
Nonparametric Detection of Nonlinearly Mixed Pixels

and Endmember Estimation in Hyperspectral Images
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émanant des établissements d’enseignement et de
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Nonparametric Detection of Nonlinearly Mixed
Pixels and Endmember Estimation

in Hyperspectral Images
Tales Imbiriba, Student Member, IEEE, José Carlos Moreira Bermudez, Senior Member, IEEE,

Cédric Richard, Senior Member, IEEE, and Jean-Yves Tourneret, Senior Member, IEEE

Abstract— Mixing phenomena in hyperspectral images depend
on a variety of factors, such as the resolution of observation
devices, the properties of materials, and how these materials
interact with incident light in the scene. Different parametric
and nonparametric models have been considered to address
hyperspectral unmixing problems. The simplest one is the linear
mixing model. Nevertheless, it has been recognized that the
mixing phenomena can also be nonlinear. The corresponding
nonlinear analysis techniques are necessarily more challenging
and complex than those employed for linear unmixing. Within
this context, it makes sense to detect the nonlinearly mixed pixels
in an image prior to its analysis, and then employ the simplest
possible unmixing technique to analyze each pixel. In this paper,
we propose a technique for detecting nonlinearly mixed pixels.
The detection approach is based on the comparison of the recon-
struction errors using both a Gaussian process regression model
and a linear regression model. The two errors are combined into
a detection statistics for which a probability density function
can be reasonably approximated. We also propose an iterative
endmember extraction algorithm to be employed in combination
with the detection algorithm. The proposed detect-then-unmix
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strategy, which consists of extracting endmembers, detecting
nonlinearly mixed pixels and unmixing, is tested with synthetic
and real images.

Index Terms— Hyperspectral imaging, spectral unmixing, end-
member extraction, non-linearity detection, Gaussian processes.

I. INTRODUCTION

EMERGED in the 1960s with multispectral scanners,
modern hyperspectral sensors produce two-dimensional

hyperspectral images over a few tens to thousands of contigu-
ous spectral bands [2]. Their high spectral resolution allows
a comprehensive and quantitative analysis of materials in
remotely observed data. This area has received considerable
attention in the last decade. Due to historic downlink and
computer processing limitations [3], hyperspectral images
often trade spatial for spectral resolution [4]. Such trade-off is
especially evident in remote sensing applications, and caused
by the large distance between sensors and target scenes. The
observed reflectances then result from spectral mixtures of
several pure material signatures. As a consequence, spectral
unmixing has become an important issue for hyperspectral data
processing [5].

In a supervised setting, the spectral signatures of pure
materials are available as vectors of reflectances of these
materials at each wavelength. Such vectors are typically
called endmembers due to their geometrical interpretation
in the linear mixing case. Mixing phenomena depend on
a variety of factors such as the resolution of observation
devices, the properties of materials, and how these materi-
als interact with incident light in the scene [6]. Therefore,
different parametric and nonparametric models have been
considered to address hyperspectral unmixing problems. The
simplest one is the linear mixing model, which assumes
linear mixing of the endmember contributions [5]. However,
it has been recognized that mixing phenomena can often be
nonlinear [5], [6]. Unmixing nonlinearly mixed pixels requires
specific techniques, and thus nonlinear analysis of hyperspec-
tral images has been widely explored in the past few years.
See, for instance, [2], [6]–[16]. It is now acknowledged that
nonlinear unmixing algorithms can lead to a better understand-
ing of the individual spectral contributions. On the other hand,
nonlinear analysis techniques are necessarily more challeng-
ing and complex than those employed for linear unmixing.



As hyperspectral images tend to include both linearly and
nonlinearly mixed pixels, there are two important reasons to
match the unmixing method to the nature of each pixel in
the image. First, nonlinear unmixing algorithms are always
more complex to implement than linear unmixing algorithms.
Second, unmixing linearly mixed pixels with nonlinear unmix-
ing algorithms leads to poorer results than doing it with linear
unmixing algorithms. Hence, it makes sense to detect the
nonlinearly mixed pixels in an image prior to its analysis,
and then employ the simplest and more accurate available
unmixing technique to analyze each pixel. To this end, it
is desirable to devise analysis techniques that combine end-
member extraction, detection of nonlinearly mixed pixels and
unmixing.

The problems of extracting endmembers, detecting
nonlinearly mixed pixels and unmixing are interlaced, and
addressing them jointly is not a trivial task. For instance,
most nonlinear unmixing techniques assume the endmembers
to be known or to be estimated by an endmember extraction
algorithm (EEA) [13]–[21]. However, most endmember
extraction algorithms rely on the convex geometry associated
with the linear mixing model [22]–[26], which obviously does
not apply to nonlinearly mixed pixels. Endmember extraction
techniques designed for situations where a significant part
of the image is composed of nonlinear mixtures are rarely
addressed in the literature. In fact, most of the techniques
considering nonlinearly mixed pixels are part of a complete
unsupervised unmixing strategy [27], [28]. Detecting
nonlinearly mixed pixels in an hyperspectral image is also a
complex task. Physically motivated models [7], [29] usually
tend to be too complex for application in practical detection
strategies. One possible approach is to consider a simplified
parametric model for the nonlinearity. The parameters of
this nonlinear model are then estimated from the image, and
hypothesis tests are derived based on these estimates. For
instance, a single-parameter polynomial post-nonlinear model
is assumed in [30]. The main question regarding parametric
modeling of nonlinear mixing mechanisms is whether the
chosen model can capture the actual nonlinear effects present
in a scene. When nothing or little is known about the nonlinear
mixing mechanism, a direct strategy is to exploit the property
of linear mixing models to confine the noiseless data to a
simplex. The hypothesis test proposed in [31] is based on
the distance between the observed pixel and this simplex.
Though this test is robust to nonlinear mixing mechanisms,
it conveys too little information about the nonlinearity as a
tradeoff to guarantee simplicity. An alternative strategy is to
use nonparametric techniques to extract information about the
nonlinearity directly from the observations. A nonparametric
unmixing technique based on kernel expansions is presented
in [13], but this work does not address nonlinearity detection.
A nonlinear mixing model for joint unmixing and nonlinearity
detection is proposed in [32]. It assumes that the observed
reflectances result from linear spectral mixtures corrupted
by a residual nonlinear component. This model is rather
similar to the model initially introduced in [13], but the
estimation method relies on a computationally intensive
Bayesian procedure.

All the detection methods discussed above assume known
endmember spectral signatures. In most cases, the endmem-
bers are assumed to have been estimated from the data.
However, most endmember extraction algorithms exploit the
convex geometry of the linear mixing model and assume the
presence of pure endmember pixels in the image. They usually
exploit one of the following properties: 1) the endmembers
are the extreme points when projecting the data onto any
subspace [22]–[24], [26], [33], [34]; 2) the volume of a
simplex spanned by any subset of points in the image is maxi-
mum when these points are the endmembers [35], [36]. Other
strategies deal with nonnegative matrix factorization [37]–[39].
One method of particular interest to this work is the MVES
(minimum volume enclosing simplex) algorithm [25] as it does
not assume the presence of pure pixels, though it still exploits
the geometry of linear mixtures. It solves a constrained
least-squares optimization problem with a simplex volume
regularizer. Practically, MVES finds the smallest simplex
circumscribing the hyperspectral data. The vertices of this
simplex are defined as the endmembers. One important aspect
of using one of these endmember extraction techniques when
analyzing images composed of linearly and nonlinearly mixed
pixels is that they tend to lead to poor endmember estimates
when applied to nonlinearly mixed pixels.

In this paper, we propose a technique that combines
endmember extraction and detection of nonlinearly mixed
pixels in hyperspectral images. The detection approach is
based on the comparison of the reconstruction errors using
both a Gaussian process (GP) and a linear regression model.
The two errors are combined into a detection statistics for
which a probability density function can be reasonably approx-
imated. We also propose an MVES-based iterative endmember
extraction algorithm to be employed in combination with the
detection algorithm to jointly detect nonlinearly mixed pixels
and extract the image endmembers from the linearly mixed
pixels. The proposed method is tested with synthetic and real
images. This work is organized as follows. Section II reviews
the linear mixing model and some nonlinear mixing models,
and discusses different ways of modeling nonlinear interac-
tion between light and endmembers. Section III discusses
GP regression applied in the context of hyperspectral data
unmixing. Section IV presents the application of GP to the
detection of nonlinearly mixed pixels. Section V introduces
a two-step iterative procedure to estimate the endmember
matrix. This method combines the MVES algorithm and the
nonlinear mixture detector proposed in Section IV. Simula-
tions with synthetic and real data are presented in Section VI.
Conclusions are finally presented in Section VII.

A. Contributions of the Present Work

The main contributions of this works are the following:
a) a model-free detector of nonlinearly mixed pixels. The

novel test statistics compares reconstruction errors of the
observations modeled by a Gaussian Process and a linear
regression;

b) a novel recursive endmember estimation algorithm for
scenes that are partly nonlinear;



c) the definition of a degree of nonlinearity ηd which
allows a meaningful comparison of detection results
using images obtained using different mixing models.

We emphasize the need for such techniques when consid-
ering nonlinear effects in the mixing process, as conventional
endmember extraction techniques strongly rely on the convex
geometry associated with the linear mixing model.

II. MIXTURE MODELS

Each observed pixel can be written as a function of the
endmembers plus an additive term associated with the mea-
surement noise and the modeling error. Consider the model

r = ψ(M)+ n (1)

where r = [r1, . . . , rL ]� is a vector of reflectances observed
in L spectral bands, M = [m1, . . . ,mR] is the L × R
endmember matrix, whose i -th column mi is an endmember,
n ∼ N (0, σ 2

n I) is a white Gaussian noise (WGN) vector,
and ψ is an unknown mixing function. Several models of the
form (1) have been proposed in the literature, depending on
the linearity or nonlinearity of ψ , type of mixture, and other
properties [6].

A. The Linear Mixing Model

The linear mixing model assumes that each light ray
interacts only with one material, disregarding multiple inter-
actions between light and multiple materials [5]. The classical
linear model assumes that ψ is a convex combination of the
endmembers. The vector r can then be written as

r = Mα + n

subject to 1�α = 1 and α � 0 (2)

where α = [α1, . . . , αR ]� is the vector of abundances of each
endmember in M, R is the number of endmembers, and �
denotes the entrywise ≥ operator. Therefore, the entries of α
cannot be negative and should sum to one. The observation r�
in the �-th wavelength of (2) can be written as

r� = m�
λ�
α + n� (3)

where mλ� denotes the �-th row of M as a column vector.
In the noiseless case, namely, n� = 0, the sum-to-one and
positivity constraints over the abundances in (2) confine the
data to a simplex. The vertices of this simplex are the
endmembers, which justifies the terminology.

Several parametric models have been proposed in the
literature to describe nonlinear mixing mechanisms of end-
members in hyperspectral images. See [6] and references
therein. We shall now review two popular models that will be
used later to generate synthetic data for evaluation purposes.

B. Nonlinear Mixing Models

The generalized bilinear model (GBM) [18] is given by

r = Mα +
R−1∑

i=1

R∑

j=i+1

γi jαiα j mi � m j + n

subject to 1�α = 1 and α � 0 (4)

where the parameters γi j ∈ [0, 1] govern the amount of
nonlinear contribution, and � denotes the Hadamard product.
In the noiseless case, data following the model (4) lie in a
nonlinearly distorted simplex in R

R whose vertices are the
endmembers as in the linear case. For simplicity, here we
consider a simplified version of this model in which the
nonlinear contribution is controlled by a single parameter γ
such that γ = γi j for all (i �= j).

The post nonlinear mixing model (PNMM) [40] is given by

r = g(Mα)+ n (5)

where g is a nonlinear function applied to the linear mixing
model. The PNMM can represent a wide range of nonlinear
mixing models, depending on the definition of g. For instance,
the PNMM considered in [13] is given by

r = (Mα)ξ + n (6)

where (v)ξ denotes the exponentiation applied to each entry of
the vector v. For ξ = 2, (6) becomes a bilinear model closely
related to the GBM but without a linear term. The PNMM
was explored in other works considering different forms for g
applied to hyperspectral data unmixing [30], [41].

The GBM (4) and the PNMM (5) nonlinear mixing models
mainly represent the scattering phenomenon where the light
first interacts with an endmember, and then with a second
one, before being captured by the hyperspectral sensor. Other
models account for other kinds of interaction between light
and endmembers, or consider other types of nonlinear effects.
In the case of the intimate mixture model [42] for instance,
the endmembers are considered to be mixed at the molecular
level. Other nonlinear models can be considered depending on
the characteristics of the scene [7]–[9], [11], [18], [20], [29],
[40], [42]. More importantly, these informations are usually
missing. Hence, it makes sense to develop nonparametric
models that do not make strong assumptions about the type
of nonlinearity involved in the mixture.

III. NONLINEARITY DETECTION WITH GAUSSIAN

PROCESS REGRESSION MODELS

To detect nonlinearly mixed pixels in an hyperspectral
image, assuming ψ in (1) is unknown, we propose to compare
the reconstruction errors resulting from estimating ψ with non-
linear and linear regression methods. Gaussian process (GP)
regression methods consist of defining stochastic models for
functions and performing inference in functional spaces [43].
The representation is rigorous but, at the same time, lets the
data speak for themselves. This characteristic is desirable when
little is known about the functions to be estimated. Using
some knowledge obtained from the observations about the
endmember matrix, we propose a supervised learning strategy
to make inference on ψ .

This section describes the application of GP nonlinear
regression to the problem at hand. Consider the training set
{M, r} with inputs M = [mλ1, . . . ,mλL ]�, and outputs or

observations r = [r1, . . . , rL ]�. By analogy with the linear
mixing model (3), we write the �-th row of (1) as

r� = ψ(mλ�)+ n�, (7)



with r� the �-th entry of the observation r, ψ a real-valued
function in a (reproducing kernel) Hilbert space H, and
n� an additive WGN in the �-th band. A Gaussian process is
a collection of random variables, any finite number of which
has a joint Gaussian distribution [43]. We define a Gaussian
prior for ψ with mean and covariance functions given by

E{ψ(mλ�)} = 0

E{ψ(mλ�)ψ(mλ�′ )} = κ(mλ�,mλ�′ ) (8)

where κ is a positive definite kernel. For notational simplicity,
it is common but not necessary to consider GPs with a zero
mean function. This assumption is not overly restricting as the
mean of the posterior distribution is not confined to be zero (as
shown by (11)). The prior on the noisy observation r becomes

r ∼ N (0, K + σ 2
n I L) (9)

with K the Gram matrix whose entries K i j = κ(mλi ,mλ j )
are given by the kernel covariance function evaluated at
mλi and mλ j , σ

2
n the noise power, and I L the L × L identity

matrix.
To obtain the predictive distribution for ψ∗ � ψ(mλ∗) at

any test point mλ∗ , we can write the joint distribution of the
observation r and ψ(mλ∗) as [43][

r
ψ∗

]
∼ N

(
0,

[
K + σ 2

n I L κ∗
κ�∗ κ∗∗

])
(10)

with κ∗ = [κ(mλ∗,mλ1), . . . , κ(mλ∗,mλL )]� and κ∗∗ =
κ(mλ∗,mλ∗). The predictive distribution of ψ∗, or posterior
of ψ∗, is then obtained by conditioning (10) on the observation
as follows

ψ∗|r,M,mλ∗ ∼ N
(
κ�∗

[
K + σ 2

n I L

]−1
r,

κ∗∗ − κ�∗
[

K + σ 2
n I L

]−1
κ∗

)
. (11)

The extension to a multivariate predictive distribution with test
data M∗ = [mλ∗1, . . . ,mλ∗L ]� yields

ψ∗|r,M,M∗ ∼ N
(

K�∗
[

K + σ 2
n I L

]−1
r,

K ∗∗ − K �∗
[

K + σ 2
n I L

]−1
K∗

)
(12)

with [K∗]i j = κ(mλ�i ,mλ j ) and [K∗∗]i j = κ(mλ�i ,mλ� j ).
Finally, we arrive at the minimum mean square error (MMSE)
estimator for GP regression

ψ̂∗ = E{ψ∗|r,M,M∗}
= K�∗

[
K + σ 2

n I L

]−1
r. (13)

In order to turn GP into a practical tool for processing
hyperspectral data, it is essential to derive a method for
estimating free parameters such as the noise variance σ 2

n and
possible kernel parameters defining the unknown parameter
vector θ . We proceed as in [43] by maximizing the marginal
likelihood p(r|M, σ 2

n , θ) with respect to (σ 2
n , θ), which yields

(σ̂ 2
n , θ̂) = arg max

σ 2
n ,θ

(
−1

2
r� [

K + σ 2
n I L

]−1
r

−1

2
log |K + σ 2

n I L |
)
. (14)

This problem has to be addressed with numerical optimization
methods. There is no guarantee that the cost function does
not suffer from multiple local optima. However, our practical
experience with hyperspectral data indicates that local optima
are not a critical problem in this context. The solutions to the
optimization problem (14) for all examples reported in this
paper were determined using the GPML toolbox [44].

We conclude this section by introducing some kernel func-
tions. Common examples include the linear kernel defined as

κ(mλi ,mλ j ) = m�
λi

mλ j
(15)

and radial basis function kernels, which depend on
‖mλi − mλ j ‖, such as the Gaussian kernel

κ(mλi ,mλ j ) = exp

(
− 1

2s2 ‖mλi − mλ j ‖2
)

(16)

where s > 0 is the kernel bandwidth. In the sequel, we
shall use the Gaussian kernel for its smoothness and non-
informativeness, as we lack any knowledge about the unknown
function ψ . Then, θ = s (scalar). Note that this kernel has
been used successfully in many signal and image processing
applications, e.g., for hyperspectral data unmixing [13], [16].

IV. DETECTION OF NONLINEARLY MIXED PIXELS

A. The Detection Problem

Given an observation r , we formulate the nonlinear mixture
detector as the following binary hypothesis test problem

H0 : r = Mα + n (17a)

H1 : r = ψ(M)+ n (17b)

where n is a zero-mean WGN with variance σ 2
n . We assume

that the endmember matrix M is available, or has been esti-
mated from data using an endmember extraction technique [2].
We shall relax this hypothesis in Section V, and use the
nonlinear mixture detector to jointly perform this task.

We propose to compare the fitting errors resulting from
estimating r with a linear or a nonlinear estimator (13).
Under H0, both estimators should provide good estimates.
Under H1, the estimation error resulting from the linear
estimator should be significantly larger than that obtained with
the nonlinear estimator. We shall now evaluate these fitting
errors.

B. Linear Estimation Error

The MMSE estimator (13) may be used with the linear
kernel (15) to estimate α in (17a). However, this would require
to solve (14) in order to estimate σ 2

n . To save on unnecessary
computational efforts, we shall limit the use of GP to nonlinear
model estimation. The MMSE estimator for (17a) is given by

α̂ = (M�M)−1 M�r (18)

resulting in the following estimation error

elin = r − r̂ lin = P r (19)

where P = I L − M(M�M)−1 M� is an L × L projection
matrix of rank ρ = L − R. Note that no constraint is imposed



on the abundance vector α. The objective is to obtain the
best linear estimator, since the purpose at this point is not
to perform unmixing, but to decide on the linearity (or not) of
the considered mixture.

Consider first the distribution for ‖elin‖2. Under H1, we
have

elin|H1 = P[ψ + n]. (20)

This implies that

elin|H1 ∼ N (Pψ, σ 2
n P) (21)

where we have used that the projection matrix P is idempo-
tent, that is, σ 2

n P P� = σ 2
n P . Under H0, we have

elin|H0 ∼ N (0, σ 2
n P). (22)

Proper normalization of each squared entry elin,i of elin yields
the conditional distributions under the two hypotheses

e2
lin,i

σ 2
n p�

i pi

∣∣∣∣∣H1 ∼ χ2
1

(
[ p�

i ψ]2

σ 2
n p�

i pi

)

e2
lin,i

σ 2
n p�

i pi

∣∣∣∣∣H0 ∼ χ2
1 (0) (23)

where p�
i denotes the i -th row of matrix P , and χ2

n (λ) is the
noncentral χ-square distribution with n degrees of freedom
and centrality parameter λ [45]. As P is idempotent and of
rank ρ = L − R, which leads to ‖elin‖2 = r� P r, we conclude
that [46, p. 33]

‖elin‖2

σ 2
n

∣∣∣∣H0 ∼ χ2
ρ (0). (24)

C. Nonlinear Estimation Error With GP

Since our interest at this point is not to make predictions for
new data, but to evaluate the fitting error between the model
output and the available data, we define the GP estimation
error as:

enlin = r − r̂nlin (25)

where r̂nlin is given by (13) with M∗ = M . Hence, using (13)
in (25) yields

enlin = r − ψ̂∗
∣∣∣

M∗=M
= H r (26)

where H = I L − K� [
K + σ 2

n I L
]−1

is a real-valued matrix
of rank L. We shall now analyze the distribution of ‖enlin‖2

under hypotheses H0 and H1. Under hypothesis H1, we have

enlin|H1 = H(ψ + n). (27)

This leads to the following conditional distribution

enlin|H1 ∼ N (Hψ, σ 2
n H H�). (28)

Under hypothesis H0, the distribution for the error becomes

enlin|H0 ∼ N (H Mα, σ 2
n H H�). (29)

The distribution of the i -th entry of enlin is thus given by

enlin,i |H0 ∼ N (h�
i Mα, σ 2

n h�
i hi ). (30)

Proper normalization of each squared entry enlin,i of enlin
yields the following conditional distributions

e2
nlin,i

σ 2
n h�

i hi

∣∣∣∣∣H1 ∼ χ2
1

(
[h�

i ψ]2

σ 2
n h�

i hi

)

e2
nlin,i

σ 2
n h�

i hi

∣∣∣∣∣H0 ∼ χ2
1

(
[h�

i Mα]2

σ 2
n h�

i hi

)
(31)

where h�
i denotes the i -th row of H . Non-central χ-square

distributions in (23) and (31) make the analysis of the test
statistics in the next section intractable, even under H0.
In order to proceed, we argue that it is reasonable to assume
that, under H0, both the nonlinear GP regression method and
the linear one should achieve the same level of accuracy.
Considering (24), this approximation leads to

‖enlin‖2

σ 2
n

∣∣∣∣H0 = χ2
ρ(0). (32)

We validated this approximation using extensive Monte Carlo
simulations. Figures 2a and 2b illustrate this assumption for a
representative example.

D. The Test Statistics

We propose to compare the squared norms of the two fitting
error vectors enlin and elin to decide between H0 and H1. Also,
the test statistics should allow for the adjustment of the detec-
tion threshold to a given probability of false alarm (PFA) for
design purposes. Considering these two objectives, we propose
the following statistical test

T = 2‖enlin‖2

‖enlin‖2 + ‖elin‖2

H1
≶
H0

τ (33)

where τ is the detection threshold.
The reasoning behind the choice of T defined in (33) is

as follows. Under H0, both ‖enlin‖2 and ‖elin‖2 are χ-square
dependent random variables. Now, we write elin as enlin+√

2ε,
where ε is assumed to be also a zero-mean i.i.d. Gaussian
vector,1 and neglect the cross-term e�

nlinε when compared to
‖ε‖2 in evaluating ‖elin‖2 under H0. The latter approximation
is due to the lack of correlation between enlin and ε, which
can be largely attributed to mismatches resulting from the
numerical optimization required to solve (14). Under these
considerations, (33) can be written as T = ‖enlin‖2/(‖enlin‖2+
‖ε‖2) with both ‖enlin‖2 and ‖ε‖2 independent and χ-square
distributed. Such a statistics is known to have a beta distribu-
tion [47].

As the GP estimator tends to fit better nonlinearly mixed
data, T should be less than 1 under hypothesis H1. Conversely,
T should be close to one for linearly mixed pixels, as ‖ε‖2

tends to be much less than 2‖enlin‖2. Hence, as per (33),
we accept hypothesis H0 if T > τ and we conclude for the
nonlinear mixing hypothesis H1 if T < τ .

1The constant factor
√

2 is for notation purpose only.



E. Determining the Detection Threshold

Considering the assumption that the statistical test T has
a beta distribution under H0, a decision threshold τ can be
determined for a given PFA as

τ = B−1
α,β(PFA) (34)

where Bα,β is the cumulative distribution function of the beta
distribution with parameters (α, β). The parameters of this
function must be estimated from the data. To this end, we
initially determine an estimate Â of the abundance matrix
assuming the linear mixing model with the real observations
R = [r1, . . . , r N ] and the known endmember matrix M. Then,
using M and Â we construct the synthetic image Rs = MÂ,
which satisfies H0. For this linearly mixed hyperspectral
image, we then compute, say, N samples of the test statistics
T |H0 defined in (33) and fit a beta distribution to these
samples. The threshold τ for each PFA is then determined
using (34).

This procedure requires the knowledge of the endmember
matrix M. The next section proposes an iterative technique to
estimate M from an hyperspectral image, which we assume
to contain linearly and nonlinearly mixed pixels.

V. ENDMEMBER EXTRACTION IN NONLINEARLY

MIXED HYPERSPECTRAL IMAGES

The presence of nonlinearly mixed pixels in an hyper-
spectral image tends to degrade the estimation accuracy of
endmember extraction methods based on a linear mixing
model. As a consequence, nonlinearly mixed pixels also affect
the performance of algorithms using the endmember matrix
such as the detection method presented in this paper. There
has been few papers addressing endmember estimation from
nonlinearly mixed images. A nonlinear unmixing algorithm
is derived in [48]. The pixel reflectances are supposed to
be post-nonlinear functions of unknown pure spectral com-
ponents. A Bayesian strategy is proposed to both unmix the
data and estimate the endmembers. Both tasks are however
mutually dependent and the unmixing model is very spe-
cific. A nonlinear endmember estimation algorithm based
on the approximation of geodesic distances is introduced
in [27] and [49]. This algorithm can however suffer from the
absence of pure pixels in the image, and the effectiveness of
using manifold learning methods on real data still needs to
be analyzed and confirmed. In this section, we propose an
iterative technique for estimating the endmember matrix M
under the reasonable assumptions that the number R of
endmembers is known [50]–[52], and that these endmembers
are linearly mixed within at least a small part of the image.
Nonlinear mixtures may however compose a significant part
of the image. The proposed technique combines the detector
of nonlinearly mixed pixels presented in Section IV and the
endmember estimation algorithm MVES [25].

The procedure is described in Algorithm 1. It is a two-step
iterative algorithm. The first step consists of using MVES to
estimate the endmembers (line 2 and 14 in Algorithm 1). The
second step uses (33) to compute the detection statistics for all
the Npixels in the image Rtmp (line 7 in Algorithm 1). Then, all

Algorithm 1 Iterative Endmember Estimation

pixels whose detection statistic satisfies T (i) ≤ τr are removed
(line 9), where τr = r f × τ (line 4 and 11) is the relaxed
detection threshold. The use of a relaxed threshold is suggested
to avoid discarding linear pixels during the first iterations,
when the estimates of M are still not sufficiently accurate.
The relaxing factor is initialized for r f = 0.9 and is increased
by a factor rinc = 0.1/Nmax at each iteration to improve pixel
selection as the estimation of the matrix M improves (line 10).
The procedure is repeated until the linear and the nonlinear GP
models in (33) present similar fitting errors within the limit
of ε. Using this procedure, τr tends to the desired threshold τ
as the estimation of M improves, leaving mostly linear pixels
for which both models have similar performance. A maximum
number of iterations Nmax is also set to avoid discarding too
much data.

Note that we have opted for the MVES algorithm for
endmember extraction because it inscribes the data into a
minimum-volume simplex. Thus, MVES is suitable to esti-
mate M in the absence of pure pixels. This feature is specially
interesting for our purpose since the procedure described
above discards data, which may even be pure or near-pure
pixels during the first iterations. Nevertheless, any other
endmember estimation algorithm valid in absence of pure
pixel [39], [53], [54] could be potentially used with
Algorithm 1.

VI. SIMULATIONS

This section presents simulation results to validate the
proposed approach for detecting nonlinearly mixed pixels,
with both synthetic and real images. The use of synthetic
images is important as they provide a ground truth against
which the performance of the detector can be verified. First,
we propose a definition for a degree of nonlinearity of an
hyperspectral image so that the relative performances of dif-
ferent detectors can be compared. This is helpful to quantify
the relative energies associated with the linear and nonlinear
mixing components in hyperspectral images generated with
different nonlinear mixing models.



A. Degree of Nonlinearity

Consider that a pixel vector can be written as the sum of a
linear and a nonlinear mixing component2 as for most existing
nonlinear mixing models [8], [9], [11], [18], [41]

r = r lin + rnlin (35)

where r lin and rnlin are the linear and nonlinear mixing
contributions to r , respectively. The energy of r is given by

E = ‖r‖2 = ‖r lin‖2 + 2r�
linrnlin + ‖rnlin‖2 (36)

where Elin = ‖r lin‖2 is the energy of the linear contribution
and Enlin = 2r�

linrnlin +‖rnlin‖2 is the part of the pixel energy
affected by the nonlinear mixing. Given a mixing model, we
define the degree of nonlinearity ηd as the ratio of the energy
of the nonlinear contribution Enlin to the total energy E . Thus,

ηd = Enlin

E
= 1

1 + A
(37)

where A = ‖r lin‖2/(2r�
linrnlin +‖rnlin‖2). Next, we show how

to apply this definition for generating synthetic samples with
two different mixing models.

1) Synthetic Data Generation With GBM: To be able to
control the relative contributions of the linear and nonlinear
mixing parts of the GBM model, we introduce a new scaling
factor k into the generalized bilinear model (GBM) used
in [31]. For an endmember matrix M and an abundance
vector α, we write the modified noiseless GBM model as

r = k Mα + γ ν (38)

where 0 ≤ k ≤ 1, ν = ∑R−1
i=1

∑R
j=i+1 αiα j mi � m j

is the nonlinear mixing term, γ is the scaling parameter
for the nonlinear contribution, and � is the Hadamard product.
The degree of nonlinearity is then

ηd = 2kγ (ν�Mα)+ γ 2‖ν‖2

k2‖Mα‖2 + 2kγ (ν� Mα)+ γ 2‖ν‖2 = 1

1 + A
(39)

with A = k2‖Mα‖2/(2kγ (ν� Mα) + γ 2‖ν‖2). We have to
determine the scaling factors k and γ so that the energy E
is independent of ηd ≥ 0. This condition can be expressed as
‖Mα‖2 = k2‖Mα‖2 + 2kγ (ν� Mα)+ γ 2‖ν‖2, leading to

A = k2

1 − k2 (40)

or

k =
√

A

1 + A
= √

1 − ηd . (41)

To obtain γ, note that the denominator of A can be written as
γ 2‖ν‖2 + 2kγ (ν� Mα) = (1 − k2)‖Mα‖2. Since γ must be
positive, we have

γ = 1

2‖ν‖2

(
− 2k(ν�Mα)

+
√

4k2(ν�Mα)2 + 4‖ν‖2(1 − k2)‖Mα‖2
)
.

(42)

Once k and γ have been determined from ηd , we can generate
data following the model in (38).

2We do not account for noise contribution as it can be set by the user
independently of the mixing model.

2) Synthetic Data Generation With PNMM: To match the
noiseless PNMM model (6) with the proposed formula-
tion (38), we complement it with a weighted linear mixture as
follows

r = k Mα + γ ν (43)

where ν = (Mα)ξ denotes the exponential value ξ applied
to each entry of Mα. Model (43) reduces to (6) for k = 0
and γ = 1. Again, parameters k and γ are scaling factors
that control the relative amounts of linear and nonlinear
contributions given ηd . As for the GBM, both can be set
using (41) and (42).

B. Simulations With Known M

We now present simulations with synthetic data and a
known endmember matrix M . These simulations allow us to
assess the detector performance disregarding estimation errors
for the endmembers. Hence, they illustrate the potential of
the proposed detector. To construct synthetic data, we used
three materials (R = 3) extracted from the spectral library of
the software ENVI [55]: green grass, olive green paint and
galvanized steel metal. Each endmember mr has L = 826
bands that were uniformly decimated by 3 to L = 275 bands.

To evaluate the performance of the proposed detector, we
generated 8000 synthetic samples by mixing the three col-
lected spectra. Among the 8000 pixels, 4000 were generated
using the linear model in (2), and 4000 using the modified
generalized bilinear model in (38). A fixed abundance vector
α = [0.3, 0.6, 0.1]� was used for all samples. Nonlinearly
mixed samples were generated using different degrees of
nonlinearity ηd ∈ {0.3, 0.5, 0.8} to test the detector under
different conditions. The power of the additive Gaussian noise
was set to σ 2

n = 0.001, which corresponds to SNR = 21dB.
Figure 1 shows the receiver operating characteristics (ROCs)

of the proposed GP detector and the LS robust detector pre-
sented in [31] for the three values of ηd . The proposed detector
performs better, especially for moderate to high degree of
nonlinearity. For instance, Fig. 1c shows that the GP detector
achieves a probability of detection of 1 for PFA = 0.1, while
the LS robust detector yields a probability of detection of
approximately 0.65 for the same PFA. Figure 2 shows the
histograms of ‖enlin‖2, ‖elin‖2 and T for both linearly (H0)
and nonlinearly (H1) mixed data. The proposed test statistics
clearly leads to histograms that differ significantly under both
hypotheses H0 and H1, which explains the improvement in
detection performance. Figure 3 compares the histogram of T
under H0 with the fitted beta distribution, confirming that the
distribution of T can be reasonably approximated by a beta
distribution.

We considered two unmixing algorithms to assess the
impact of the proposed detector on unmixing performance,
one linear and one nonlinear. Linear unmixing was per-
formed using the fully-constrained least-squares (FCLS)
algorithm [56]. For nonlinear unmixing, we used the SK-Hype
algorithm [13]. The two algorithms were employed in two
unmixing strategies. First, each algorithm was used to unmix
the complete hyperspectral image. In the second strategy called



Fig. 1. Empirical ROCs for: (a) the Robust LS detector [31], (b) the proposed GP detector, (c) the two detectors for ηd = 0.5. All curves were obtained for
8000 pixels (4000 linearly mixed and 4000 nonlinearly mixed) and SNR = 21dB. Nonlinear mixtures were generated using the simplified GBM described in
Section VI-A.

Fig. 2. Histograms for (a) the squared norm of the GP fitting error, (b) the least-squares fitting error, and (c) the test statistics (33).

Fig. 3. Histogram of the test statistics under H0 and the adjusted Beta
distribution.

detect-then-unmix (D.+U.), the proposed detector (GP), and
the detector of [31] (LS) were used as a pre-processing step.
Then, FCLS was used to unmix pixels detected as linearly
mixed and SK-Hype was used to unmix pixels detected as
nonlinearly mixed. The detection threshold τ was determined
for PFA = 0.01. Two synthetic images were considered with
1000 pixels each, 500 being linearly mixed and 500 being non-
linearly mixed. Each image was constructed with a particular
nonlinear mixing model, with a fixed degree of nonlinearity
ηd = 0.5 in both cases, with abundance vectors uniformly
sampled in the simplex. The GBM (38) was used for the
first image (Image I), while the PNMM (43) with ξ = 3
was considered for the second image (Image II). The SNR
was 21dB in both cases, and the abundances were drawn
uniformly in the simplex. Parameters k and γ were determined

for each pixel to maintain the desired value of nonlinearity
degree ηd for all simulations. To compare the results, we used
the root mean square error (RMSE) of abundance estimation,
defined as

RMSE =
√√√√ 1

N R

N∑

n=1

‖αn − α̂n‖2 (44)

where N is the number of pixels in each image.
The results (RMSE ± standard deviation) are presented in

Tables I and II. For each image, these tables indicate the
RMSEs for the linearly mixed part (LMM), for the nonlinearly
mixed part (NLM), and for the full image (Full Img.) using
the three unmixing strategies. The results shown in bold blue
are those with the lowest RMSE in each row of the tables.
As expected, FCLS has the best results when unmixing linearly
mixed pixels. The same observation can be made for SK-Hype
with nonlinearly mixed pixels. Nevertheless, we verify that the
results using the detect-then-unmix strategy and the proposed
detector (D.+U. GP) are very close to the best results for
both types of pixels, LMM and NLM. When processing the
whole image without prior information on the mixing nature
of each pixel, the best results were those obtained with the
detect-then-unmix GP strategy. Additionally, we present the
classification error (C. E.) in percentage for the detect-then-
unmix strategy in both tables. The last two columns in both
tables clearly illustrate the better performance obtained using
the proposed (GP) detector, as opposed to the detector of [31].

To verify the statistical significance of the results shown in
Tables I and II, we performed the one-tailed left nonparametric



TABLE I

ABUNDANCE ESTIMATION RMSE FOR M KNOWN AND USING THE GBM MIXING MODEL (SNR = 21 dB, ηd = 0.5)

TABLE II

ABUNDANCE ESTIMATION RMSE FOR M KNOWN AND USING THE PNMM MIXING MODEL (SNR = 21 dB, ηd = 0.5)

TABLE III

ONE-TAILED WILCOXON SIGNED RANK TEST FOR IMAGE I.
(SIGNIFICANCE LEVEL 0.05)

TABLE IV

ONE-TAILED WILCOXON SIGNED RANK TEST FOR IMAGE II.
(SIGNIFICANCE LEVEL 0.05)

Wilcoxon signed rank test [57]. The test was performed to
compare the abundance estimation RMSEs obtained with the
proposed methodology (D.+U. GP) and with each of the
alternative methods listed in Tables I and II. The Wilcoxon
signed rank test considers the samples to be paired, which
corresponds to our case, and tests the following null hypothesis

median(RMSEprop) = median(RMSEalt) (45)

where RMSEprop and RMSEalt stand for the RMSEs obtained
using the proposed and the alternative methods, respectively.
Tables III and IV show the results obtained for the simulations
corresponding to Tables I and II. We assigned the symbol A if
the null hypothesis was rejected with negative Z statistic, i.e.,
if there was enough evidence that RMSEprop < RMSEalt at the
0.05 significance level. We assigned the symbol “-” if the null
hypothesis could not be rejected. These results provide evi-
dence that the improvement in abundance estimation obtained
using the proposed technique is statistically consistent.

C. Simulations With an Unknown Endmember Matrix M

The simulations conducted in Section VI-B assumed the
endmember matrix M to be known. Although this study is
important to quantify the potential of the proposed detector,

Fig. 4. ROCs for different proportions of nonlinearly mixed pixels and
ηd = 0.5. Endmember extraction using VCA.

the endmembers are rarely known in practice. Hence, in this
section, we study the sensitivity of the detection performance
as a function of the endmember estimation accuracy and of the
degree of nonlinearity. Endmember extraction was performed
with the iterative method proposed in Section V, and with
VCA [23] for comparison.

Figure 4 presents the results of 4 experiments using syn-
thetic images with 5000 samples, SNR = 21dB, abundances
uniformly sampled in the simplex, a proportion of nonlinearly
mixed pixels in the image varying from 10% to 50%, and
ηd = 0.5. For every experiment, the endmember matrix was
extracted using VCA. These results show how the detection
performance can degrade as the number of nonlinear pixels
increases and as VCA loses accuracy in extracting the end-
members from the image. These results confirm the importance
of devising alternatives to VCA (or to other endmember
extraction algorithms specifically designed for linearly-mixed
images) for images containing nonlinearly-mixed pixels.
Figure 5 presents the results obtained with Algorithm 1 and
classical MVSE for endmember extraction. For this experi-
ment, we generated data with 50% of nonlinearly mixed pixels
and different degrees of nonlinearity ηd ∈ {0.3, 0.5, 0.8}. The
corresponding cases for ηd = 0.5 and 50% of nonlinearly
mixed pixels are shown in red and pointed by arrows in
Figure 4 and Figure 5. The poor results obtained using



Fig. 5. ROCs for different degrees of nonlinearity ηd and 50% of nonlinearly
mixed pixels in the image. Endmember extraction using Algorithm 1

classical MVSE are also indicated. Comparing Fig. 1 and 5
shows that the results obtained with the iterative endmember
extraction algorithm are very close to those obtained for a
known endmember matrix M (which can be considered as the
reference detector).

Figure 6 illustrates a representative example of evolution
obtained with the proposed iterative endmember extraction
algorithm. These plots correspond to a simulation performed
using 1000 synthetic samples, 500 being linearly mixed and
500 being nonlinearly mixed. The nonlinearly mixed pixels
were created using the GBM (38) with ηd = 0.5. The data
were projected onto the space spanned by the columns of the
current endmember matrix M . They are represented as black
dots. The current endmembers are shown as green dots. The
true endmembers are shown as black circles at the vertices of
the true simplex drawn with black lines. The data discarded at
each iteration are shown within blue circles. Figure 6a shows
the first iteration of Algorithm 1. Numerous nonlinear samples
are outside the simplex and endmember are poorly estimated.
The situation improves in Fig. 6b, which depicts the fourth
iteration. Here, much less data lie outside the simplex, and
two of the endmember estimates have improved significantly.
Similar improvement can be noticed in the seventh iteration
in Fig. 6c. The final result obtained after 10 iterations only
is shown in Fig. 6d, where most of the nonlinear data were
discarded and the endmember estimates are clearly close to
the true endmembers.

D. Adjusting Parameters r f , Nmax, and ε

The implementation of Algorithm 1 requires the choice of
parameters Nmax, ε, and r f . We have found from several
experiments that using r f ∈ [0.8, 09], ε = 0.05 and
Nmax = 10 is a good choice for different scenarios. This
section explores the sensitivity of the algorithm performance
to variations of these parameter values about these choices.
To this end we applied the algorithm to synthetic data with
the following properties: 100 pixels, R = 3 endmembers,
50 pixels mixed with the LMM and 50 pixels mixed with the
GBM with ηd = 0.5. The abundance vectors were sampled
uniformly in the simplex, and WGN was added to produce
SNR = 21dB. The spectra were the same used for the previous
simulations, uniformly decimated by 5, resulting in 166 bands.

TABLE V

MEAN RMSE FOR ENDMEMBER ESTIMATION

The three parameters were chosen from the following sets:
Nmax ∈ [5, 10, 15], ε ∈ [0.01, 0.05, 0.1], and r f ∈
[0.7, 0.8, 0.9]. For each combination of parameters we
performed Nr = 900 runs of Algorithm 1, and computed the
RMSE of estimated endmembers using (44) with the abun-
dance vectors replaced with the endmembers. Table V shows
the obtained results. The best results were obtained for each
pair (r f , ε) are highlighted in bold blue. These results show
that the performance of the algorithm is not very sensitive
to different parameter choices. They also show that choosing
Nmax < 10 tends to increase the RMSE. Furthermore, it is
clear that choosing r f < 0.8 tends to require larger values
of Nmax.

The choice of the parameters should be directed to prevent
the algorithm from an early convergence with elimination
of a large amount of linearly mixed pixels along with the
nonlinearly mixed ones. This can be achieved by setting
Nmax to a sufficiently large value, which controls both the
maximum number of iterations and the increment of the
detection threshold τ . From our experience with the proposed
method, good results can be obtained as follows:

a) Set r f somewhere in the range [0.8 0.9] (Remark: a larger
value would probably lead to early discarding of linearly
mixed pixels).

b) Set ε ≤ 0.05, so that Rtmp would contains basically
linearly mixed pixels when the condition Tmax −Tmin > ε
is satisfied.

c) Secure the algorithm stopping with mostly linearly mixed
pixels if condition (b) cannot be satisfied by setting
Nmax ≥ 10.

E. Simulation With Synthetic Data Extracted
From a Real Scene

In this section we evaluate the performance of the proposed
method using synthetic data that carries the characteristics of
real data. While tests using real data are important, the use
of synthetic data (for which the ground truth in known) is
necessary for a more comprehensive evaluation. To conciliate
both needs, we considered a scene corresponding to the alunite
hill (depicted in Figure 8a) extracted from the 1997 AVIRIS
scene from the Cuprite mining site in Nevada [58]. The chosen
region is indicated in Figure 7. The alunite hill site has
two interesting properties. First, it has a known number of
endmembers (R = 3), i.e., alunite, muscovite, and kaolinite.



Fig. 6. Graphical illustration of the endmember estimation process using the proposed iterative algorithm. The data set consists of 2000 pixels, with a
proportion of 50% nonlinearly mixed pixels obtained with the GMB model and ηd = 0.5. Green dots are the current estimated endmembers, and black dots
are the data projected onto the subspace spanned by the columns of the current matrix M. The true endmembers are shown as black circles at the vertices
of the true simplex drawn with black lines. The data discarded at the corresponding iteration are shown within blue circles. (a) First iteration. (b) Fourth
iteration. (c) Seventh iteration. (d) Final result.

Fig. 7. Cuprite mining site. The green box corresponds to the alunite hill
scene.

Fig. 8. (a) Plot of the alunite hill with bands 30, 70 and 100.
(b) Reconstruction of the scene using the LMM. (c) Adding 30% of non-
linearly mixed pixels and WGN to give a 30dB SNR. (a) Alunite hill.
(b) LMM. (c) GBM + WGN.

Second, this scene has been accurately unmixed using linear
mixing models [59]. To build the synthetic image we used
the MVES to linearly unmix the pixels in the image. The
reconstructed image considering the LMM is depicted
in Figure 8b. The reconstructed image is clearly very similar
to the original image, and thus carries its characteristics.
To obtain a partly nonlinearly mixed image, we randomly
selected 30% of the pixels from the reconstructed image and
re-mixed them using the modified GBM model (38) with
ηd = 0.3, but preserving the abundances. Finally, we added
a WGN to each pixel with power adjusted to produce a
30dB SNR, which is typical for hyperspectral images. The
resulting synthetic image is shown in Figure 8c. This is a partly
nonlinearly mixed image for which we know the ground truth
and that carries the characteristics of a real image.

We applied the proposed EEA to the image of Figure 8c
and compared the endmember estimates with those obtained

by applying the MVES and the VCA algorithms directly to the
image. We considered Nmax = 10, ε = 0.05, and r f = 0.9.
The results are shown in Figure 9. It can be verified that the
proposed method has led to the most accurate endmember
estimates even for a moderate degree of nonlinearity. Figure 10
shows in black the real endmembers and the data projected
into the column space of M. The endmember estimates
calculated by proposed EEA after 10 iterations are shown
in blue. This figure clearly shows the challenging problem
posed to the algorithm, as the chosen degree of nonlinearity
introduces a relatively small detachment of the nonlinearly
mixed pixels from the simplex. Table VI presents the RMSE
for the abundance vectors using the endmembers estimated
with the proposed EEA (labelled “detect-then-unmix”) and
with two alternative unmixing strategies: linear with the FCLS,
and nonlinear with the SK-Hype. The improvement obtained
using the proposed method is of the order of 18%. For a visual
evaluation, Figure 11 compares the true nonlinearity map with
the detection map. The white and gray pixels where correctly
classified, and the black pixels were misclassified.

F. Real Data

1) Indian Pines: To test the proposed detector using real
images, we used the data set available at the Indian Pines test
site in North-western Indiana [60]. This image was captured by
the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer).
It has 145 × 145 samples over 220 contiguous bands with
wavelengths ranging from 366 to 2497 nm. Prior to analysis,
noisy and water absorption bands were removed resulting in
a total of 200 bands that were uniformly decimated to 50 to
speed up simulations. The data set has a ground truth map
that divides the samples into 16 mutually exclusive classes.
In Table VII, the classes are organized by numbers (1 to 16),
and the number of samples of each class is shown. Note,
however, that the number of samples in each class can vary
considerably. Note also that some classes are composed of
different materials. We can count 20 different materials if we
consider grass as an isolated material for the whole image.
We chose to count each grass (depending on the accompanying
material) as a different material, leading to 22 endmembers.
Figures 12a and 12b display images from the Indian Pines
region constructed by selecting three different bands, while



Fig. 9. Endmember estimations for the nonlinearly mixed image with different extraction techniques. (a) Alunite. (b) Kaolinite. (c) Muscovite.

Fig. 10. The black circles are the real endmembers, the black dots are
the data projected in the columns of M. The blue circles are the estimated
endmembers with the proposed algorithm after 10 iterations. The simplex for
the “true” and estimated endmembers are also drawn.

TABLE VI

RMSE FOR THE ABUNDANCES IN THE ALUNITE HILL SCENE

Fig. 11. Detection map and true nonlinear map. Linearly mixed pixels in
gray, nonlinearly mixed pixels in white, and misclassified pixels in black.

Fig. 13a presents the ground truth map for this image, where
each class is represented by a different color. In Figure 13a, we
also indice the class number for each area, where 0 represents
the background, which is an unclassified area.

To perform the simulations, we divided the image into eight
sub-images to work with smaller areas of the image and to deal
with 3 to 4 endmembers at a time. To define these sub-images,
we also paid attention to balance the number of samples per
endmember. By looking at Figs 12a and 12b, we can note that

TABLE VII

INDIAN PINES CLASSES BY REGION

Fig. 12. Indian Pines test site representation selecting 3 different bands
in (a), and 3 other bands in (b).

Fig. 13. Detection of nonlinearly mixed pixels in Indian Pines hyperspectral
image. Black pixels were detected as nonlinearly mixed ones by the proposed
detector. (a) Indian Pines ground truth. (b) Indian Pines detection map.

some classes seem to have materials that are not accounted for
in the available ground-truth information. For instance, this is
the case for classes 5, 11 and 14. Therefore, we introduced



TABLE VIII

SUBIMAGES ORGANIZATION

TABLE IX

INDIAN PINES RECONTRUCTION ERROR (RMSE) BY SUBIMAGE

extra endmembers for some of the sub-images. Table VIII
describes how the sub-images were organized, showing the
classes, materials, numbers of pixels and endmembers chosen
for each of the eight sub-images.

For each sub-image, we estimated the endmembers as
discussed in Section V, with Nmax = 10, a relaxing factor
initially set to r f = 0.8, and incremented by rinc = (1 − r f )/
Nmax = 0.2 at each of the 10 iterations. Then, we ran the
detection algorithm with PFA = 0.001. Since we subdivided
the real image into different sub-images, some of which
have few pixels, we employed a more relaxed value of r f

when compared to previous simulations to avoid discarding
too much data in the first few iterations. Moreover, natural
phenomena such as endmember variability, wrong (or incom-
plete) ground truth and illumination factors (among others)
tend to degrade the detection performance when dealing with
real images, specially when considering nonlinear algorithms
which are more susceptible to overfitting. Thus, we have
employed a smaller PFA to minimize incorrect detections of
linearly mixed samples as nonlinearly mixed. We performed
the unmixing step using FCLS for pixels detected as linearly
mixed and SK-Hype for pixels detected as nonlinear mix-
tures. Figure 13b presents the detection map superimposed
to the ground-truth classes, where black dots represent pixels
detected as nonlinearly mixed.

Comparing the detection map in Fig. 13b with
Figs 12a and 12b, one can note similarities between
the detection map and some patterns observed in the image
representations. For instance, the black triangular shape in
class 11 in Fig. 13b (centered at coordinate (40, 80)) is just

besides what seems to be a road or trail when looking to
Figure 12a. Similarities can be found between contours of
detected nonlinear regions in Fig. 13b and the corresponding
regions in Figs 12a or 12b. Table IX reports the RMSEs
for the reconstruction error for each of the eight sub-images
using three approaches, namely FCLS, SK-Hype, and detect-
then-unmix. The results marked in bold blue correspond to
the lowest RMSEs. For almost all sub-images, we note that
the use of a nonlinear mixture detector improved the image
reconstruction when compared to the pure linear or pure
nonlinear unmixing strategies.

2) Cuprite: This example applies the proposed EEA
(Algorithm 1) to real data from a scene extracted from
the Cuprite Mining site in Nevada (Figure 16a). This scene
was captured by the AVIRIS instrument and has originally
224 bands. We removed the water absorption bands and
decimated the data uniformly by a factor of 2, resulting
in 94 bands. The decimation was carried out to speed up
simulations. As reference spectra we selected 18 spectral
signatures taken from the 1998 USGS spectral library. These
spectral signatures were selected based on minerals reported
to be present in the Cuprite Mining Field [23], [37], [61].
We estimated the number of endmembers using Virtual Dimen-
sion (VD) [50] with probability of false alarm P f = 10−4,
resulting in R = 5 endmembers. We performed the end-
member estimation using the proposed EEA (IEE), as well
as VCA and MVES. We considered also a modification of
Algorithm 1 where we replaced the proposed detector with
the robust least-squares based detector presented in [31].
We refer to this method as LS for short. The parameter



Fig. 14. Estimated endmembers and USGS spectra. (a) Sphene. (b) Montmorillonite. (c) Kaolinite. (d) Dumortierite. (e) Pyrope.

Fig. 15. Abundance maps. (a) Sphene. (b) Montmorillonite. (c) Kaolinite. (d) Dumortierite. (e) Pyrope.

TABLE X

SPECTRAL ANGLES (IN RAD) BETWEEN ESTIMATED AND USGS SPECTRA

setting for the proposed EEA was Nmax = 10, ε = 0.05,
and r f = 0.7.3 We searched the 18 USGS spectra for the
best match (smaller spectral angle) with the endmembers
extracted. The endmembers were identified as Sphene,
Montmorillonite, Kaolinite, Dumortierite, Pyrope. These end-
members have strong components in this part of the Cuprite
Mining Field [23]. Figure 14 shows the endmembers
estimated with the proposed EEA (red line), with the
LS (green lines), and the best matched signatures from USGS
spectral library (blue lines). Table X lists the spectral angles,
in radians, between the estimated and the library endmem-
bers for the proposed EEA, LS, VCA, and MVES.4 Clearly,
the proposed method presented good estimation performance,
outperforming the other methods. Figure 15 presents the
abundance maps for the unmixing process using the detect-
then-unmix strategy with the GP detector. These abundance
maps are in good agreement with abundance maps estimated
in [23]. Figure 16 presents the reconstruction error (RMSE)
for the Cuprite scene using the proposed EEA (Fig. 16b) and
the VCA (Fig. 16c). In both cases the unmixing procedure
was carried out using the SK-Hype algorithm. The darker tone
dominating Figure 16b indicates a better fitting of the model
when compared with Figure 16c. This result is corroborated

3The parameter r f for the LS detector case was modified to 1.2 to adjust
the algorithm to the least-squares detector.

4Note that the mean spectral angle error used in [23] and [61] as a quality
measure for the endmember estimation can be thought as a weighted mean
projection of all the image vectors on the estimated endmembers, and therefore
does not capture nonlinear relations between pixels and endmembers.

Fig. 16. Cuprite scene and reconstruction errors. (a) Cuprite scene.
(b) Alg.1 + SK-Hype. (c) VCA + SK-Hype.

by the smaller RMSE obtained using the proposed method
(RMSEprop = 0.0040, RMSEVCA = 0.0051).

VII. CONCLUSIONS

This paper proposed a nonparametric method for detecting
nonlinear mixtures in hyperspectral images. The performance
of the detector was studied for supervised and unsupervised
unmixing problems. Additionally, an iterative algorithm was
derived for endmember estimation as a pre-processing step
for unsupervised unmixing problems. It was shown that the
combined use of the proposed detector and endmember estima-
tion algorithm leads to better unmixing results when compared
to state-of-the-art solutions. A degree of mixture nonlinearity
based on the relative energies of the linear and nonlinear
contributions to the mixing process was defined to quantify
the importance of the linear and nonlinear model counterparts.
Such a definition is important for a proper evaluation of the
relative performances of different nonlinear mixture detection
strategies.
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