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FINITE AND INFINITE SOLITON AND KINK-SOLITON

TRAINS OF NONLINEAR SCHRÖDINGER EQUATIONS

STEFAN LE COZ AND TAI-PENG TSAI

Abstract. We will first review known results on multi-solitons of dispersive
partial differential equations, which are special solutions behaving like the

sum of many weakly-interacting solitary waves. We will then describe our

recent joint work with Dong Li on nonlinear Schrödinger equations: Assuming
the composing solitons have sufficiently large relative speeds, we prove the

existence and uniqueness of a soliton train which is a multi-soliton composed

of infinitely many solitons. In the 1D case, we can add to the infinite train an
additional half-kink, which is a solution with a non-zero background at minus

infinity.

1. Introduction

The nonlinear Schrödinger equation

(nls)

{
iut + ∆u+ f(u) = 0,

u(t = 0) = u0,

where u is a complex valued function on R × Rd and the nonlinearity f : C → C
is phase covariant, i.e. there exists g : R+ → R such that f(z) = g(|z|2)z, appears
in various physical contexts, for example in nonlinear optics or in the modelling
of Bose-Einstein condensates. Mathematically speaking, it is one of the model
nonlinear dispersive PDE, along with the Korteweg-De Vries equation and the
nonlinear wave equation.

The local Cauchy theory in the energy space H1(Rd) for (nls) is well understood
(see e.g. [8] and the references cited therein). In this survey we are interested in
the long time dynamics of global solutions. Essentially, two effects may be at play
at large time. First of all, if the nonlinearity is not too strong, the linear part of
the equation can dominate and solutions may behave as if they were solutions to
the free linear Schrödinger equation. This is the scattering effect. On the other
hand, in some cases the nonlinear term dominates and the solution tends to con-
centrate, with possible blow-up in finite time. This is the focusing effect. At the
equilibrium between these two effects, one may encounter many different types of
structures that neither scatter nor focus. The most common of these non-scattering
global structures are the solitons, but there exist also dark solitons, kinks, etc. A
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2 S. LE COZ AND T.-P. TSAI

generic conjecture for nonlinear dispersive PDE is the Soliton Resolution Conjec-
ture. Roughly speaking, it says that, as can be observed in physical settings, any
global solution will eventually decompose at large time into a scattering part and
well separated non-scattering structures, usually a sum of solitons. Apart from inte-
grable cases (see e.g. [38]), such conjecture is usually out of reach (see nevertheless
the recent breakthrough [17] on energy critical wave equation). Intermediate steps
toward this conjecture are existence and stability results of configurations with well
separated non-scattering structure, like multi-solitons, multi-kinks, infinite soliton
and kink-soliton trains, etc. Our purpose in this paper is to review some of the
existing results on this topic.

2. Solitons, dark solitons and kinks

We review in this section some of the known elementary non-scattering structure
solutions of (nls).

Let us first consider special solitons, the standing waves. A standing wave is a
solution to (nls) of the form u(t, x) = eiωtφ(x), where ω ∈ R and 0 6= φ ∈ H1(Rd)
is a localized solution to the elliptic stationary equation

(1) −∆φ+ ωφ− f(φ) = 0.

Since the ground work of Berestycki and Lions [4, 5], it is well known that (1) admits
solutions in H1(Rd) if ω > 0 and f(z) = g(|z|2)z verify the following hypotheses.

Assumption 1. (energy-subcritical) Let d ≥ 1. Suppose f(z) = g(|z|2)z with
g ∈ C0([0,∞),R) ∩ C2((0,∞),R), g(0) = 0,

|sg′(s)|+ |s2g′′(s)| ≤ C · (sα1/2 + sα2/2), ∀ s > 0,

where C > 0, 0 < α1 ≤ α2 < αmax, αmax = +∞ if d = 1, 2, αmax = 4
d−2 if d > 3.

(focusing) There exists s0 > 0, such that

G(s0) :=

∫ s0

0

g(s̃)ds̃ > ωs0.

The profile solutions of (1) in H1(Rd) are in general called bound states. Among
bound states, it is common to distinguish between the ground states and the excited
states. Recall first that three quantities are conserved along the H1-flow of (nls):
the energy, the mass and the momentum, defined as follows.

E(u) :=
1

2
‖∇u‖22 −

∫
Rd
F (u)dx, F (z) :=

∫ |z|
0

f(s)ds,

M(u) :=
1

2
‖u‖22, P (u) := =

∫
Rd
ū∇udx.

The ground states are minimizers of the action related to (1) (defined by S =
E+ωM) and are in general positive, radial and unique (see [18, 23] and the recent
progresses [7, 26]). For d = 1, there exist only ground states, whereas for d > 2
there are infinitely many excited states.

A soliton is a standing wave of (nls) that has been given a speed thanks to a
Galilean transform. Since (nls) is Galilean invariant, a soliton is still a solution of
(nls). Explicitly, a soliton with frequency ω > 0, speed v ∈ Rd, initial phase γ ∈ R
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and position x0 ∈ Rd has the form

Rφ,ω,γ,x0,v := φ(x− vt− x0) exp

(
i
(1

2
v · x− 1

4
|v|2t+ ωt+ γ

))
.

The dynamical properties of solitons are mostly known when the nonlinearity f
is of power-type f(z) = |z|αz and the profile is a ground state (we will refer to
such solitons as ground state solitons, opposed to excited state soliton or in general
bound state soliton). For L2-subcritical α (α < 4

d ), the ground state soliton is
orbitally stable [9] (i.e. stable up to phase shifts and translations), whereas for
L2-critical and supercritical α (α = 4

d , α > 4
d ) it is unstable by blow-up [3, 37]

(i.e. there exists an initial data in any neighborhood of the soliton such that the
corresponding solution to (nls) blows up in finite time). In general, excited state
solitons are expected to be unstable [19, 21, 31, 32, 33].

For the focusing power-type nonlinearities, solitons are the only non-scattering
solutions with a fixed profile, which is always localized. However, for other nonlin-
earities, there exist also other types of non-scattering solutions with a fixed profile,
for example the so-called dark and grey solitons or the kinks.

A dark soliton is a travelling wave solution of (nls) of the form φ(x− ct), where
c ∈ Rd is the velocity and φ is a profile which has the particularity to be non-
localized but with a constant modulus at infinity. The analysis of such type of
solitons is much less developped than for localized (bright) solitons. Most of the
works deal with the case where (nls) is the Gross-Pitaevskii equation, i.e. when
f(z) = (1 − |z|2)z. In this case, existence of dark solitons in dimension 1 follows
from direct computations. One may refer to [10, 11] and the reference cited therein
for a study of the existence and stability of dark solitons with generic nonlinearities
in dimension 1. In higher dimension, existence of dark solitons has been a long time
open problem. In the recent breakthrough [27], it has been proved that, for generic
nonlinearities and in dimension d > 3, dark solitons exist for any speed between 0
and the speed of sound (

√
2 in the case of the Gross-Pitaevskii nonlinearity).

A kink is a soliton-type solution to (nls) when d = 1,

KφK ,ω,c,γ,x0,v := φK (x− (c+ v)t− x0) exp

(
i
(1

2
v · x− 1

4
|v|2t+ ωt+ γ

))
,

but with a profile φK which has different limits at −∞ and +∞. Here c is the
intrinsic velocity associated to φK . When f is the Gross-Pitaevskii nonlinearity,
i.e. f(z) = (1 − |z|2)z, there exists an explicit family of kink solutions (which are
particular cases of dark solitons) given by K(t, x) = φK(x− ct),

(2) φK(x) =

√
2− c2

2
tanh

(
x
√

2− c2
2

)
+ i

c√
2
, |c| <

√
2.

In this paper, we will be particularly interested in cases where the kink profile
φ has different limits with different modulus at −∞ and +∞. This will be the case
if the nonlinearity f verifies the following assumption.

Assumption 2. For some ω0 > 0, there is a first b > 0 such that for h(s) =
ω0s− f(s),

h(b) = 0, h′(b) > 0,

∫ b

0

h(s)ds = 0.
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Figure 1. Schematic representation of a multi-soliton

Under Assumption 2, there exists a (unique up to translation) kink-profile φK ∈
C2(R) with zero intrinsic velocity such that{

− φ′′K + ω0φK − f(φK) = 0,

lim
x→−∞

φ(x) = b, lim
x→+∞

φ(x) = 0.

To our knowledge, except in our works [24, 25], such kinks have never been inves-
tigated in the analysis of the long time behavior of solutions to (nls). One reason
for that is that they are genuinely infinite energy solutions and that no proper
renormalization exists to make them energy finite.

3. Multi-solitons, infinite soliton trains and soliton-kink solutions

As mentioned in Section 1, it is expected that global solutions to (nls) will even-
tually decompose into a scattering part and well separated non-scattering struc-
tures. In this section, we review the existence and stability results for solutions
composed of several of the elementary non-scattering structures described in Sec-
tion 2. The basic example is the so-called multi-soliton, a solution of (nls) build
upon a finite number of solitons, Figure 1 contains a schematic representation of a
multi-soliton. To be a little more precise, let

(3) R(t, x) =

N∑
j=1

Rφj ,ωj ,γj ,xj ,vj (t, x) =:

N∑
j=1

Rj(t, x),

where each Rj is a soliton made from some parameters (ωj , γj , xj , vj) and bound
state φj . As (nls) is a nonlinear equation, R is not a solution. What we call a
multi-soliton is a solution u of (nls) such that

(4) lim
t→+∞

‖u−R‖X([t,+∞)×Rd) = 0,

where X is some space-time function space, e.g. L∞([0,+∞), L2(Rd)).

3.1. The integrable cases. The first result of existence of multi-solitons was ob-
tained in Zakharov and Shabat [38] in the case of the 1-d focusing cubic (i.e. d = 1,
f(z) = |z|2z) nonlinear Schrödinger equation via the inverse scattering method.
Indeed, in this particular case the equation is completely integrable and one can
obtain multi-solitons in a rather explicit manner. The companion situation to the
1-d cubic case is the Gross-Pitaevskii case, i.e. d = 1 and f(z) = (1 − |z|2)z. In
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that case (nls) is again completely integrable, however no localized solitons exist.
The counter parts of the solitons in this case are the dark solitons (2), which have
modulus 1 at infinity. In this situation, it is also possible to show via the inverse
scattering transform the existence of a solution of (nls) behaving at large time as
decoupled well-separated dark solitons. Note that in that case, due to the non-zero
condition at infinity, the profile cannot be given simply as the sum of the dark
solitons.

For the 1-d cubic (nls), Kamvissis [22] showed that it is possible to push the
inverse scattering analysis forward and obtain the existence of an infinite soliton
train, i.e. a solution u of (nls) defined as in (4) but with N = +∞ in the definition
of R. In fact, the result given in [22] is sharper: it is shown that, if d = 1,
f(z) = |z|2z and under some technical hypotheses, any solution to (nls) with
initial data in the Schwartz class will eventually decompose at large time as an
infinite soliton train and a “background radiation component”. The existence of
an infinite train of dark solitons has not been proved for the Gross-Pitaevskii case.

Other exotic solutions are available for 1-d cubic NLS, for example breather
solutions which are periodic in space and whose magnitudes approach uniform
values as |t| → ∞, see e.g. [1].

3.2. Existence of multi-solitons, the energy method. Apart from the case
previously mentioned, (nls) is not completely integrable and it is generically not
possible to apply the inverse scattering method to obtain the existence of multi-
solitons. The first existence result of multi-solitons in a non-integrable setting was
obtained by Merle in [30] as a by-product of the proof of existence of multiple blow-

up points solutions for L2-critical (nls), i.e. f(z) = |z| 4d z. The techniques initiated
in [30] were then developed in [14, 15, 28] to obtain the following result.

Theorem 1 (Existence of multi-soliton by energy method, [14, 15, 28]). Assume
f(z) = |z|αz with 0 < α < αmax. Let R be the profile given in (3). Let ω? and v?
be given by

ω? =
1

2
min {ωj , j = 1, ..., N} , v? = inf

j,k=1,...,N,j 6=k
|vj − vk|.

There exist µ = µ(d,N) and v] := v](φ1, ..., φN ) > 0 such that if v? > v] then there
exist T0 ∈ R and a solution u ∈ C([T0,+∞), H1(Rd)) of (nls) satisfying

‖u(t)−R(t)‖H1 6 e−µ
√
ω?v?t, ∀t ≥ T0.

If in addition all φj are ground states, then the result holds with v] = 0, i.e., any
v∗ > 0.

For the sake of simplicity, we have stated the result only for power-type nonlinear-
ities, but its first part is in fact valid for any C1 nonlinearity verifying hypotheses
a little stronger than Assumption 1. As mentioned before, the case α = 4

d was

treated by Merle [30], the ground state case by Martel and Merle [28] for α < 4
d

and Côte, Martel and Merle [15] for α > 4
d , and the excited state case by Côte and

Le Coz [14].
The proofs in [14, 15, 28] follow a similar scheme. The idea is to choose an

increasing sequence of time (Tn) with Tn ↑ +∞ and consider the solutions (un) to
(nls) which solve the equation backward in time with final data un(Tn) = R(Tn).
The sequence (un) is an approximate sequence for a multi-soliton. To show its
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convergence, two arguments are at play. First, one shows that there exists a time
T0 independent of n such that un satisfies on [T0, T

n] the uniform estimates

‖(un −R)(t)‖H1 6 e−µ
√
ω?v?t.

Second, we have compactness of the sequence of initial data un(T0), i.e. there exists
u0 ∈ H1(Rd) such

un → u0 strongly in Hs(Rd), 0 6 s < 1.

To prove the uniform estimates, one first recall that the second derivative of the
action around a soliton is coercive up to some L2 scalar products. Precisely, given
a soliton R0 with parameters (ω0, γ0, x0, v0), the action is given by

S = E +

(
ω0 +

|v0|2

4

)
M + v0 · P

and there exist K ∈ N and (ξ0
k)k=1,...,K such that we have for any ε ∈ H1(Rd)

〈S′′(R0)ε, ε〉 & ‖ε‖2H1 −
K∑
k=1

|
(
ε, ξ0

k

)
2
|2.

Hence to control the difference ε = un − R, it is enough to construct a functional
S similar to S but adapted to the multisoliton profile R and to get rid of the bad
L2 scalar products. The construction of the functional is done by gluing together
each functional Sj suitably localized. The localization is possible since each bound
state, henceforth each soliton, is exponentially decaying at infinity.

Getting rid of the bad L2 scalar products is the trickiest part. In [28], the
authors modulated the solitons in scaling, translation and phase to cancel the scalar
products. This was possible only because they were in the L2-subcritical case with
ground states. In [15], the authors used a topological argument to select a final
data which was not R(Tn) but close enough to it, and such that for this final data
the bad scalar products were vanishing. In [14], a bootstrap argument on the L2-
norm of ε was used to get an a priori control of the type |

(
ε, ξ0

k

)
2
| 6 1

v?
‖ε‖2, hence

allowing to control the scalar products for v? large enough.
The compactness argument is based on the virial identity and does not present

major difficulty.
The energy method is very flexible and can be adapted to many other situations,

e.g. for multi-solitons of Klein-Gordon equations [2, 16] or multi-speeds solitary
waves of Schrödinger systems [20]. It suits very well situations with a finite number
of well localized solitons with finite energy. However, its implementation is far
from being trivial when the number of solitons is infinite or when one soliton is
replaced by a kink. In [24, 25], the authors have developped an approach suitable
to situations where the energy technique fails to be directly applicable.

3.3. Existence of infinite trains and kink-solitons solutions, the fixed
point argument. To prove the existence of solutions which have a priori infinite
energy such as multi-solitons with kinks attached at both ends or infinite trains of
solitons, an approach based on a fixed point argument around the desired profile
has been followed in [24, 25].
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We briefly recall the definition of the Strichartz space. For dimension d ≥ 1, a
pair of exponents (q, r) is said (Schrödinger) admissible if

(5)
2

q
+
d

r
=
d

2
, 2 ≤ q, r ≤ ∞, and (d, q, r) 6= (2, 2,∞).

On I × Rd where I ⊂ R, we define the Strichartz norm

(6) ‖u‖S(I) := sup
(q, r) admissible

‖u‖LqtLrx(I×Rd).

For d = 2, we also need to impose q > q1 in the above norm for some q1 slightly
larger than 2 to stay away from the forbidden endpoint. The Strichartz space S(I)
is the closure of all test functions in R× Rd under this norm. We denote by N(I)
the dual space of S(I).

Let us first state a result on the existence of infinite soliton trains. Its conditions
are far from optimal for simplicity of presentation. The same method can be applied
to construct finite and infinite soliton trains for more general nonlinearities.

Theorem 2 (Existence of infinite soliton trains [24, 25]). Let d ≥ 1. Assume
f(z) = |z|αz + g2(|z|2)z where g2 ∈ C0([0,∞),R) ∩ C2((0,∞),R), g(0) = 0,

|sg′2(s)|+ |s2g′′2 (s)| ≤ C(sα1.5/2 + sα2/2), ∀ s > 0,

where C > 0, 0 < α < α1.5 ≤ α2 < αmax. There exist r0 > max(1, dα2 ), c1 > 0 and
v] � 1 such that, if an infinite soliton train profile R∞ is given by

R∞ =

∞∑
j=1

Rj ,

with parameters ωj > 0, γj ∈ R, xj = 0, vj ∈ Rd satisfying

• (uniform bound for bound states) for some 0 < a < 1 and C > 0,

|φj(x)|+ ω
−1/2
j |∇φj(x)| ≤ Cω1/α

j e−aω
1/2
j |x|, ∀x ∈ Rd,∀j ∈ N,

• (Integrability)
∞∑
j=1

ω
1
α−

d
2r0

j <∞,

• (High relative speeds)

v∗ = inf
j,k∈N,j 6=k

√
ωj |vk − vj | ≥ v],

• (Gradient bound)

V∗ =
∑
j∈N
〈vj〉ω

1
α−

d
4

j <∞ if α <
α2

2 + α2
.

Then there exists a solution u of (nls) satisfying, for some T0 ≥ 0,

‖u−R∞‖S([t,∞)) ≤ e−c1v?t, ∀t ≥ T0.

Moreover, such profiles R∞ do exist for every such nonlinearity f .

Note that, in the integrable case, it was proved that an integrability condition on
the parameters of the infinite trains is necessary for their existence, see [22, Remark
2].

We now switch to dimension d = 1 to investigate the existence of solutions of
(nls) composed of kinks and solitons as represented in Figure 2.
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x0 + v0t x1 + v1t x3 + v3t x4 + v4t x5 + v5tx2 + v2t

K0

R1

R3

R4 K5R2

~v0

~v1
~v3

~v4 ~v5~v2

Figure 2. Schematic representation of a kink-soliton train

Theorem 3 (Existence of finite kink-soliton trains [24]). Let d = 1. Assume
that f is an energy subcritical nonlinearity such that there exists two kink profiles
φK0 , φKN+1

with φ′K0
and φ′KN+1

exponentially localized and the boundary conditions

lim
x→−∞

φK0
(x) 6= 0, lim

x→+∞
φK0

(x) = 0,

lim
x→−∞

φKN+1
(x) = 0, lim

x→+∞
φKN+1

(x) 6= 0.

Assume also the existence of N soliton profiles φ1, . . . , φN . Define the profile

W (t, x) := K0(t, x) +

N∑
j=1

Rj(t, x) +KN+1(t, x).

with parameters (vj , xj , ωj , γj)j=0,...,N+1 ⊂ R4 such that v0 < · · · < vN+1. Define
v? by

v? := inf{|vj − vk|; j, k = 0, . . . , N + 1, j 6= k}.
Then there exist v] > 0 (independent of (vj)) large enough, T0 � 1 and constants
µ1, µ2 > 0 such that if v? > v], then there exists a (unique) multi-kink solution
u ∈ C([T0,+∞), H1

loc(R)) to (nls) satisfying on [T0,+∞) the estimate

eµ1v?t‖u−W‖S([t,+∞)) + eµ2v?t‖∇(u−W )‖S([t,+∞)) 6 1.

In the above theorem, one kink can be dropped.
We may also have a kink attached to an infinite soliton train. For simplicity we

choose a special nonlinearity. See [25] for general assumptions on f .

Theorem 4 (Existence of infinite kink-soliton trains [25]). Let d = 1 and

f(u) = |u|αu− |u|βu, 0 < α < β <∞.
It satisfies Assumption 2 and there is a kink profile φK . If either 0 < α < 4/3, or

4/3 ≤ α <
√

2 < β = 2/α, then there exist r0 > 1, c1 > 0 and v] � 1 such that, if
an infinite kink-soliton train profile

W = K +R∞ = K +

∞∑
j=1

Rj

has its parameters satisfying the same assumptions as in Theorem 2 (with index j
starting from 0), then there exists a solution u of (nls) satisfying, for some T0 ≥ 0,

‖u−W‖S([t,∞)) ≤ e−c1v?t, ∀t ≥ T0.
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Moreover, such profiles W do exist.

The strategy for the proofs of Theorems 2, 3 and 4 is the following. Let W be
a profile around which we want to build a solution. W can be an infinite train, a
kink-soliton train, etc. Since W may be badly localized, we look for a solution of
(nls) in the form u = W + η, where η satisfies the perturbation equation

(7) i∂tη + ∆η + f(W + η)− f(W ) +H = 0,

where H is a source term coming from the fact that W is not an exact solution,
e.g. H = f(R∞)−

∑+∞
j=1 f(Rj) in the case of an infinite soliton train. In Duhamel

formulation, the perturbation equation for η becomes

η(t) = −i
∫ ∞
t

ei(t−τ)∆
(
f(W + η)− f(W ) +H

)
dτ,

and the core of the proof is to perform a fixed point argument for this formulation.
Here, two approaches are possible: One is based on a combination of the dispersive
estimate

‖eit∆u‖p . |t|−d( 1
2−

1
p )‖u‖ p

p−1
, ∀ t 6= 0, ∀p ∈ [2,+∞],

and Strichartz estimates

‖u‖S((t0,∞)) . ‖u0‖2 + ‖F‖N((t0,∞)) for i∂tu+ ∆u = F, u(t0) = u0.

The other uses only Strichartz estimates, but for both u and ∇u.

3.4. Open problems. We conclude this paper by reviewing some open problems
related to the exotic solutions presented here.

3.4.1. Uniqueness. In Theorem 1, no uniqueness is proved for the multi-soliton.
In Theorems 2, 3 and 4, the solution presented is unique in the class of solutions
satisfying a strong decay estimate towards the desired profile; it does not preclude
the possibility of existence of the same type of solution, but with a weaker decay
towards the desired profile. In fact, it was proved in [14] that as soon as one of the
composing soliton is linearly unstable, then there exists a one parameter family of
multi-solitons converging toward the same profile. Hence in such cases uniqueness is
not to be expected. However, one may hope that classification results hold, e.g. one
may expect that for L2-supercritical power-type nonlinearities, the multi-solitons
converging toward a fixed N -sum of solitons form a N -parameter family. Such
results were obtained for the Korteweg-de Vries equation by Combet [12]. See also
[13] for partial results in that direction for (nls). For the kink-solitons solutions or
the infinite trains, no result is available yet.

3.4.2. Stability. Another natural question coming to mind when investigating the
exotic solutions of nonlinear Schrödinger equation is their stability. Again, the only
available results concern finite multisolitons and the problem is completely open
for infinite trains or kink-soliton solutions. For power-type nonlinearities, the only
case where orbital stability of a multi-soliton holds is the Gross-Pitaevskii case,
as has been proved by Béthuel, Gravejat and Smets for multi-dark-solitons in [6].
Stability of multi-solitons has been proved under restrictive hypotheses in [29] for
orbital stability and in [34, 35, 36] for asymptotic stability. The hypotheses on the
nonlinearity (e.g. high regularity or flatness at the origin) exclude in particular the
power-type nonlinearities.
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3.4.3. Multikinks. One particular feature of the kinks considered in Theorem 3 is
that they converge to 0 on one side. There exist however nonlinearities such that
the kinks are connecting non-zero constants on both sides, for example −1 and 1 for
the black solitons of Gross-Pitaevskii. There may also exist situations with kinks
connecting e.g. 0 to 1 and kinks connecting 1 to 2, etc. One would expect that it
is possible to construct solutions by gluing together those kinks to get a solution
with modulus having increasing terraces shape. Such solutions have never been
constructed for nonlinear Schrödinger equation. One reason for that is the current
lack of appropriate ansatz for such terraces shape solutions.

Many other related open problems exist, e.g. constructing solutions when one of
the composing element is a line-soliton in 2-d.
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