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Nesrine Ouannes, Nouredinne Djedi, Hervé Luga, Yves Duthen. Modeling a bacterial ecosystem
through chemotaxis simulation of a single cell. Artificial Life and Robotics, Springer Verlag,
2014, 19 (4), pp.382-387. <10.1007/s10015-014-0187-4>. <hal-01290846>

HAL Id: hal-01290846

https://hal.archives-ouvertes.fr/hal-01290846

Submitted on 18 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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1 Introduction

Artificial life research has made progress in the study of 

adaptive behavior through computational models of artifi-

cial organisms. Remarkably simple chemical reactions can 

perform movements toward attractants, and are in principle 

capable of modulating the behavior of artificial organisms. 

We will demonstrate in this work that a simple process of 

evolved bacterial chemotaxis can explain the emergence 

of more complicated behaviors seen in bacterial popula-

tion dynamics. In terms of bacterial chemotaxis, this issue 

can be explored by looking at the influence of signaling 

network parameters on the spatiotemporal dynamics of 

bacteria that migrate toward chemical attractants and away 

from repellents. Cell chemotaxis is one of the simplest 

behaviors known, and it likely is one of the first behaviors 

to have existed in the history of life on earth. In bacterial 

chemotaxis such as that of Escherichia Coli (E. Coli), a 

bacterium typically tends to swim in a random walk, punc-

tuated with periods of straight swimming sprints (or runs) 

interrupted by brief tumbles that causes the bacterium to 

change direction when the concentration of attractant or 

repellant is uniform or undetectable. In response to attract-

ant gradient, this random walk becomes biased, and the 

bacteria tumble less frequently when encountering increas-

ing attractant concentrations (i.e., they swim longer runs), 

and tumble more frequently when the attractant concentra-

tion decreases [1].

Phosphorylation cascade in a chemotactic pathway was 

simulated by a lot of works, in [2] a theoretical analy-

sis of a full system of ODEs included phosphorylation 
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cascade, and other works focusing on chemotaxis bacte-

ria [3, 4]. More recently, a bacterial chemoreceptor model 

was developed in [5]. The present work presents a bacte-

rial ecosystem where individual E. Coli’s chemotactic path-

way is simulated by modeling signal processing by mixed 

chemoreceptor clusters using a rapid equilibrium (alge-

braic) model, adaptation through methylation simulated 

by ordinary differential equations (ODEs), and E. Coli’s 

characteristic flagellar motor-induced runs and tumbles [6]. 

The metabolism is modeled as a set of intracellular chemi-

cal reactions. The goal of this study is to demonstrate the 

importance of allowing to recycle dead cell matter released 

in the environment.

1.1  Bacterial chemotaxis

The chemotaxis process consists of three stages: chem-

oreception, signaling, and adaptation. Methyl-accepting 

chemotaxis proteins are located along the cell surface. 

These proteins act as chemoreceptors and bind with 

chemicals in the environment. If a nutrient attractant is 

detected outside of the cell, through MCP, the level of 

production of protein CheA decreases because the recep-

tors state shifts to the off state. It has been shown that 

the activity of the receptor cluster depends on the local 

ligand concentration and the methylation level according 

to the MWC (Monod-Wyman-Changeux signal process-

ing) model [7, 8]. CheA binds with phosphate in the cell. 

The phosphate group is transferred from the active CheA 

to the response regulator CheY. The concentration of 

CheYp modulates the motor and its behavior makes the 

cell run or tumble.

1.1.1  MWC model

We applied the MWC model for a mixed receptor cluster 

[7, 8]. The probability A that receptor cluster is active is 

dependent on ligand concentration and the methylation 

state of the receptors and calculated as

where F = Fon − Foff, and Fon/off is the free energy of the 

cluster to be on/off as a whole. Hence, the average activity 

per receptor in the cluster is A. The total free-energy dif-

ference in the mean-field approximation is F = nr fr(m), 

which is just the sum of the individual free-energy differ-

ences between the receptor on and off states.

where [S] is the ligand concentration, and K
on/off
r  is the 

dissociation constant for the ligand in the on and off state, 

respectively.

(1)A = 1/(1 + e
F),

(2)fr(m) = f
on
r

− f
off
r

= ǫr(m) + log

(

1 + [S ]/K
on
r

1 + [S ]/Koff
r

)

,

1.1.2  Adaptation model

Adaptation is modeled according to the mean-field approx-

imation of the assistance-neighborhood (AN) model [7, 

9]. It is assumed that both enzymes work at saturation 

([CheR]= 0.16, [CheB]= 0.28) [10]:

The average methylation level evolves in time as

The parameter k indicates the adaptation rate relative to 

the wild-type adaptation rate V that is the rate of receptor 

methylation (see Eq. 3) [6].

1.1.3  Kinase activity

Both ligand binding and receptor methylation affect the 

activity of CheA. CheA kinase activity [6] is calculated as 

(varrint into [0,1])

where A is the probability that receptor cluster is active, 

CheYtot is the total CheY concentration that is equal to 9.7 

according to [10], and KA=5 and KY=100 are the rate con-

stants according to [6].

1.1.4  CheY phosphorylation

The concentration of CheYp is obtained as a function of 

active CheA from the steady-state equation [11].

where CheYtot is the total CheY concentration, and CheZ 

is the total CheZ concentration, CheA is the active [CheA], 

ky = 100 µM
−1

s
−1

, kZ = 30/[CheZ]s−1
, Y = 0.1 are the 

rate constants according to [11], [12].

1.1.5  The CCW motor bias

The CCW motor bias depends on CheYp concentration in 

the following form [13].

2  Bacterial metabolism

The metabolism is responsible for essential reproduc-

tion, growth, and development cycles, which are affected 

by gene expression and bacterial movement. An organ-

ism’s genome contains instructions that encode the abil-

ity to metabolize one or more substrates present in the 

environment. Metabolism of a food either accelerates or 

(3)dm/dt = a(1 − A) [CheR] − bA [CheB]

(4)m(t + 1t) = m(t) + kV1t

(5)CheA = CheAtotAKA/(AKA + KY CheYtot),

(6)CheY = CheYtotKY A/(KY CheA + KZ CheZ + gy),

(7)mb =
mb0

CheY(1 − mb0) + mb0



decelerates a bacterium’s replication rate by a factor that is 

positive (nutrient) or negative (toxin), respectively. In this 

model, every bacterium is represented by a genome that 

encodes basic properties such as motion, energy absorp-

tion, toxin removal, and waste production. These properties 

are adjusted at each time step as the genome is expressed, 

and mutations are applied after each division. Forrest and 

Jones’ simulation [14] allows for simple material cycling 

through absorption while agent is created and release 

agents die and their bodies deteriorate. We adopted a simi-

lar approach where the material within dying bacteria is 

released in the medium and available as a source of energy 

for surrounding bacteria. Metabolism is calculated as the 

organism’s total energy (sum of constant basal energy and 

energy foraged via metabolized nutrients) and subtracted 

from the energy spent to tumble or run. This metabolic 

model allows bacteria to stabilize their energy consumption 

and eventually reach a splitting threshold. The bacterial 

energy cycle is implemented as follows:

 – 1Mt is the total metabolic expenditure (stepwise energy 

depletion rate);

 – M0 is the basal metabolic level (initial level at birth, 

equal to 25);

 – A is the bacteria nutrient absorption rate (genetically 

encoded and described in the next section);

 – MF is the food source energetic value (2 units);

 – MW is the energetic value extracted from waste con-

sumption (+1 unit);

 – MT is the metabolic cost of consuming toxins (−2);

 – MM is the metabolic cost of movement (−1 unit);

 – mb0 is the tumble frequency as a result of bacterial 

chemotaxis;

 – MS is the metabolic cost of cell division (Mt/2).

3  Genetic representation

In E. Coli chemotaxis, flagellar rotation is generated by an 

intracellular system of moderate complexity modulated by 

sensing the medium in which the bacterium lives. This sys-

tem exhibits properties such as sensing, adaptation, mem-

ory, and motor modulation. To adjust these properties in 

order to simulate bacterial population behaviors, we use a 

genome that encodes factors involved in various levels of 

the metabolic pathway responsible for chemotaxis. Each 

gene in the genome is composed of two different types of 

encoding as is shown in Fig. 1. The first type is a binary 

encoding that is used in four genomic loci. It is used to 

encode variable levels of the bacterium’s ability to detect 

nutrients or toxins with the same receptor. The signals 

(8)

1Mt = (M0 + A(MF + MW ) + MT + mb0MM + MS)1t

collected by these receptors constitute the environmental 

information fed to the chemical pathway generating chem-

otaxis. The values in M and T increase with the detected 

nutrient concentration. A is the bacterium’s nutrient assimi-

lation rate (consumption capacity), which affects its metab-

olism. The gene (AC) encodes a bacterium’s sensitivity to 

detect autoinducer molecules from its own bacterial strain, 

allowing it to communicate with its own kind by secret-

ing autoinducer molecules. The second type of encoding 

uses real numbers and is employed in the remainder of the 

genome. The following loci constitute the building blocks 

of the bacteria’s chemotactic pathway: Cluster activity 

(CI), kinase activity, methylation level (Me), CheY phos-

phorylation (Y), and motor bias (Mb), which are employed 

in Eqs. (1–7).

4  Experimental results

The set of experiments presented here have been designed 

to answer the question of whether an agent-based simula-

tion evolving simple bacterial chemotaxis can explain the 

emergence of more complicated behaviors at the popula-

tion level. The work presented here makes a distinction 

between three types of chemical substances: (1) nutri-

ents diffusing from multiple points in the environment, 

(2) nutrients released from dead bacteria (or waste), and 

(3) toxic compounds. Although the environment has been 

discretized, bacteria are free to move in the continuous 

two-dimensional space by translating their location. Each 

bacterium has one cell, with identical size, shape, and 

chemotactic network controlling its movements. The reader 

is invited to see [15] for the remaining parameters used in 

the setup of the chemotactic network. All runs presented 

in Fig. 2 (left) show a fast population growth in the first 

twenty simulation cycles, fueled by abundant nutrients and 

low levels of toxicity. This increase is followed by a high 

reproduction regime (or split operations) compensated by 

as many death events, which leads to a constant popula-

tion size for about 200 generations. From generation 200 to 

300, the sharp drop in population size is due to two factors: 

a high death rate caused by the depletion of food resources 

is compound with bad MCP and toxin avoidance abilities. 

Fig. 1  The bacterium’s genome



From generation 300, and at every 300 cycles, the growth 

rate often increases and is the result of the combined effect 

of individually improved genomic traits via mutation. The 

number of species varies greatly during an experiment, 

indicating that a high population turnover is taking place 

due to bacterial death and division. It is important to keep 

in mind that the speed of the whole population dynamics 

is not solely due to food abundance in the environment or 

to population size, but is for the most part due to evolved 

skills. We monitored the changes in total population energy 

for all 30 runs [Fig. 2, middle], where resources are being 

consumed, resulting in a decrease in the population’s col-

lective energy at the beginning of the run. Since cell divi-

sions happen at very high frequency, this process accounts 

for most of the energy depletion in the first 300 genera-

tions. The simulation parameters have been adjusted so 

that within thirty generations, after most of the population 

died of starvation, a few survivors remain. In iteration 300, 

when new nutrient resources are added to the environment, 

the bacteria feed on it and multiply until there is no more 

nutrients in the environment, at which point their energy 

decreases again but more slowly than before. After thou-

sands of time steps, the surviving bacteria are more effi-

cient energy consumers and are able to keep a more stable 

energy level. This effectiveness is due to improved nutri-

ent detection sensitivity (MCP), and to a greater extent to 

improved consumption ability. We also present some exam-

ples of trajectories from a few simulated swimming bacte-

ria in Fig. 2-right. Each bacterium responds to the presence 

of nutrient sources with long runs and short tumbles, or by 

random walks in the absence of detectable traces of nutri-

ents (Steady State). Several characteristic angles formed 

between two periods of long straight swimming (a ‘run’) 

marked by a period of abrupt change in orientation (a tum-

ble) can be seen in the figure. These successive angles illus-

trate how bacteria can progress from their initial positions 

toward a preferred, nutrient-rich zone. Two characteristic 

evolutionary phases have been observed in this system: in 

the beginning (20) of the first 300 cycles, the bacteria first 

execute long runs from a nutrient source to another, but 

switch their oscillation bias to transition to a random walk 

when all resources are depleted.

5   Discussion 

The results shown above demonstrate that a simple simula-

tion of single-celled organisms with biological mechanisms 

such as simple chemical reactions allows us to model more 

complicated emergent behaviors at the population level. We 

observed in the results a healthy growth rate (or increas-

ing bacterial count) for several hundreds of epochs, as 

long as the resources are abundant in the environment, and 

the population’s collective lifespan increases because the 

evolved bacteria consume less energy, thanks to their opti-

mized metabolism and their increased ability at gathering 

resources. This system is thus favorable to the emergence 

(or adaptation) of efficient sensory apparatus to detect 

food and avoid toxins, allowing individuals to better avoid 

deadly situations and improve reproduction allowing the 

population to thrive. When bacteria are moving, consum-

ing, and splitting, their chemotaxis network is optimized in 

order to control their movement.

Figure 3 explains how the chemotaxis network responds 

to intracellular and environmental changes. Four inter-

nal states have been isolated in this response: Steady 

State, Fully Inactive, Adapted, and FullyActive State. For 

each of these states, the protein concentrations have been 

measured and compared to [6]. The Steady State is char-

acterized by the bacteria performing a random walk and 

exploring the environment with initial parameter values 

of CheA =0.0164, methylation = 1.92, CheY = 1.92, and 

motor bias = 0.65. When the bacteria detect food sources, 

they enter a consumption regime where transmembrane 

Fig. 2  Left-hand the ‘Growth rate’ runs, which we have replicated 30 

times with quantitatively the same results, representing the optimal 

values of the whole of the bacteria for 5,000 steps. Middle the energy 

of the evolved population of bacteria for 30 runs at 5,000 genera-

tions. Inside the figure, a zoom in the same runs for 500 generations. 

Right-hand path realized by some bacteria in 2D space for the first 

600 cycles



receptors sense the changes of attractant concentrations 

and become inactive. As the attractant binds to the recep-

tors, it inhibits autophosphorylation activity of CheA. The 

CheY phosphorylated by the groups received from CheA 

(CheYp) diffuses to the flagellar motors and induces 

changes in motor rotation, causing the bacterium to run 

(move forward). The increase of attractant concentration 

switches the receptor to the ‘off’ state (i.e., Fully Inactive 

State), resulting in an initial fast decreases of kinase activ-

ity (CheA) (to 0.002) and hence CheY level, and causes 

longer runs (i.e., mb 0.75). The decrease of ChA activity 

is followed by a slow CheR-dependent adaptation. In the 

Adapted State, both on and off  states are equiprobable, and 

both enzymes CheR and CheB are working for methylation 

and demethylation simultaneously. In this regime, methyla-

tion increases receptor ability to stimulate CheA activity. A 

removal of attractants shifts the system to the on state (or 

Fully Active State) that activates CheA autophosphorylation 

(0.047) and hence the downstream CheY phosphorylation.

6   Conclusion and future work 

Our model was designed to model growth and behavior of 

bacterial ecosystems by simulating a group of bacterial cells 

in a stepwise fashion. To analyze and visualize the evolved 

behaviors, we present data that characterize bacterial posi-

tions, energy, and state in the cellular reproduction cycle. 

These results demonstrate that bacteria are able to evolve 

through mutation. The constructed model of chemotactic E. 

coli employed a hybrid model for simulating chemical path-

ways, with a mix of algebraic, ODE, and stochastic compo-

nents instead of a fully stochastic model with an evolution-

ary algorithm to evolve a population of bacteria.

In future work, we will build upon the existing chemo-

taxis network to generate more diversified behaviors and 

capable bacteria that can emerge as distinct species with 

different behaviors to eventually form colonies. This plat-

form will allow us to test our model with different environ-

mental and non-environmental conditions.
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