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Abstract. A new translation from Partially Observable MDP into Fully
Observable MDP is described here. Unlike the classical translation, the
resulting problem state space is finite, making MDP solvers able to solve
this simplified version of the initial partially observable problem: this
approach encodes agent beliefs with fuzzy measures over states, leading
to an MDP whose state space is a finite set of epistemic states. After a
short description of the POMDP framework as well as notions of Pos-
sibility Theory, the translation is described in a formal manner with
semantic arguments. Then actual computations of this transformation
are detailed, in order to highly benefit from the factored structure of the
initial POMDP in the final MDP size reduction and structure. Finally
size reduction and tractability of the resulting MDP is illustrated on a
simple POMDP problem.

1 Introduction

It is claimed that Partially Observable Markov Decision Processes (POMDPs)
[17] finely models an agent acting under uncertainty in a partially hidden environ-
ment. However, solving a POMDP, i.e. the computation of an optimal strategy
for the agent, is a really difficult task: the problem is PSPACE-complete [12].
Classical approaches try to solve this problem using Dynamic Programming [3],
or via approximate computation. These include for instance heuristic searches
[18] and Monte Carlo approaches [16].

The approach proposed here simplifies a POMDP problem before solving it.
The transformation described leads to a fully observable MDP on a finite number
of epistemic states, i.e. a problem modeling an agent acting under uncertainty in
a fully observable environment [13]. As such a finite state space MDP problem is
P-complete [12] this transformation qualifies as a simplification, and any MDP
solver can return a policy for this translated POMDP.

Most of the POMDP algorithms draws upon the agent belief during the
process, defined as the probability of the actual system state knowing all the
system observations and agent actions from the beginning. This belief is up-
dated at each time step using Bayes’ rule and the new observation. The initial



belief, or prior probability distribution over the system states, takes part in the
definition of the POMDP. However in practice, the initial system state can be
unknown: for instance, in a robotic exploration context, the initial location of
the agent, or initial presence of an entity in the scene. Defining the process with
a uniform probability distribution as initial belief (e.g. over all locations or over
entity presence) is a subjectivist answer [5], i.e. all probabilities are the same
because no event is more plausible than another: it corresponds to equal betting
rates. However the following belief updates will eventually mix up frequentist
probability distributions defining the POMDP with the initial belief which is a
subjective probability, and it does not always make sense.

More than only a simplification of the initial POMDP problem, the theoreti-
cal framework used here for the belief representation formally models an agent’s
knowledge about the system state: the proposed translation defines beliefs as
possibility distributions over system states s ∈ S: these kinds of distributions are
denoted by π (counterpart of probability notation p) and represent a fuzzy set of
system states, as the indicator (chararacteristic) function of this set. Recall that
the indicator function of a classical set A ⊆ S is 1A(s) = 1 if s ∈ A and 0 other-
wise. Values of a fuzzy set indicator function π are chosen in a finite and totally
ordered scale L = {1 = l1, l2, . . . , 0} with l1 > l2 > . . . > 0 i.e. π : S → L. If
s ∈ S is such that π(s) = li, s is in the fuzzy set described by π, with degree li.
Possibilistic beliefs used in this work will represent fuzzy sets of possible states. If
the current possibilistic belief coincide with the distribution π(s) = 1 ∀s ∈ S, all
system states are totally possible, and it models therefore a total ignorance about
the current system state: qualitative possibilistic beliefs can model agent initial
ignorance. The perfect knowledge of the current state, say s̃ ∈ S, is encoded by a
possibility distribution equal to the classical indicator function of the singleton
π(s) = 1{ s=s̃}(s). Between these two extrema, the current knowledge of the
system is described by a set of entirely possible states, {s ∈ S s.t. π(s) = 1},
and successive sets of less plausible ones {s ∈ S s.t. π(s) = li } down to the set
of impossible states {s ∈ S s.t. π(s) = 0}.

The major originality of this work comes from the finiteness of the scale L:
the number of possible beliefs about the system state is, as well, finite (smaller
than #(LS) = (#L)#S), while the set of all probability distributions over S is
infinite. The translation described here leads then to an MDP whose finite state
space is the set of possible possibilistic beliefs, or epistemic states.

In addition to POMDP simplification and knowledge modelling, this quali-
tative possibilistic framework offers some interesting properties: the possibilistic
counterpart of Bayes’ rule leads to a special belief behaviour. Indeed the agent
can possibly change their mind radically and rapidly, and under some conditions
the increased specificity of the belief distribution is enforced, i.e. the knowledge
about the current state is non decreasing with time steps [6]. Finally, in order to
fully define the resulting MDP, the translation has to attach a reward function
to its states: as the new (epistemic) state of the problem is a possibility distribu-
tion, a dual measure, called necessity, can be computed from it. Defined as the



Choquet integral using the necessity measure, the reward of an epistemic state
is a pessimistic evalutation of the actual reward.

However the number of possibilistic belief distributions, or fuzzy epistemic

states, grows exponentially with the number of initial POMDP system states.
The so called simplification of the problem does not transform the PSPACE
POMDP problem into a polynomial one: as the new state space size is expo-
nential in the previous one, the resulting problem is EXPTIME. The proposed
translation tries to generate as few epistemic states as possible taking carefully
into account potential factorized structures of the initial POMDP.

The first section is devoted to the presentation of the Markov Decision Pro-
cesses, the main concern of this paper. Tools from Possibility Theory are also
defined to make this paper self-contained. Follows a section describing the first
contribution of this work, which is the translation itself, presented in a formal
way. As the resulting state space of the built MDP is too big to make this prob-
lem tractable without factorization tricks in practice, the next section details
the proper way to preprocess its attributes. Finally, the last section illustrates
the relevance of this approach with a simple robotic mission problem.

2 Background

The work developed in this paper remains in the classical MDP and POMDP
frameworks, which are recalled in this section: possibilistic material necessary to
build the promised translation are then presented.

2.1 Markov Decision Processes

A Markov Decision Process (MDP) [1] is a well suited framework for sequential
decision making under uncertainty, when the agent involved has a full knowl-
edge of the actual system state. Such a process is formally defined by a 4-tuple
〈S,A, T, r〉 where S is a finite set of system states s ∈ S. The finite set A consists
of all actions a ∈ A available for the agent. The Markov dynamics of the system
is described by the transition function T : S × A × S → [0, 1]. This function is
defined as the transition probability distribution of the system states: if action
a ∈ A is chosen by the agent, and the current system state is s ∈ S, the next
state s′ ∈ S is reached with probability T (s, a, s′) = p (s′ | s, a ). Finally, a re-
ward function r : S × A → R is defined to model the goal of the agent. Indeed,
solving an infinite horizon MDP problem consists in computing a strategy, i.e.
a function d defined on S and whose values are actions a ∈ A, maximizing the

expected discounted total reward: E
[

∑+∞
t=0 γ

t · r (st, dt )
]

where dt = d(st) and

0 < γ < 1 is the discount factor.
A Partially Observable MDP (POMDP) [17] makes a step further in the mod-

eling flexibility, allowing the agent not to know which system state is the current
one. The formal definition of a POMDP is the 7-tuple 〈S,A, T,Ω,O, r, b0〉, where
the system state S, the set of actions A, the transition function T and the reward
function r remain the same as for the MDP definition. In this model, the current
system state s ∈ S cannot be used as available information for the agent: the



agent knowledge about the actual system state comes from observations o ∈ Ω,
where Ω is a finite set. The observation function O : S × A × Ω → [0, 1] gives
for each action a ∈ A and reached system state s′ ∈ S, the probability over
possible observations o′ ∈ Ω: O(s′, a, o′) = p (o′ | s′, a ). Finally, the initial be-
lief b0 : S → [0, 1] is the prior probability distribution over the state space S:
b0(s) = p (s0 = s ), ∀s ∈ S.

At a given time step t > 0, the agent belief is defined as the probability
of the tth system state st conditionned on all the past actions and observa-
tions, and with the prior b0, i.e. bt(s) = ps0∼b0

(st = s | a0, o1, . . . , at−1, ot ).
It can be easily recursively computed using Bayes’ rule: at time step t, if the
belief is bt, chosen action a ∈ A and new observation o′ ∈ Ω, next belief is
bt+1(s

′) ∝ O(s′, a, o′) ·
∑

s∈S T (s, a, s′) · bt(s). Successive beliefs are computed
with the observations perceived by the agent, and are then available during the
process. Let us denote by PS the infinite set of probability distributions over S:
seen as an MDP whose states are probabilistic beliefs, an optimal strategy for
the infinite horizon POMDP is looked for among strategies d : PS → A such
that successive dt = d(bt) maximize the expected discounted total reward, which
can be rewritten

E

[

+∞
∑

t=0

γt · r (st, dt )

]

= E

[

+∞
∑

t=0

γt · r (bt, dt )

]

, (1)

defining r(bt, a) =
∑

s∈S r(s, a) · bt(s) as the reward of belief bt. As the focused
problem (POMDP) has been formally defined, Possibilistic tools are now pre-
sented in the next section.

2.2 Possibility Theory

In our context, distributions defined in the Possibility Theory framework are
valued in a totally ordered scale L = {1 = l1, l2, . . . , 0} with l1 > l2 > . . . > 0.
A possibility measure Π defined on S is a fuzzy measure valued in L, such that
∀A,B ⊂ S, Π(A∪B) = max {Π(A), Π(B)}, Π(∅) = 0 and Π(S) = 1. It follows
that this measure is entirely defined by the associated possibility distribution,
i.e. the measure of the singletons: ∀s ∈ S, π(s) = Π({s}). Properties of this
measure lead to the possibilistic normalization: maxs∈S π(s) = Π(S) = 1. If
s, s ∈ S are such that π(s) < π(s), it means that s is less plausible than s. States
with possibility degree 0, i.e. states s ∈ S such that π(s) = 0, are impossible
(same meaning as p(s) = 0), and those such that π(s) = 1 are entirely possible
(but not necessary the most probable one).

After the introduction of a possibility measure over a set Ω, the joint possi-
bility measure on S ×Ω is defined in a qualitative way: ∀A ⊂ S, ∀B ⊂ Ω

Π(A,B) = min {Π (A | B ) , Π (B )} = min {Π (B | A ) , Π (A )} . (2)

Note the similarities between Possibility and Probability Theory, replacing max
by + and min by ×. Moreover, Possibility Theory has its own conditioning [9]:

Π (A | B ) =

{

1 if Π(A,B) = Π(B)
Π (A,B ) otherwise

(3)



which is nothing more than the least specific measure fulfilling the condition
described by Equation 2. It can also be seen more easily as the joint measure
normalized in a possibilistic manner.

These tools from Qualitative Possibility Theory are enough to define the
announced translation. Next section is then devoted to the building of an MDP
with fuzzy epistemic states from a POMDP.

3 A Hybrid POMDP

As claimed by Zadeh, “most information/intelligent systems will be of hybrid
type” [19]: the idea developped here is to use a granulated representation of
the agent knowledge using possibilistic beliefs instead of probabilistic beliefs in
the POMDP framework. The first advantage of this granulation is that strat-
egy computations are performed reasoning on a finite set of possibilistic beliefs
(called then epistemic states): the set of all possibility distributions defined over
S, denoted by ΠS is the set LS without non-normalized functions, and then

#ΠS = #L#S − (#L − 1)#S , (4)

while the set of probability distributions over S is infinite. First, such beliefs are
formally defined, as well as their own updates.

3.1 Possibilistic Belief

Consider that possibility distibutions similar to those used to define the initial
POMDP are available: a transition distribution, giving the possibility degree of
reaching s′ ∈ S from s ∈ S using action a ∈ A, π (s′ | s, a ) ∈ L; as well as an
observation one, giving the possibility degree of observing o′ ∈ Ω, in a system
state s′ ∈ S after the use of a ∈ A, π (o′ | s′, a ) ∈ L. Indeed, this work is devoted
to few kinds of practical problems: real problems modeled as POMDPs are often
intractable. Our granulated approach is in this case a simplification of the initial
POMDP, and possibility distributions are computed from the POMDP proba-
bility distributions, using a possibility-probability transformation [10]. On the
other hand, some problems lead to POMDPs with partially defined probability
distributions: some estimated probabilities have no strong guarantees. A more
faithful representation is given with possibility distributions modeling the inher-
ent imprecision, defining transition and observation possibility distributions.

Let bπ0 : S → L be an initial possibilistic belief, normalized as any possibility
distribution: maxs∈S bπ(s) = 1. As in the probabilistic case, possibilistic belief
can be defined recursively using the possibilistic belief update [6], derived from
Bayes’ rule based on the conditioning (3): at time step t, if the possibilistic belief
is bπt , action a ∈ A and observation o′ ∈ Ω specify the next belief

bπt+1(s
′) = u(bπt , a, o

′)(s′) =

{

1 if π (o′, s′ | bπt , a ) = max
s̃∈S

π (o′, s̃ | bπt , a )

π (o′, s′ | bπt , a ) otherwise
(5)

where the joint possibility distribution over Ω × S π (o′, s′ | bπt , a ) is equal to
maxs∈S min {π (o′ | s′, a ) , π (s′ | s, a ) , bπt (s)}. Note that keeping a qualitative



view for the belief update, i.e. using the min operator to compute joint possibility
distributions as defined in Equation 2, allows to reason on a finite set of beliefs,
as no new values are created: the classical product is used in the quantitative
part of the Possibility Theory, but is not considered in this work. Moreover, the
use of the qualitative belief update has already been used in planning [7].

3.2 Setting up Transition Functions

If the agent selects the action a ∈ A in the epistemic state bπ ∈ ΠS , the next
epistemic state depends only on the next observation, as highlighted by possi-
bilistic belief update (5). The probability distribution over observations condi-
tionned on the reached state is part of the POMDP definition via the obser-
vation function O. The probability distribution over observations conditionned
on the previous state is obtained using transition function T : p (o′ | s, a ) =
∑

s′∈S O(s′, a, o′) · T (s, a, s′). This distribution and the possibilistic belief bπ

about the system state, can lead to an approximated probability distribution
over the next observations. Indeed, a probability distribution over the system
state, bπ ∈ PS , can be derived from bπ using extension of Laplace principle.
Then approximate distribution over o′ ∈ Ω is defined as

p (o′ | bπ, a ) =
∑

s∈S

p (o′ | s, a ) · bπ(s). (6)

Finally, summing over concerned observations, the transition probability distri-
bution over epistemic states is defined as

T̃ (bπ, a, (bπ)′) = p ( (bπ)′ | bπ, a ) =
∑

o′|u(bπ,a,o′)=(bπ)′

p (o′ | bπ, a ) . (7)

A proper way to construct a probability distribution bπ, from a possibility one
bπ, is the use of the pignistic transformation [8], minimizing the arbitrariness in
the translation into probability distribution: numbering system states with the
order induced by distribution bπ, 1 = bπ(s1) > bπ(s2) > . . . > bπ(s#S+1) = 0,
with s#S+1 an artificial state such that π(s#S+1) = 0 introduced to simplify the
formula,

bπ(si) =

#S
∑

j=i

bπ(sj)− bπ(sj+1)

j
(8)

Note that this probability distribution corresponds to the center of gravity of
the probability distributions family induced by the possibility measure defined
by distribution bπ [10], and respects the Laplace principle of Insufficient Reason
(ignorance leads to uniform probability).

3.3 Reward Aggregation

After the transition function, it remains to assign a reward to each epistemic
state: in the classical probabilistic translation, the reward assigned to a belief b is



the reward expectation according to the probability distribution b:
∑

s∈S r(s, a) ·
b(s). Here, the agent knowledge is represented with a possibility distribution bπ,
which is less informative than a probability one: it accumulated uncertainty due
to possibilistic discretization and due to possible agent ignorance. A way to
define a reward being pessimistic about these uncertainties is to aggregate the
reward using the dual measure of the possibility distribution, and the Choquet

integral.

The dual measure of a possibility measure Π : 2S → L is called necessity

measure and is denoted by N . This measure is defined by ∀A ⊆ S, N (A) =
1−Π(A) where A is the complementary set of A : A = S\A. Recall notation L =
{ l1 = 1, l2, l3, . . . , 0}. For a given action a ∈ A, reward values, {r(s, a) | s ∈ S }
are denoted by {r1, r2, . . . , rk } with r1 > r2 > . . . > rk, and k 6 #S. An
artificial value rk+1 = 0 is also introduced to simplify the formulae.

The discrete Choquet integral of the reward function with the necessity mea-
sure N is defined, and then simplified, as follows:

Ch(r,N )=
k

∑

i=1

(ri − ri+1) · N ({r(s) > ri } )=

#L−1
∑

i=1

(li − li+1) · min
s∈S s.t.
π(s)>li

r(s). (9)

More on possibilistic Choquet integrals can be found in [4]. This reward aggrega-
tion using the necessity measure leads to a pessimistic estimation of the reward:
as an example, the reward mins∈S r(s, a) is assigned to the total ignorance. Note
that, if the necessity measure N is replaced by a probability measure P, Choquet
integral coincides with the expected reward based on P.

3.4 MDP with Epistemic States

This section summarizes the complete translation using the final equations of the
previous sections. This translation takes for input a POMDP: 〈S,A, T,Ω,O, r〉
and returns an epistemic states based MDP: 〈S̃,A, T̃ , r̃〉. The state space is
S̃ = ΠS . The (approximate) transition functions are T̃ , such that ∀(bπ, b̃π) ∈

Π2
S , ∀a ∈ A, T̃ (bπ, a, b̃π) = p

(

b̃π
∣

∣

∣
bπ, a

)

defined with Equations 6 and 7.

The reward of a belief bπ is r̃(a, bπ) = Ch (r(a, .),Nbπ ), defined with Equation
9 and where Nbπ is the necessity measure computed from bπ. Finally, as in
the probabilistic framework (see Equation 1), the criterion of this MDP is the

expected total reward: E(bπt )∼T̃

[

∑+∞
t=0 γ

t · r̃ (bπt , dt )
]

.

While the resulting state space is finite, only really small POMDP problems
can be solved with this translation without computation tricks. Indeed,ΠS grows
exponentially with the number of system states (see Equation 4), which makes
the problem intractable even for state of the art MDP solvers.

Purely possibilistic counterparts of the (PO)MDPs, called Qualitative Possi-
bilistic (PO)MDPs, have been already defined [14] and efficiently used for plan-
ning under uncertainty problems [7]. These π-(PO)MDPs are quite different from
the model exposed in this paper. For instance, they do not use quantitative data



as probabilities or rewards. Dynamics is described in a purely qualitative possi-
bilistic way. Frequentist information about the problem cannot be encoded: these
frameworks are indeed dedicated to situations where the probabilistic dynamic
of the studied system is lacking. Moreover, possible values of the reward function
are chosen among the degrees of the qualitative possibilistic scale. A commen-
surability assumption between reward and possibility degrees, i.e. a meaning of
why they share the same scale, is needed to use the criteria proposed in these
frameworks. Our model bypass these demands: a real number is assigned to
each possibilistic belief (epistemic state), using the Choquet integral, instead
of a qualitative utility degree: it represents the reward got by the agent when
reaching this belief (in an MDP fashion) as detailed in Section 3.3. Moreover, the
dynamics of our process is described with probability distributions: approximate
probabilistic transition functions between current and next beliefs, or epistemic
states, are given in Section 3.2. Finally, our model can be solved by any MDP
solver in practice: it becomes eventually a classical probabilistic fully observable
MDP whose state space is the finite set ΠS . Here, the term hybrid is used be-
cause the beliefs only are defined as possibility distributions, and all variables
keep a probabilistic dynamic: the agent reasons based on a possibilistic analysis
of the system state (the possibilistic belief, or epistemic state), and transition
probability distributions are defined for its epistemic states.

4 Benefit from Factorization

This section carefully derive a tractable MDP problem from a factored POMDP
[2]: the resulting MDP is equivalent to the former translation, but some factor-
ization and computational tricks are described here to reduce its size and to make
it factorized First, the definition of a factored POMDP is quickly outlined, fol-
lowed by some notations about variable dependences helpful for describing how
distributions are dealt with. Next, a classification of the state variables is made
to strongly adapt computations according to the nature of the system state. The
way how possibility distributions are defined is presented, and the description of
the use of the possibilistic Bayes’ rule in practice ends this section.

4.1 Factored POMDPs

Partially Observable Markov Decision Processes can be defined in a factor-
ized way. The state space is described with Boolean variables of the set S =
{s1, . . . , sm }: S = s1 × . . . × sm. The notation S

′ = {s′1, . . . , s
′
m } is also used.

The set of Boolean observation variables O = {o1, . . . , on } describes also the
observation space Ω = o1 × . . . × on. For simplicity, and as state s ∈ S and
observation o ∈ Ω notations are no longer reused in this paper, only variables
are denoted with these letters from now: sj ∈ S and oi ∈ O.

The factorized description continues defining, ∀j ∈ {1, . . . ,m} and ∀a ∈ A,
a transition function T a

j (S, s
′
j) = p

(

s′j
∣

∣ S, a
)

, about the state variable s′j . One
observation function is also given for each observation variable: Oa

i (S
′, o′i) =

p (o′i | s
′
1, . . . , s

′
m, a ), ∀i = 1, . . . , n and ∀a ∈ A. It is here understood that



S
′ are independent conditionned on S and the action a, and that {o′i }

n

i=1 are
independent conditionned on S

′ and a.

4.2 Notations and Observation Functions

Transitions of the final MDP make it more handy if each variable depends on
only few previous variables: the procedure to avoid blocking such simplifications
brought by the structure of the initial POMDP during the translation, needs the
following notations. In practice, for each i ∈ {1, . . . , n} not all state variables in-
fluence observation variable o′i; similarly, for each j ∈ {1, . . . ,m}, not all current
state variables influence next state variable s′j : observation variable o′i depends
on some state variables which are called parents of o′i as they appears as “par-
ents nodes” in a Bayesian network illustrating dependencies of the process, and
denoted by P(o′i) =

{

s′j ∈ S
′ s.t. o′i depends on s′j

}

. As well, probability distri-
butions of next state variable s′j depend on some current state variables, denoted

by P(s′j) =
{

sk ∈ S s.t. s′j depends on sk
}

. It leads to the following rewriting of

probability distributions: T a
j (P(s′j), s

′
j) = p

(

s′j
∣

∣ P(s′j), a
)

and Oa
i (P(o′j), o

′
i) =

p
(

o′i | P(o′j), a
)

. Finally, the following subset of S is useful to specify observation

dynamics:Q(o′i) =
{

sk ∈ S s.t. ∃s′j ∈ P(o′i) s.t. sk ∈ P(s′j)
}

= ∪s′
j
∈P(o′

i
)P(s′j) ⊆

S. Probability distributions of variables P(o′i) profit also from previous rewrit-
ings: thanks to state variables independences, ∀i = 1, . . . , n,

p (P(o′i) | S, a ) =
∏

s′
j
∈P(o′

i
)

T a
j (P(s′j), s

′
j) = p (P(o′i) | Q(o′i), a ) (10)

The observation probability distributions knowing previous state variables are

∀i = 1, . . . , n, p (o′i | Q(o′i), a ) =
∑

v∈2P(o′
i
)

p (o′i | v, a ) · p (v | Q(o′i), a ) . (11)

Therefore a possibilistic belief defined on 2Q(o′i) is enough to get the approxi-
mate probability distribution of an observation variable: such an epistemic state,
leads to a probability distribution bπ over 2Q(o′i) via the pignistic transformation
(8). The approximate probability distribution of the ith observation variable,
factorized counterpart of Equation 6, is: ∀i = 1, . . . , n,

p (o′i | b
π, a ) =

∑

v∈2Q(o′
i
)

p (o′i | v, a ) · b
π(v). (12)

4.3 State Variable Classification

State variables s ∈ S do not play the same role in the process: as already studied
in the literature [11], some variables can be visible for the agent, and this mixed-

observability leads to important computational simplifications. Moreover, some
variables do not affect observation variables, and this structure profits in the
final MDP complexity.



– A state variable sj is said to be visible, if ∃oi ∈ O, observation vari-
able, such that P(o′i) =

{

s′j
}

and ∀a ∈ A, p
(

o′i | s
′
j , a

)

= 1{ o′
i
=s′

j }
i.e.

if o′i = s′j almost surely. The set of visible state variables is denoted by
Sv = {sv,1, sv,2, . . . , sv,mv

}. The observation variables corresponding to the
visible state variables can be removed from the set of observation variables:
the number of observation variables becomes ñ = n−mv.

– Inferred hidden variables are simply ∪ñ
i=1P(o′i), i.e. all hidden variables

influencing (remaining) observation variables. The set of inferred hidden vari-
ables is Sh = {sh,1, sh,2, . . . , sh,mh

} and contains possibly visible variables.
– Non-inferred hidden variables or fully hidden variables, denoted by

Sf , consists of hidden state variables which do not influence any observation,
i.e. all remaining state variables. The fully hidden variables are denoted by
sf,1, sf,2, . . . , sf,mf

, and the corresponding set is Sf .

The classification allows to avoid some computations for visible variables: if
sv ∈ Sv, and ov is the associated observation, computations of the distribution
over P(o′v), Equation 10, and of the distribution over o′v, Equation 11, are unnec-
essary: the distribution over s′v (= o′v) needed is simply given by T a (P(s′v), s

′
v ).

The counterpart of Equation 12 is then simply

p (s′v | b
π, a ) =

∑

2P(s′v)

T a (P(s′v), s
′
v ) · b

π(P(s′v)) (13)

where bπ is the probability distribution over 2P(s′v) extracted from the possibilis-
tic belief over the same space, using pignistic transformation (8).

4.4 Beliefs Process Definition and Handling

This section is meant to define marginal beliefs instead of a global one, in order
to profit of the structure of the initial POMDP. Possibilistic belief distributions
have different definitions according to which class of state variables they concern.

As visible state variables are directly observed, there is no uncertainty over
these variables. Two epistemic states (possibilistic belief distribution) are pos-
sible for visible state variable s′v,j : b′v,T (s

′
v,j) = 1{ s′

v,j
=⊤} and b′v,F (s

′
v,j) =

1{ s′
v,j

=⊥}. As a consequence, one Boolean variable β′
v,j ∈ {⊤,⊥} per visi-

ble state variables is enough to represent this belief distribution in practice: if
s′v,j = ⊤, then next belief is b′ = b′v,T represented by belief variable assignment
β′
v,j = ⊤, otherwise, next belief is b′ = b′v,F , and β′

v,j = ⊥.
For each i ∈ 1, . . . , ñ, each inferred hidden variable constituting P(o′i) is an

input of the same possibilistic belief distribution: non-normalized belief is

∀i = 1, . . . , ñ, b̃′(P(o′i)) = max
v∈2Q(o′

i
)
min {π (o′i,P(o′i) | v, a ) , b(v)} , (14)

where the joint possibility distributions over o′i×P(o′i) are π (o′i,P(o′i) | Q(o′i), a )

= min
{

π (o′i | P(o′i), a ) ,mins′
j
∈P(o′

i
) π

(

s′j
∣

∣ P(s′j), a
)

}

. The possibilistic nor-

malization, ∀w ∈ 2P(o′i), b′(w) =

{

1 if w ∈ argmax
v∈2P(o′

i
) b̃

′(v);

b̃′(w) otherwise.
finalizes this



rewriting of the belief update (5). In practice, if l = #L, and pi = #P(o′i), the
number of belief states is l2

pi −(l−1)2
pi
, and then the number of belief variables

is nh,i = ⌈log2(l
2pi − (l − 1)2

pi
)⌉. A belief variable of an inferred hidden state

variable is denoted by βh.
For each j ∈ 1, . . . ,mf , non-normalized belief defined on fully hidden variable

sf,j is

b̃′(s′f,j) = max
v∈2

P(s′
f,j

)
min

{

π
(

s′f,j
∣

∣ v, a
)

, b(v)
}

, (15)

which leads to the actual new belief b′ after the possibilistic normalization. As
each fully hidden variable is considered independently from the others, the num-
ber of belief variables is nf = ⌈log2(l

2−(l−1)2)⌉ = ⌈log2(2l−1)⌉. A belief variable
of a fully hidden state variable is denoted by βf . Finally, the global epistemic

state is b′(S′) = min
{

minmv

j=1 b
′(s′v,j),minñi=1 b

′(P(o′i)),min
mf

k=1 b
′(s′f,k)

}

.

Note that the belief over the inferred hidden variables (14) and the distribu-
tion over observation variables (12), need a belief distribution over Q(o′i) ⊆ S. As
well, the belief over the fully hidden state variables (15) needs a belief distribu-
tion over variables P(s′f,j) ⊆ S. Moreover, a belief distribution over P(s′v,i) ⊆ S

is needed to define an approximate probability distribution over visible state
variables (13). These beliefs can be computed marginalizing the global belief
using the max operator over unused state variables.

5 Solving a POMDP with a Discrete MDP Solver

A practical version of the factored MDP achieved in the previous section is
described here. A concrete POMDP problem and the resulting MDP illustrate
then the state space size reduction of our detailed possibilistic translation.

5.1 Resulting Factored MDP

A belief update depends only on the next observation (see Equation 5): the
transition of a belief is then deterministic conditionned on the next observation.
A simple trick is used to keep this determinism in the final MDP: a flipflop

Boolean variable is introduced, changing its state at each step, denoted by f . It
artificially divides a classical time step of the POMDP into two phases. During
the first phase, called the observation generation phase, non-identity transition
functions are the probability distributions over observation variables (12) and
visible state variables (13). During the second phase, called the belief update

phase, non-identity transition functions are the deterministic transitions of the
belief variables: variables βv are updated knowing value of corresponding visible
variable sv; variables β1

h, . . . , β
nh,i

h are updated knowing value of observation
variables oi, and using update (14); finally, variables β1

f , . . . , β
nf

f are updated

using update (15). The state space is then defined as: S = f × s1v × . . .× smv
v ×

o1 × . . . × oñ × β1
v × . . . × βmv

v × β1
h × . . . × βñ

h × β1
f × . . . × β

mf

f , where ∀i =

1, . . . , ñ, βi
h represents Boolean variables β1,i

h , . . . , β
nh,i,i

h , and ∀k = 1, . . . ,mf , β
j
f

represents Boolean variables β
1,j
f , . . . , β

nf ,j

f . Figure 1 is the Influence Diagram
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Fig. 1. ID of the resulting MDP: thickest arrows are non-identity transitions.

(ID) of the resulting MDP where βt represents all belief variables, and vt the
visible variables: the flipflop variable f , observations and visible state variables.
The resulting MDP is a factored MDP thanks to the flipflop trick.

5.2 For a Concrete POMDP

A problem inspired by the RockSample problem [18] is described in this section
to illustrate the factorized possibilistic discretization of the agent belief, from a
factored POMDP: a rover is navigating in a place described by a finite number
of locations l1, . . . , ln, and where stand m rocks. Some of these m rocks have an
interest in the scientific mission of the rover, and it has to sample them. However,
sampling a rock is an expensive operation. The rover is thus fitted with a long
range sensor making him able to estimate if the rock has to be sampled. Finally
operating time of the rover is limited, but its battery level is available.

Variables of this problem can now be set, and classified as in Section 4.3:
as the battery level is directly observable by the agent (the rover), the set
of visible state variables consists of the Boolean variables encoding it: Sv =
{B1, B2, . . . , Bk }. The agent knows the different locations of the rocks, however
the nature of each rock is estimated. The set of inferred hidden state variables
consists of m Boolean variables Ri encoding the nature of the ith rock, ⊤ for
“scientifically good” and ⊥ otherwise: Sh = {R1, R2, . . . , Rm }. When the ith

rock is observed using the sensor, it returns a noisy observation of the rock in
{⊤,⊥}, modeled by the Boolean variable Oi: the set of observation variables is
then O = {O1, O2, . . . , Om }. Finally, no localization equipment is provided: the
agent estimates its location from its initial information, and its actions. Each
location of the rover is formally described by a variable Lj , which equals ⊤ if the
rover is at the jth location, and⊥ otherwise. The set of fully hidden variables con-
sists thus of these n variables: Sf = {L1, L2, . . . , Ln }. Initial location is known,
leading to a deterministic initial belief: bπ0 (Sh) = 1 if L1 = ⊤ and Lj = ⊥ ∀j 6= 1,
and 0 otherwise. However initial nature of each rock is not known. Instead of a
uniform probability distribution, the Possibility Theory allows to represent the
initial ignorance about rock natures with the belief bπ0 (Sh) = 1, for each variable
assignment.



Classical POMDP solvers are based on probabilistic beliefs over the state
space defined by Sh, Sf and even Sv if Mixed-Observability [11] is not taken into
account. The approach presented in this paper leads to an MDP with a finite
space of epistemic states. Finally, the factorization tricks lead to a reduction of

the state space size: with a flat translation of this POMDP, ⌈log2(#L2n+m+k

−

(#L − 1)2
n+m+k

)⌉ Boolean variables are necessary. Taking advantage of the
POMDP structure, the resulting state space is encoded with 1 + 2k + m +
(m+n)⌈log2(2#L− 1)⌉ Boolean variables: the flipflop variable, the visible vari-
ables and associated beliefs variables, the observation variables, and the belief
variables associated to the fully hidden and inferred hidden variables. Moreover,
the dynamic of the resulting MDP is factored, and lot of transitions are deter-
ministic, thanks to the flipflop variable trick. These simplifying structures are
beneficial to the MDP solvers, leading to faster computations.

6 Conclusion

This paper describes a hydrid translation of a POMDP into a finite state space
MDP one. The Qualitative Possibility Theory is used to maintain an epistemic
state during the process: the belief space has a granulated representation, instead
of a continuous one as in the classical translation. The resulting MDP is entirely
defined computing transition and reward functions over these epistemic states.
Definitions of these functions use respectively the pignistic transformation, used
to recover a probability distribution from an epistemic state, and the Choquet
integral with respect to the necessity, making the agent pessimistic about its
ignorance. A practical way to implement this translation is then described: with
these computation tricks, a factored POMDP leads to a factored and tractable
MDP. This promising approach will be tested on the POMDPs of the IPPC
competition [15] in a future work: provided problem descriptions are indeed in
the form of the factored POMDPs introduced in Section 4.

References

1. Bellman, R.: A Markovian Decision Process. Indiana Univ. Math. J. 6, 679–684
(1957)

2. Boutilier, C., Poole, D.: Computing optimal policies for partially observ-
able decision processes using compact representations. In: Proceedings of
the Thirteenth National Conference on Artificial Intelligence and Eighth In-
novative Applications of Artificial Intelligence Conference, AAAI 96, IAAI
96, Portland, Oregon, August 4-8, 1996, Volume 2. pp. 1168–1175 (1996),
http://www.aaai.org/Library/AAAI/1996/aaai96-173.php

3. Cassandra, A., Littman, M.L., Zhang, N.L.: Incremental pruning: A simple,
fast, exact method for partially observable markov decision processes. In: In
Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelli-
gence. pp. 54–61. Morgan Kaufmann Publishers (1997)

4. Cooman, G.D.: Integration and conditioning in numerical possibility theory.
Ann. Math. Artif. Intell. 32(1-4), 87–123 (2001), http://dx.doi.org/10.1023/
A:1016705331195



5. De Finetti, B.: Theory of probability: a critical introductory treatment. Wiley
series in probability and mathematical statistics. Probability and mathematical
statistics, Wiley (1974), http://books.google.fr/books?id=aRbvAAAAMAAJ

6. Drougard, N., Teichteil-Konigsbuch, F., Farges, J.L., Dubois, D.: Qualitative
Possibilistic Mixed-Observable MDPs. In: Proceedings of the Twenty-Ninth
Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-
13). pp. 192–201. AUAI Press, Corvallis, Oregon (2013)

7. Drougard, N., Teichteil-Königsbuch, F., Farges, J., Dubois, D.: Structured pos-
sibilistic planning using decision diagrams. In: Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec
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