scheduling analysis during the
system integration phase. The schedulability test is used
as a guide to perform design space exploration, and
to find an optimized partition-to-core mapping. The
optimization criteria we rely on is the minimization
of the total workload of the system. By exploiting
such an interference-aware schedulability test inside the
allocation search, the solution is guaranteed to preserve
the feasibility of the final system, despite the additional
delays that might appear due to resource sharing.

Finally, our framework enables to produce bounds
for the tasks Worst-Case Response Times (WCRT), as
well as for the inter-task memory interference. Such
bounds are crucial to formally prove the feasibility
of the system, but also to determine the minimum
requirements for the time window of each partition,
which is mandatory in order to set in advance a valid
scheduling plan of the global system.

D. Paper Outline

The paper is organized as follows: section I in-
troduces IMA systems, our problem statement and
contributions. Section II gives some insight on the
integration process and avionic requirements. Section
III gives an overview of the state of the art related to our
work. Section IV presents our system model. Section
V then presents our extension of the interference-
aware response time analysis to IMA and multi-core
contexts. Section VI presents the allocation process
implemented in our framework. Section VII presents
the implementation and results of our work, and section
VIII finally concludes our paper.

II. AVIONICS SYSTEMS

A. IMA Systems Integration

During the integration phase of a system design, the
software platform is allocated to the hardware platform.
The person in charge of this task is called the system
integrator. Software functions are usually designed by
one or several different suppliers, and are delivered
to the system integrator before the beginning of the
integration phase. As tasks are scheduled dynamically,
their schedule is not set in advance, but each supplier
must have verified and validated the schedulability of
the tasks of each delivered partition. The job of the
system integrator is then to take care of the global
schedule, by computing the size and activation offset
of the time windows of each partition. We consider
legacy code, which means the schedulability analysis
performed by each supplier has been verified for single-
core environments. Thanks to the sufficient test we
present in this paper, the tasks schedulability is verified
again during the integration phase, to take into account
the fact that partitions will be running in parallel,
by including additional inter-task and inter-partition
interference delays due to sharing the main memory.

One schedulability test that may be used is the response
time analysis, which leads to the computation of a
bound on the WCRT of each task.

After the production of WCRT bounds, the integrator
is able to assess the minimum size required for the time
window of each partition: the window must be large
enough for the tasks inside the considered partition
to complete their execution, even in the worst-case.
Once all sizes have been set, the integrator decides of
activation dates for the beginning of each time window,
starting from the instant when the system is switched on.
IMA partitions are periodic, i.e. a time window must
be reserved for each partition at a periodic rate. We
consider this information as implying not only a period,
but also an implicit deadline per partition, equal to the
period, since each partition must be assigned a window
before its next periodic activation. As a consequence,
one important step of the integration process is to verify
that, for each partition, time window sizes and activation
dates match the periodicity of the partition. If it is not
the case, the integrator must consider another SW/HW
allocation, for instance by increasing the number of
embedded processors for instance. The integrator is
likely to have to try different SW/HW allocations before
finding a configuration that complies to the requirements
of all the described steps.

Eventually, the chronograph resulting from the global
schedule consists in the pattern that will be repeated
cyclically on the system, for as long as it is switched on.
This pattern is also called the major frame. In this paper,
we do not address the schedule generation activity of
the integration phase.

B. Avionics Requirements
Final validation of avionic systems is done through

a thorough certification process, shepherded by various
regulations and recommended practices (like [5], [4]
for instance). In 2014, the Certification Authorities
Software Team (CAST) submitted a first position paper
regarding multi-core processors [1]; static, assymetric
scheduling is recommended, as it enables to reuse
existing code without modification, and since global
scheduling would require further proofs and analyses
when looking for certification. CAST encourages the
privatization of shared resources as much as possible.
This goes in the sense of IMA needs, where the more
private to each partition are the resources, the better
it is. As a consequence, we assume the main memory
and shared caches are partitioned into areas private
to each core. This reduces the number of inter-core
interference to consider: dividing shared cache levels
into areas private to each core suppresses inter-core
cache interference, as tasks on different cores are unable
to evict each other’s data. However, partitioning the
main memory into core-private areas does not suppress
inter-core interference, as long as the memory controller
is still shared by the cores. Because all requests
cannot be handled simultaneously by the controller,
it results in waiting delays at runtime, and thus, inter-
core interference, even in the case of a main memory

privatized at core level. In this paper, whenever we
mention main memory interference, we actually refer
to the inter-core interference due to sharing the memory
controller.

To be in line with CAST multi-core study: (i) we
consider static partitioned scheduling for partitions:
each partition is statically assigned to a core, where it
will be activated from the beginning till the end of the
life cycle of the system; (ii) main memory and shared
caches are partitioned at core level. However, some
avionic functions might implement inter-partition com-
munications. In such cases, we assume memory banks
are exceptionally shared, between the two partitions
concerned; these banks store the shared data.

III. STATE OF THE ART

In the literature, no consolidated approach to guide
the transition of IMA applications from single-core
to multi-core platforms has been put forward so far,
so the problem is still open. To our knowledge, our
work is the first to combine, inside one approach
for the allocation search: (i) an interference-aware
multi-core schedulability test; (ii) the computation of
a maximum bound for memory interference per task;
(iii) the computation of a maximum bound for the
WCRTs of the tasks taking interference into account.
In addition, our approach is also the first to consider, at
the same time: (i) IMA architectures: tasks are defined
inside partitions, which implies additional activities and
verifications to be handled during software integration,
like the computation of the sizes of the time windows
of the partitions; (ii) the possible heterogeneity of the
platform: in heterogeneous multi-cores, the execution
duration of a piece of code depends on the core it
is executed on: as a consequence, each task has one
execution time in isolation per core.

Table I summarizes the characteristics of related work.
The main characteristic of our contribution is the joint
management of the allocation and scheduling analysis,
with interference considerations. To our knowledge,
only [15] and [10] handle these two activities at the
same time. However, the interference-aware sched-
ule generated in [15] relies only on a selection of
measured execution times of the tasks when running
simultaneously with each other, thus no safe bound
on interference per task is produced. In [10], model
checking is performed to obtain a reliable schedule,
and thus safe bounds on tasks worst-case interference.
However the author makes strong assumptions on the
hardware architecture, which are currently verified only
in the Kalray MPPA multi-core COTS [2], and neither
the heterogeneity nor the IMA environment are taken
into account. In [9] the interference-aware schedule is
produced after data path analysis thanks to a detailed
hardware model of the platform, which implicitly leads
to interference bounds. The work presented in [13]
relies on runtime monitoring to dynamically adapt
a scheduling plan, thanks to regular comparisons of
the remaining time available for each task before its

deadline, and its theoretical remaining execution time
required to finish, computed in isolation at observation
points. Thus no bound on task interference is given,
and the correctness of the final schedule is more
difficult to prove. In [6], the authors propose an
interference-aware multi-core response time analysis
that takes into account inter-task interference due to
sharing access to the DRAM, cache and bus resources.
The framework does not implement any automatic
allocation search process though, and is applicable
neither to heterogeneous platforms, nor to IMA software
architectures. Eventually, the IMA architecture is only
considered in scheduling analyses, and except for the
work in [9], the heterogeneity is considered only for
the allocation search without interference issues.

IV. MODEL OF THE SYSTEM

Let Np and Nt respectively denote the total number
of partitions and tasks of the software platform, and
Nc the number of cores of the multi-core processor of
the hardware platform. Tasks are denoted as τi, and are
ordered by their unique priority levels i: τi has a higher
priority than τj if i is smaller than j. We model tasks as
a vector τi � pCi, Di, Ti, Hiq with Ci � pC1

i ... C
Nc
i q

and Hi � pH1
i ... H

Nc
i q. In the vector Ci, each Cki is

the worst-case execution duration of τi when running
in isolation on the core k. The Cki parameters can be
deduced from static WCET analysis of the code, with
tools like OTAWA [7] for example. Similarly, Hi gives
the maximum number of data requests to the memory
that τi can issue depending on its core assignment; a
bound on each element of Hi can be extracted after
static code analysis. Ti is the period of τi, and Di its
deadline.

We model partitions as a vector πi � pEi, Piq, where
Ei is the size of the time window to be reserved for
πi, and Pi is the period of πi. As explained in the
introduction, we compute Ei such that the task with
the lowest priority level only executes once per window.
To ensure an accurate time window size, Ei is computed
after the response time analysis, to guarantee a window
large enough for the tasks to complete their execution
in the worst-case:

@i, Ei � max
τjPpartpiq

pRjq (1)

where partpiq contains the tasks belonging to the par-
tition πi. Indeed, by definition, the WCRTs correspond
to the situation where every task is preempted as many
times as possible during its execution. In our case,
we consider all tasks of a partition to be released
simultaneously at the beginning of each time window.
Priority levels are unique, i.e. two different tasks cannot
have the same priority level. As such, for a given
partition, the task with the lowest priority level has
been preempted as many times as possible by all other
tasks of the same partition. As a consequence, if τj
is the task with the lowest priority level of πi, then
Rj accounts not only for the execution time of τj , but
also for the execution times of all other tasks of the

Related
Work

Avionic
Systems

Heterogeneity Allocation Interf.-Aware
Schedule

Interference
Bounding

Bradford et al. [9] yes yes no yes yes
Paolieri et al. [15] no no yes yes no
Baruah et al. [8] no yes yes no no
Tamas et al. [16] no yes yes no no

Giannopoulou et al. [10] no no yes yes yes
Kritikakou et al. [13] no no no yes no

Altmeyer et al. [6] no no no yes yes
our work yes yes yes yes yes

TABLE I: Summary of related work contributions

partition. τj is then the task with the biggest WCRT,
and can be used to compute the required size of the
time window of its partition as described in equation
(1).

The task-to-partition mapping is defined by the matrix
PART as follows:

PARTji �

"
1 if τi P πj ,
0 otherwise (2)

Inter-partition communications are modeled by the
matrix M as follows:

Mij �

"
1 if πi and πj exchange data,
0 otherwise (3)

Except for Ei, all these parameters are given as
inputs to our framework. Additional parameters are
computed though. To perform the scheduling analysis,
the following variables are defined, for each task τi:

 Bi is a maximum bound on inter-task interference
due to sharing the main memory;

 Ri is the WCRT of the task;

 isopiq is the element Cki of the vector Ci where
k corresponds to the index of the core to which
τi has been allocated.

These three sets of variables are computed automatically
by our framework during schedulability analysis, as will
be explained later in this paper.

To perform the allocation search, we implement in
our framework the matrix a, defined as follows:

aij �

"
1 if πj is allocated to core i,
0 otherwise. (4)

Eventually, to ease the explanations of the inter-
ference mathematical model, we also introduce the
following sets:

 partpiq contains the tasks belonging to the parti-
tion πi: partpiq � tτj , PARTij � 1u

 coreppq contains the tasks belonging to the core
p: coreppq � tτi, apj � 1, τi P partpjqu

V. IMA RESPONSE TIME ANALYSIS

A. Definition

The response time analysis first computes the WCRTs
Ri of the tasks τi, and then, compares the results with
the corresponding deadlines: tasks are schedulable if
and only if Ri is smaller than Di. In non-IMA, single-
core systems, Ri is computed as the fixed-point solution

of the following iterative equation, defined by M. Joseph
and P. Pandya [11]:

Rk�1
i � C

1

i �
¸
@j,

τjPhppτiq

R
Rki
Tj

V
C

1

j (5)

where k is the iteration number and C
1

i is the execution
duration of τi in isolation. For the first iteration, R0

i is
set to C

1

i . The second term in (5) refers to the maximum
waiting delay due to the preemption of τi by tasks with a
higher priority. The set containing such tasks is denoted
hppτiq.

B. Transposition to IMA, Multi-Core Environments

1) Multi-Core: In equation (5), all tasks of the sys-
tem are on the same single-core processor. In multi-core
environments, the tasks are rather dispatched among
the cores of the processor. In theory if interferences are
ignored, the situation is equivalent to considering Nc
independent single-core processors, so that equation (5)
can be easily reused: the set hppτiq will then refer to
the tasks of higher priorities that are mapped on the
same core than τi, since only the tasks on the same core
as τi could be able to preempt it. As a consequence, if
τi is mapped to core p:

Rk�1
i � isoi �

¸
@j,τjPhppτiq

and τjPcoreppq

R
Rki
Tj

V
isoj (6)

with isoi being equal to Cpi by definition. To compute
isoi during the WCRT analysis, the core on which
τi is allocated must be retrieved. However, in IMA
architectures, tasks belong to partitions, and it is the
partitions – not the tasks – that are assigned to a
core. Thus, to compute isopiq: (i) the partition to
which τi belongs is identified first, (ii) the core to
which the corresponding partition has been assigned
is identified, and then (iii) isopiq is deduced as equal
to the element of the vector Ci corresponding to the
core identified in the second step. The mathematical
equation corresponding to the computation of isopiq is
the following:

@i, isopiq �

Np¸
p�1

PARTpi �

�
Nç

k�1

akp.C
k
i

�
(7)

Indeed, PARTpi will be non null only if πp is the
partition to which τi belongs; then, the term akp will
be non null only if πp is allocated to core k, which

leads to the identification of the index k of the core
on which πp, and thus τi, is mapped, and then to the
duration Cki .

2) IMA partitions: In IMA architectures, further
refinement of equation (6) can be given, according to
the two-level schedule. A task can be executed only
within the time window of its partition. This implies that
the only tasks susceptible to preempt τi must belong
to the same partition as τi. As a consequence, equation
(6) becomes:

Rk�1
i � isopiq �

¸
@j,τjPhppτiq

and τjPpartpiq

R
Rki
Tj

V
isopjq (8)

C. Main Memory Interference Model

As mentioned in section I-B, the response time
analysis (5) is often compositionally augmented to
consider additional latencies likely to appear in practice.
In our case, we add to the response time analysis in
equation (6), a bound Bi of the maximum interference
delay each task can suffer due to sharing the main
memory:

Rk�1
i � isopiq �

¸
@j,τjPhppτiq

and τjPpartpiq

R
Rki
Tj

V
isopjq �Bi

(9)
As shown in figure 1, the memory is divided into banks,
and each bank is divided into columns and rows. When
a request is treated by the memory controller, the bank
to access is identified first, then the row. When a task
issues a memory request, the waiting delay suffered
before the request is satisfied depends on the order in
which the pending requests are treated by the memory
controller. We implemented the DRAM memory model
presented in [12], where a detailed model of intra- and
inter-bank access delays is given, based on a realistic
memory model implementing FR-FCFS (First Ready-
First Come First Serve) protocol.

The approach in [12] presents two computation
methods, and chooses the minimum value of the two
produced bounds for each task. The maximum bounds
produced thanks to the two methods will be referred
to as Bi,method1 and Bi,method2 respectively.

We present here the mathematical model of memory
interference of [12], as well as our modifications leading
to our final response time analysis formulation. Due
to lack of space, we will only give a brief description
of the model, and for a more detailed explanation,
interested readers are invited to read [12].

1) Method 1: Request Driven Approach: In the
request driven approach, the maximum delay suffered
by a request on one core is assessed. To do so, two
types of interference are considered: inter- and intra-
bank interference.

For a request req issued by one core p, the worst
case situation happens when: (i) every other core issued
a request just before req; (ii) none of these requests
targets the same memory bank as req; (iii) the treatment
of each of these requests take the longest latency

Fig. 1: Model of Memory Banks

possible, lmax – which happens when neither the
previous bank, nor the previous row were accessed just
before, and the type of the request is always different
than the preceding one. The computation of lmax is
explained in detail in [12], and depends on standard
DRAM timing parameters that can be found in the
DRAM datasheet (see table 1 of [12] for instance). As
a consequence, the inter-bank interference delay for a
request issued by the core p is:

RDinter
p �

¸
@q,q�p and

sharedpp,qq�∅

lmax (10)

where sharedpp, qq is the set of memory banks shared
by the cores p and q. In our model, the sets sharedpp, qq
can be deduced from matrices a and M . In particular,
sharedpp, qq is empty only if no partition on core q is
sharing a memory area with any partition on core p.
This translates into the terms api, aqj and Mij being
equal to zero for all partition πi belonging to p and
all partition πj belonging to q. As a consequence, the
emptiness of sharedpp, qq can be assessed in our model
as follows:

psharedpp, qq � ∅q �

�
Np¸
i�1

Np¸
j�1

api � aqj �Mij � 0

�

(11)
Equation (10) is the inter-bank interference delays, in
the case where no request to the same bank as req was
produced. In the case where requests to the same bank
as req are issued, the longest interference delay for req
to be serviced happens when: (i) all the other cores q
that share access to the same bank as core p emitted
a request before req; (ii) all these requests concern
access to a different row; (iii) a memory reordering is
happening. If L is the row-conflict service time, to open
a row before accessing a column, then the worst-case
delay per such request is L�RDinter

q . The intra-bank
interference delay suffered by req issued by the core
p is thus:

RDintra
p � reorderppq�

¸
@q,q�p and

sharedpp,qq�∅

pL�RDinter
q q

(12)
As for lmax, L depends on standard DRAM parameters
that can be found in the memory’s datasheet (see [12]
for a detailed description). Reorderppq computes the
delay of req due to the reordering effect (see [12] for a
detailed description). Following the same reasoning than

in the previous paragraphs, sharedpp, qq is non empty
only if there exists a partition on core q that is sharing a
memory area with a partition on core p. This translates
into the terms api, aqj and Mij being both equal to
one for at least one partition πi belonging to p and
one partition πj belonging to q. As a consequence, the
emptiness of sharedpp, qq can be assessed as follows:

psharedpp, qq � ∅q �

�
Np¸
i�1

Np¸
j�1

api � aqj �Mij � 0

�

(13)
Finally, the total maximum interference delay a request
originating from the core p can experience is equal to:

RDp � RDinter
p �RDintra

p (14)

Each task τi of core p having Hp
i requests to issue,

the total maximum interference delay directly caused
by the issuing of these requests is bound by Hp

i �RDp.
Tasks being preemptible though, the cost of memory
requests of tasks with higher priorities has also to be
accounted for. Therefore, the bound on τi’s memory
interference is defined as follows:

Bi,method1 � Hp
i �RDp�

¸
@j,τjPhppτiq

τjPpartpiq

R
Rki
Tj

V
Hp
j �RDp

(15)
2) Method 2: Job Driven Approach: In the second

method, the author of [12] focuses on how many
interfering memory requests are generated during the
execution of a task. The maximum number of requests
generated by a core p during a time interval t, Apptq,
depends on the number of generated requests by its
tasks that are executed during that same time interval:

Apptq �
¸

@τiPcoreppq

R
t

Ti

V
Hp
i (16)

As an IMA environment, during the execution of τi,
only the tasks of the same partition as τi are eligible
to emit requests for a given core. Thus the maximum
number of requests that core p can generate during the
execution of τi is:

Apptiq �
¸

@τjPpartpiq

R
ti
Tj

V
Hp
j (17)

where ti is the time interval during which τi is executed.
Once the maximum number of memory requests gen-

erated during a given time interval has been expressed
thanks to the definition of Ap, one can express inter-
and intra-bank interference delay imposed on a core p
during a time interval t, respectively:

JDinter
p ptq �

¸
@q,q�p and

sharedpp,qq�∅

Aqptq � lmax (18)

JDintra
p ptq �

¸
@q,q�p and

sharedpp,qq�∅

pAqptq � L� JDinter
q q

(19)
Finally, to consider the maximum memory inter-

ference delay τi can suffer, equations (18) and (19)

compute the elapsed time between the beginning and
the end of the execution of τi. To produce a bound that
is safe in the worst-case situation, the time interval to
consider is Ri. As a consequence, if τi is allocated on
the core p, then the maximum bound for the memory
interference it can experience during its execution is
given by:

Bi,method2 � JDinter
p pRiq � JDintra

p pRiq (20)

D. Final Definition of Ri and Bi
Methods 1 and 2 being about the computation of

maximum bounds, Bi is set to the less pessimistic of
the two:

Bi � min pBi,method1 , Bi,method2q (21)

Eventually, the final formula to compute safe bounds on
the WCRTs to perform the analysis is given in equation
(9), where Bi is computed according to equation (21).

VI. ALLOCATION PROCESS

During the allocation process, the system integrator
decides on which processor each partition will be
executed. In the case of assymetric scheduling on
a multi-core processor, the integrator should decide
on which core each partition will be allocated. An
allocation then refers to a partition-to-core mapping,
each partition being supposed to run on the same core
from the beginning till the end of life of the system.

After an allocation has been chosen, the system
integrator then sets a global schedule for each core of
the multi-core. To do so, the integrator first computes
the size of each partition time window, and then sets an
offset for the activation of each window inside the major
frame of each core. The size of a time window depends
on the tasks supposed to run within its boundaries:
the window should be large enough for all these tasks
to complete their executions. The offset of a window
should be chosen so that the end of the window is
before the beginning of the next period of the partition.

If these conditions are verified, the resulting global
schedule on each core are considered to be valid,
as well as the partition-to-core allocation that led to
such schedules. If on the contrary, it is not possible
to find a valid schedule for at least one core of the
multi-core, another allocation must be selected. The
allocation phase is thus important, since the validity of
the computed global schedules depends on it.

We propose to automate the SW/HW allocation
process of the design phase of a system. To do so,
we perform an exhaustive search for a valid allocation
using constraint programming. The constraints represent
the scheduling requirements of the system. To be able
to do so, we rely on equation (9) to guide the search.
Figure 2 summarizes our exploration process:

a) Step 1: the first step consists in choosing an
allocation, in order to evaluate if it is a potential
solution for the SW/HW integration. The allocation
is chosen automatically by the framework, among all
the possible combinations. Eventually, all allocations
will be evaluated during the exploration process.

Fig. 2: exploration process

b) Step 2: The second step represents an early
verification that each partition window can end before
the next period. This cannot be verified with certainty
before knowing the activation offsets in the global
schedule, nor before computing the tasks WCRT with
equation (9). However, if one window happens to be
larger than the period of the corresponding partition,
then the selected allocation could never lead to a
valid global schedule. As a consequence, we add the
following constraints, to help the early rejection of such
invalid allocations:

@i, Ei ¤ Pi (22)

where Ei is computed according to equation (1), and
each Ri with equation (8). If this condition is not
respected, the search process goes back to step 1 and
a new allocation is chosen.

c) Step 3: If step 2 is successful, Ri and Bi are
computed for all tasks thanks to equations (9) and (21).

d) Step 4: The schedulability of the tasks in
the multi-core allocation currently under evaluation
is assessed. Tasks are schedulable if and only if:

@i, Ri ¤ Di (23)

e) Step 5: If step 4 is successful, we update the
sizes Ei of the time windows of the partitions: now
that the interference-aware WCRTs of the tasks are
available, we have to check that the time windows
are still large enough in the worst-case, i.e. when the
durations of the tasks are equal to their Ri. If it is
not the case, the window size of the corresponding
partitions are increased accordingly thanks to equation
(1).

f) Step 6: The sixth step is based on the same
principle as the second step, evaluated with the new Ei
values. If a window Ei is larger than the corresponding
period Pi, it means that the currently assessed allocation
may lead to deadline violations due to memory inter-
ference. The search process then rejects the currently

evaluated allocation as invalid, and goes back to the
first step to choose a new allocation.

g) Step 7: If the sixth step is successful though,
the current allocation is stored as a valid solution.

h) Step 8: The last step of the process is the
selection of a solution among the valid allocations that
were stored at step 7. We propose to do so according
to an optimization criteria. Our framework selects the
solution that minimizes the total workload of the system.
We justify our choice by the fact that this parameter
is a performance characteristic, but also because it is
proportional to inter-task interference delays, which add
up to the tasks executions. Because of these delays,
(i) the extra time available before tasks deadlines are
reached at runtime is drastically shortened, and (ii) the
integrator is given less flexibility for the setting of a
valid global schedule for each core in the considered
allocation. The objective function we defined in our
framework is the following:

minimize
Nţ

i�1

Ri
Ti

(24)

VII. IMPLEMENTATION

We implemented the optimization problem proposed
in this paper, to assess the benefits that can be drawn
from its use. To do so, we compared several qualities of
the solution returned by our approach, to the solutions
that would have been returned by ”classic” approaches,
meaning approaches without interference consideration.
As explained before, no such classic approach exists, so
we modified a copy of our optimization problem into a
classic allocation problem: we remove the interference
bound in equation (9), but we still compute it thanks
to equation (21), to get the corresponding interference.
The resulting process is referred to as ”classic approach”
or ”interference-oblivious solving” in the rest of the
paper. We implemented the optimization problem in
CPLEX [3], that has been running on a computer with
an Intel Core i7 2.20 GHz processor with 16Gb of
RAM.

A. Presentation of the Case Study

We derived a case study from the report [14], which
presents a specification of an avionics Mission Control
Computer (MCC) system. No mention is made about
an IMA architecture, nor about maximum numbers of
requests to the main memory by the tasks, but for the
sake of the analysis, (i) we consider each function to
correspond to a partition, as if each one had been
designed by a different supplier; (ii) we randomly
generate Hk

i values for each task, ranging from low to
intensive usage of the main memory, respectively 1 and
40 requests per microsecond [12]. We also built the Ci
vectors by deriving the execution time in isolation given
for each task in the report. The data corresponding to
our case study is summarized in table II.

Partition tasks Ci (ms) Ti (ms) Di (ms) Pi (ms)
1 C1=(8, 7.2, 7.6, 6.4) 55 55 480

C2=(6, 5.4, 5.7, 4.8) 80 80
2 C3=(2, 1.8, 1.9, 1.6) 40 40 480

C4=(2, 1.8, 1.9, 1.6) 80 80
C5=(2, 1.8, 1.9, 1.6) 480 200

3 C6=(4, 3.6, 3.8, 3.2) 40 40 480
C7=(1, 0.9, 0.95, 0.8) 480 40
C8=(2, 1.8, 1.9, 1.6) 480 40
C9=(1, 0.9, 0.95, 0.8) 480 200

4 C10=(1, 0.9, 0.95, 0.8) 10 5 480
C11=(7, 6.3, 6.65, 5.6) 100 100
C12=(1, 0.9, 0.95, 0.8) 480 200
C13=(1, 0.9, 0.95, 0.8) 4800 200
C14=(2, 1.8, 1.9, 1.6) 480 400
C15=(6, 5.4, 5.7, 4.8) 480 400

5 C16=(1, 0.9, 0.95, 0.8) 1920 40 1920
C17=(1, 0.9, 0.95, 0.8) 1920 40
C18=(6, 5.4, 5.7, 4.8) 52 52
C19=(6, 5.4, 5.7, 4.8) 52 52
C20=(8, 7.2, 7.6, 6.4) 52 52
C21=(1, 0.9, 0.95, 0.8) 100 200
C22=(2, 1.8, 1.9, 1.6) 1000 1000
C23=(1, 0.9, 0.95, 0.8) 1920 200
C24=(1, 0.9, 0.95, 0.8) 1920 200

6 C25=(1, 0.9, 0.95, 0.8) 100 200 480
C26=(2, 1.8, 1.9, 1.6) 480 400

7 C27=(2, 1.8, 1.9, 1.6) 200 200 480
C28=(3, 2.7, 2.85, 2.4) 480 100

8 C29=(5, 4.5, 4.75, 4) 1000 400 1920
C30=(1, 0.9, 0.95, 0.8) 1920 200
C31=(10, 9, 9.5, 8) 1920 800

(a) Description of the tasks and partitions

Hi used for the first test
H1 = (160000, 144000, 152000, 128000)

H2 = (30000, 27000, 28500, 24000)
H3 = (42000, 37800, 39900, 33600)
H4 = (70000, 63000, 66500, 56000)
H5 = (44000, 39600, 41800, 35200)
H6 = (80000, 72000, 76000, 64000)
H7 = (21000, 18900, 19950, 16800)
H8 = (14000, 12600, 13300, 11200)
H9 = (15000, 13500, 14250, 12000)
H10 = (12000, 10800, 11400, 9600)

H11 = (133000, 119700, 126350, 106400)
H12 = (2000, 1800, 1900, 1600)

H13 = (26000, 23400, 24700, 20800)
H14 = (20000, 18000, 19000, 16000)

H15 = (6000, 5400, 5700, 4800)
H16 = (1000, 900, 950, 800)

H17 = (26000, 23400, 24700, 20800)
H18 = (192000, 172800, 182400, 153600)
H19 = (240000, 216000, 228000, 192000)

H20 = (80000, 72000, 76000, 64000)
H21 = (7000, 6300, 6650, 5600)

H22 = (52000, 46800, 49400, 41600)
H23 = (34000, 30600, 32300, 27200)
H24 = (29000, 26100, 27550, 23200)
H25 = (14000, 12600, 13300, 11200)
H26 = (24000, 21600, 22800, 19200)
H27 = (48000, 43200, 45600, 38400)
H28 = (60000, 54000, 57000, 48000)

H29 = (135000, 121500, 128250, 108000)
H30 = (340000, 306000, 323000, 272000)

H31 = (10000, 9000, 9500, 8000)

(b) Vectors Hi used in the first test

TABLE II: Case Study Data

B. Tests Performed

As we will explain in detail in the next paragraphs,
we performed two different experimentations. In both
cases, our goal is to compare the solution returned
by our framework with the solution that would have
been provided by interference-oblivious processes. The
comparison is made on the basis of the workload
reduction achieved thanks to our framework, but also on
the interference percentage, and the slowdown suffered
by the tasks, in the selected solution.

1) Test 1: In the first test, the number of cores Nc of
the multi-core platform is the only variable parameter.
We ask, both our framework and a classic allocation
search, to find an allocation of the eight partitions
described in table II on Nc cores. The Hi vectors used
in the first test are described in table IIb. The maximum
possible number of cores is eight, corresponding to the
situation where each partition is allocated alone on a
core. The result of the allocation search is either a valid
SW/HW allocation, or the answer that there exists no
valid solution for the number of cores considered. As
we will explain in detail in subsection VII-C ”Results”,
no solution was found for Nc greater than or equal to
five; that is the reason why the Ci and Hi vectors in
table II only contain four elements each, and not eight.

2) Test 2: Since memory interference depends on
the Hi values, the comparison results and the realized
performance gains are very data-dependent. To get a
general appreciation of the optimization gain achievable
thanks to our framework, we test different intensities

of memory utilization by the tasks. Such a second
test also enables to see the evolution of inter-partition
interference with the intensity of the memory usage
by the tasks. As mentioned earlier, memory utilization
intensity varies approximately between 1 and 40 re-
quests per microsecond per task. As a consequence in
this second test, there are two variable parameters: Nc
and the vectors Hi. We use data from table IIa but not
from table IIb, and we build the vectors Hi as follows
instead, for all tasks τi and all cores k:

Hk
i � Cki pin µsq � x, x P t1, 10, 20, 30, 40u (25)

C. Results

For both tests, our framework was unable to find
solutions for Nc greater than 4. On the contrary, in the
classic approach, the search always finds a solution,
but after analysis of the output memory interference
bounds Bi, the solution appears not to be valid in
reality: some bounds lead to actual WCRTs being
bigger than the deadline of the corresponding tasks,
which invalidates the feasibility of the selected solution.
The difference between our framework and the classic
approach being the interference consideration, we can
draw the conclusion that our framework prevents from
choosing allocations that, later on during the schedule
planning phase, appear to be infeasible. This also
implies that our work enables to reduce the time spent
during the last phases of a system design.

(a) total workload

(b) interference percentage in the total
workload

(c) median slowdown percentage

Fig. 3: Results of the first test

In terms of computation time, solutions were always
found in less than 10 seconds with two cores, 62
seconds with three cores and 7 minutes with four cores.

1) Test1: Figure 3 shows the results of the first
test. According to the figure, our framework always
returns a better solution than the classic approach,
the difference between the two solutions being more
noticeable for three cores. We were able to show some
significant performance enhancement, with up to 36.9%
of workload reduction, 46.6% of interference reduction
and 50.4% slowdown reduction.

2) Test 2: Figure 7 displays the results of the
second test. The graphs on the left show the results
corresponding to our framework, whereas the graphs
on the right correspond to the solution with classic
approaches for the allocation search. The same legend
is used in all graphs, to ease results interpretation. In all
runs performed, the solution found with our framework
is better than with classic approaches, by allowing
up to 39.6% workload reduction, 54.5% interference
reduction and 44.4% slowdown reduction.

Eventually, for a given value of Nc, one can see
the evolution of workload, interference and slowdown
depending on the intensity of memory usage by the
tasks. All three parameters increase with the usage
intensity. The only exception is for four cores in figures
4b and 5b: workload and interference obtained with x
equal to 40 in equation (25) are respectively lower than
with x equal to 30, and is quite close to the solution
found by our framework. Memory interference can only

increase with the number of memory requests, since
tasks using intensively the main memory are more likely
to suffer more from interference than the tasks that only
perform a small number of requests to the memory
per execution. This implies that the classic approach
managed by chance to find an optimized solution for
x equal to 40, but failed to do so for x smaller than
40. This can be considered as an expected observation,
since the objective function (24) in classic approaches
ignores the Bi terms in the computation of the WCRTs.

Another remark for a given number Nc can be
made when we compare our framework to interference-
oblivious search. The speed of the increase of workload,
interference and slowdown respectively is slower in
figures 4a, 5a and 6a than in figures 4b, 5b and 6b,
which is an interesting quality for a system integrator.
The difference of speed is more visible in the graphs
of figures 4a and 5a than in figure 6a though. This
is due to the fact that our optimization criteria is the
workload reduction. In the future, it might be interesting
to experiment multi-objective cost functions, to have
multiple parameters guiding the search and solution
selection.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a derivation of the re-
sponse time analysis in [12] to adapt it to IMA systems
and heterogeneous multi-core platforms. The resulting
response time analysis gives a sufficient schedulability
test for IMA applications in heterogeneous multi-core
environments. We then proposed to reuse this schedula-
bility test to guide the design space exploration during
the SW/HW integration design phase of IMA systems.
To do so, we formulated an optimization problem
to perform a timing-aware SW/HW allocation search.
On the two implemented tests, our results showed
that our approach enabled a real performance gain,
by achieving up to 54.5% workload reduction, 54.9%
memory interference reduction, and 50.4% slowdown
reduction at runtime. In the future, we plan on refining
the interference model, in order to take more than just
main memory interference into account.

REFERENCES

[1] CAST-32, ”Multi-core Processors”, 2014.
[2] ”http://www.kalrayinc.com/”.
[3] IBM ILOG, Cplex CP Optimizer. Website: http://www-

01.ibm.com/software/commerce/optimization/cplex-cp-
optimizer/.

[4] RTCA Radio Technical Commission for Aeronautics, ”Software
Considerations in Airborne Systems and Equipment Certifica-
tion”, 1992.

[5] SAE International, ”Aerospace Recommended Practice
ARP4754 – Guidelines For Development Of Civil Aircraft
and Systems”,issued 1996; published 2010.

[6] Sebastian et al. Altmeyer. A generic and compositional
framework for multicore response time analysis. In Real-
Time Network and Systems (RTNS), 2015 23th International
Conference on, pages 129–138. ACM, 2015.

[7] Clément Ballabriga, Hugues Cassé, Christine Rochange, and
Pascal Sainrat. OTAWA: an open toolbox for adaptive WCET
analysis. In Software Technologies for Embedded and Ubiq-
uitous Systems - 8th IFIP WG 10.2 International Workshop,
SEUS 2010, Waidhofen/Ybbs, Austria, October 13-15, 2010.
Proceedings, pages 35–46, 2010.

(a) in the solution obtained with our framework (b) in the solution obtained with classic approaches

Fig. 4: average workload per core (%)

(a) in the solution returned by our framework (b) in the solution returned by classic approaches

Fig. 5: average interference due to memory sharing (%)

(a) in the solution returned by our framework (b) in the solution returned by classic approaches

Fig. 6: average inter-task slowdown (%)

Fig. 7: Results of the second test: our approach (4a; 5a; 6a) versus classic approach (4b; 5b; 6b)

[8] Sanjoy K. Baruah. Partitioning real-time tasks among hetero-
geneous multiprocessors. In 33rd International Conference on
Parallel Processing (ICPP 2004), 15-18 August 2004, Montreal,
Quebec, Canada, pages 467–474, 2004.

[9] Richard Bradford, Shana Fliginger, Rockwell Collins, Cedar
Rapids, Sibin Mohan, Rodolfo Pellizzoni, Cheolgi Kim, Marco
Caccamo, Lui Sha, et al. Exploring the design space of ima
system architectures. In Digital Avionics Systems Conference
(DASC), 2010 IEEE/AIAA 29th, pages 5–E. IEEE, 2010.

[10] Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang,
and Lothar Thiele. Mapping mixed-criticality applications
on multi-core architectures. In Design, Automation & Test
in Europe Conference & Exhibition, DATE 2014, Dresden,
Germany, March 24-28, 2014, pages 1–6, 2014.

[11] Mathai Joseph and Paritosh K. Pandya. Finding response times
in a real-time system. Comput. J., 29(5):390–395, 1986.

[12] Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark H.
Klein, Onur Mutlu, and Ragunathan Rajkumar. Bounding
memory interference delay in cots-based multi-core systems.
In 20th IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS 2014, Berlin, Germany, April
15-17, 2014, pages 145–154, 2014.

[13] Angeliki Kritikakou, Christine Rochange, Madeleine Faugère,
Claire Pagetti, Matthieu Roy, Sylvain Girbal, and Daniel Gracia
Pérez. Distributed run-time WCET controller for concurrent
critical tasks in mixed-critical systems. In 22nd International
Conference on Real-Time Networks and Systems, RTNS ’14,
Versaille, France, October 8-10, 2014, page 139, 2014.

[14] Douglas Locke, Lee Lucas, and John Goodenough. Generic
avionics software specification. Technical Report CMU/SEI-
90-TR-008, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 1990.

[15] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla,
Robert I. Davis, and Mateo Valero. IAˆ3: An interference
aware allocation algorithm for multicore hard real-time systems.
In 17th IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS 2011, Chicago, Illinois, USA,
11-14 April 2011, pages 280–290, 2011.

[16] Domitian Tamas-Selicean and Paul Pop. Design optimization
of mixed-criticality real-time applications on cost-constrained
partitioned architectures. In Proceedings of the 32nd IEEE
Real-Time Systems Symposium, RTSS 2011, Vienna, Austria,
November 29 - December 2, 2011, pages 24–33, 2011.

