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This article presents a stochastic method for studying the structure
of large small worlds graphs. The principle of this method is to ap-
ply a PageRank-like importance algorithm, with a damping factor and
an external importance source. By varying the source vector, one ob-
tains a powerful graph visualization tool, which reveals the structural
organization of small worlds graphs.

1. Introduction

The discovery that real-world large networks from many different do-
mains (sociology, biology, computer science. . . ) share the same char-
acteristics has raised an interest in their studying ([17, 2, 15]).

The associated graphs of such networks are rather sparse (the mean
degree stays roughly constant when the number of nodes increases),
highly clustered, and there exists short paths that can be found [11, 3].
An hierarchical structure is also revealed by a heavy tail distribution
for most parameters[15]. Referring to Milgram’s experiment[14], Watts
and Strogatz proposed to call highly clustered graphs with low diameter
small worlds [18].

In Section 2 we describe how, by taking into account distributions
of random walks in a graph G as coordinates of its n nodes in R

n, one
can fit G with a geometrical structure. This method allows to analyze
precisely and efficiently the structure of small-world-shaped very large
graphs.

Section 3 outlines the limits of this approach, which requires reflexive
and symmetric graphs to produce relevant results.

We propose in Section 4 to fit PageRank computation techniques
in order to generalize the random walk method described in Section 2
to all graphs without any specific restriction. The adaptability of this
technique allows us, for instance, to consider the Web graph, which is
neither reflexive nor symmetric.
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2 Bruno Gaume and Fabien Mathieu

Lastly, Section 5 demonstrates the main topological characteristics
of the geometrical structure obtained. Lower and upper bounds are
given for usual cases, along with a complete description of distances
for a few canonical cases.

2. From Random walks to Topology

Random walks offer a simple and powerful framework for large graphs
structure study. Random walks are very efficient for sparse graphs
computation and are thus well suited to real-world large networks.
For instance, the PageRank algorithm ([16]) presented in Section 4,
computes billions of Web pages importance using the graph structure
induced by hyperlinks.

2.1 (Sub)markovian process in a graph

Let G = (V, E) be a graph (directed or not) with n nodes and m
edges. In an homogenous markov chain for G, a transition probability
is associated to each transition from u to v, with u,v in V . A classical
way to represent this chain is a n × n stochastic matrix A.

The simplest way to take into account the graph structure is to sup-
pose an uniform transition probability distribution for each neighbor
(if any) of a given node. Let deg(u) denotes the degree of u (out-degree
if G is a digraph). The matrix A = (au,v) obtained is:

A = (au,v)u,v∈V , with au,v =







1

deg(u)
if u → v,

0 else.

(1)

Notice that this definition can be extended to weighted graphs by
choosing probabilities proportional to weights.

The underlying Markov chain is well defined as long as no node has
null degree (otherwise A is substochastic, but not stochastic).

If A is stochastic, for any initial probability distribution P0 on V
and any given integer k, P0A

k is the result of the random walk of
length k starting from P0 whose transitions are defined by A. More
precisely, for any u, v in V , the probability Pk of being in v after a
random walk of length k starting from u is equal to (δuA

k)v, where
δu is the certitude of being in u. Note that P0A

k has a cash flow
interpretation: if P0 is an initial amount of cash distributed among the
nodes of V , and if at each step the cash is redistributed according to
A, then P0A

k is the cash distribution after k steps. This interpretation
is useful if A is substochastic, as it is not necessary for the result to be
a probability: P0A

k is just a cash diffusion with (possibly) loss. The
flow interpretation is less restrictive than the stochastic interpretation,
and many authors have chosen it [4, 1, 5].

Complex Systems, volume (year) 1–1+
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Figure 1. Example of a symmetric reflexive graph. Geometrical lengths of the

edges in R
9 using k = 5 are indicated.

2.2 Using random walks to extract topology

From now until Section 4, we assume A is stochastic. For any given
node u in V , and any positive integer k, δuA

k is then a n-dimensional
non-negative vector from the standard n−1-simplex ∆n−1. For a given
length k, this allows us to assign to each node u some coordinates
C(u, k) in ∆n−1 defined by:

C(u, k) = δuA
k. (2)

The idea is that two nodes u and v with similar relations with respect
to the rest of the graph, will have similar random walks: they will be
close in the n-dimensional representation of G. So using random walks
distributions as coordinates should highlight the structural relations in
G.

The parameter k may be any integer between 1 and +∞. However,
a random walk does not capture the graph structure if k is too small.
Conversely, if k is too large, the random walk tends to forget its starting
point, so coordinates generally concentrate on one (or a few) unique
point. Choosing k with the same order of magnitude as the mean
distance in G seems empirically to be a good trade-off [9, 12].

For example, Figure 1 shows a reflexive and symmetric graph with

Complex Systems, volume (year) 1–1+
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Figure 2. 2-dimensional projection of the graph shown in Figure 1.

9 nodes. Using a random walk of length1 k = 5, distances between
adjacent nodes are shown. Nodes 5 and 7 have exactly the same adja-
cency list: {5, 6, 7}. This entails their coordinates in R

9 are equal for
any random walk of positive length. The edge (5, 7) has therefore a
length of zero. Conversely, the edge (4, 6) is the longest, with a length
of 0.2740 (for k = 5).

For visualization purposes, we choose to use Principal Component
Analysis (PCA) to produce 2-dimensional projections of our graphs.
PCA used on the graph shown in Figure 1 yields Figure 2.

2.3 Example: shortcuts are fast courses by long edges

There are many applications of this geometrical representation (see
[9]. Identifying shortcuts through distance refining is one of them.
The standard distance between two vertices u and v of a finite graph is
the minimum length of the paths connecting them. If no path exists,
the distance is infinite. However, in small worlds graphs, the standard
graph distance is often less interesting: for almost any nodes u and v,

1Choosing k = 5 is arbitrary in this case, as the graph is too small for estimations
of the optimal value of k.
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there exists a short path connecting u and v, and it can be difficult to
use this distance to distinguish nodes.

Consider a graph G that is plunged in R
n by the above mentioned

method. Any edge e between two nodes r and s has a canonical geomet-
rical weight. This corresponds to the geometrical distance separating
r and s in R

n. For example, in Figure 1, using euclidian distance,
edge (2, 4) has a weight equal to 0.0744, whereas the weight of edge
(4, 6) is equal to 0.2740. Comparing the distances in the weighted and
unweighted graphs gives some insight about the graph structure.

Indeed, we note that edges between nodes from different commu-
nities are often called short cuts [18, 11, 15]. These edges enable low
diameter of small worlds, enhancing the performance of routing algo-
rithms. Note that nodes belonging to different communities are geo-
metrically very distant in R

n while two nodes belonging to the same
community are geometrically close2. Hence, we arguably claim that an
edge geometrical length is a valuable estimation of its practical impor-
tance. In other words, short cuts are long edges. Figure 1 illustrates
that the longest edge((4, 6)) is obviously the more important, since
connectivity between {1, 2, 3, 4, 8, 9} and {5, 6, 7} depends on it.

2.4 Complexity

We presently focus our interest on u’s coordinates using a random walk
of length k. We denote C(u, k) = δuA

k the coordinate of u obtained
with this method. Recall that the so-called small worlds may be very
large graphs with billions of nodes. Scalability is therefore an essen-
tial design goal. Calculating explicitly Ak seems to be the simplest
way; this gives the coordinates of all nodes at the same time. This
method, however, is not used in practice, as it does not take advantage
of matrix A sparsity. It is indeed much faster to proceed by successive
multiplications of a vector by A, each multiplication taking m oper-
ations (that is in O(n) for small worlds), so the effective way to get
C(u) is to compute recursively the random walk:

C(u, 0) has the value δu for k = 0.

For any positive integer k, we have C(u, k) = C(u, k − 1)A

The space and time complexities are reduced compared to Ak com-
puting; calculations are done on n-dimensional vectors plus a single
static sparse n× n matrix, rather than manipulating full n× n matri-
ces. Multiplying vectors by such matrices is typically O(n) because the
number of non-zero entries is proportional to n. Hence, obtaining the

2This idea was firstly proposed by [9] for visualization of small worlds and lin-
guistic modeling of lexical wide-area networks and taken up by [12] for classifying
the nodes of a small world.

Complex Systems, volume (year) 1–1+
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Figure 3. Example of a graph not adapted to the standard random walk

approach if unsmoothed.

coordinates of all nodes is O(kn2) time-consuming3, whereas classical
computations of Ak are typically O(log2(k)nα) time-consuming, with
α > 2 [8]. As values of k are often small ([9, 12]), computing recursively
C(u, k) for all nodes u is strictly equivalent to computing Ak using the
recursive method A0 = Id and Ak = Ak−1A, but the C(u, k) approach
is much more flexible.

3. Limitations of the fixed random walk model

Obtaining meaningful results with the random walk method described
above requires some graph properties. For example, if there are pe-
riodicities interfering with the random walk length, there is a risk to
create a phenomenum of resonance which will unnecessary bring closer
some nodes and move away others. Another problem arises with the
possible existence of nodes with null out-degree (leaves). Since their
coordinates according to the random walk is null, they will be merged
together. More generally, for a random walk of length k, any node with
at least one leaf in its (k − 1)-neighborhood will undergo a prejudicial
probability leak.

For all these reasons, the graphs we want to study is generally trans-

3If we just want the coordinates of a subset, the computation time is proportional
to the size of the subset.

Complex Systems, volume (year) 1–1+
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Figure 4. 2-dimensional illustration of the graph from Figure 3 using a random

walk over the original graph. k is set to 4.

formed to be reflexive (each node points towards itself) and unoriented.
We call smoothing this alteration of the graph. To illustrate the bene-
fit of smoothing, let us consider the 9-nodes digraph of Figure 3. This
digraph has two leaves (2 and 9), as well as a recurrent 3-periodical
strongly connected component formed by nodes 5, 6 and 7. If we use
random walk of length k = 44 on the unsmoothed digraph, the results
are awkward: It appears that nodes 2, 8 and 9 are merged (they all have
null coordinates); so are nodes 4 and 7, because they point towards the
same node, namely 5. It also oddly seems that the nearest node from
6 is 1, whereas 5 and 7 are among the farthest. The 2-dimensional
projection of Figure 4 clearly illustrate those flaws.

Most of these problems are solved using the smoothed graph instead
of the original digraph, as shown by Figure 5. However, some results
remain unsatisfactory. For example, nodes 6 and 7 are merged because
they share exactly the same neighborhood (5, 6 and 7). In the same
way, even if their neighborhood is different, 3 and 4 produce random
walks that are so similar that they cannot be distinguished after using
PCA.

It is generally regrettable to lose orientation information contained
in digraphs. Directions can be invaluable. For instance, directed graphs
are a practical structure for taking account of how Web pages are

4Like in Section 2.2, k is arbitrary set (to 4 in this case).

Complex Systems, volume (year) 1–1+



8 Bruno Gaume and Fabien Mathieu

1

2

3-4

5

6-7

8

9

Figure 5. 2-dimensional illustration of the graph from Figure 3 using a random

walk over the smoothed graph. k is set to 4.

connected through hyperlinks: nodes represent the pages, and having
an edge from page u to page v means u contains a hyperlink that points
at v. This means u is aware of v and acknowledges it, but the reverse
is not necessary true. This kind of directed acknowledgment is used in
most modern ranking algorithms [16]. Making Web graphs symmetrical
may be unacceptable. A similar reasoning stands for reflexivity; if some
(but not all) nodes point at themselves, we may want not to loose this
information.

4. Bringing damping into random walk: the PageRank approach

We propose an alternative method that enables a random walk ap-
proach on directed graphs without alteration: the PageRank approach.
Basically, PageRank consists in computing the asymptotic presence
probability of a random walk (assuming it exists)5. Formally, it comes
down to seeking solution(s) P of the equation

P = PA. (3)

With this basic definition, using PageRank to compute coordinates
has three major flaws:

5For a more complete explanation of PageRank, see [4, 13].

Complex Systems, volume (year) 1–1+
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The random walk is not well defined if there are leaves, and the pres-
ence probability may not be unique or even converge. A sufficient
condition is that the graph is aperiodic and strongly connected, but
most directed graphs are not.

Convergence of the Markov process is not granted.

Assuming there is convergence, all nodes within a same recurrent
strongly connected component will have identical coordinates and will
be undistinguishable.

Many solutions to bypass these issues have been proposed. The
Web graphs for which PageRank has been designed are not strongly
connected and possess many leaves, or dangling links [7, 16]. We will
focus on one of the most known variant of PageRank, that suits well
our needs and overcomes these drawbacks: PageRank with a damping
factor.

Principles of damping factor can be found in [6] and are further
explained in [13, 5]. Basically, the standard equation used to describe
asymptotic states of a Markov chain is replaced by

P = dPA + (1 − d)P0, (4)

where d is a positive number less than 1, called damping factor, and P0

a distribution over V . Like P0A
k, equation (4) has both a stochastic

and a flow interpretation (see Section 4.1).
As shown in [13], equation 4 has a unique solution that is a fixed-

point of the d-contraction X → dXA+(1−d)P0. Hence, for 0 < d < 1,
the recursive iteration

Pn+1 = dPnA + (1 − d)P0 (5)

will geometrically (with ratio d) converge towards the solution P for
any initial vector P0. For a given graph G, a unique vector P solution
of equation 4 can be associated to any pair constituted by a damping
factor d and a distribution P0. Thus we may refer to P as P (d, P0).

Note that due to the geometric convergence, there is a need for at

most p = ln(ǫ)
ln(d) iterations to compute P (d, P0) with a precision ǫ using

equation 5. As empirically ǫ = 1
n offers a very good precision[13], a

reasonable order of magnitude for p is ln(n)
− ln(d) .

4.1 Interpretations of PageRank with damping

Similarly to P0A
k in Section 2.1, the solution P (d, P0) can be inter-

preted in two ways: as a stochastic distribution or as a cash flow
repartition.

If A is stochastic, P (d, P0) is the stationary probability of a random
walk, where a transition defined by A is chosen with a probability d and

Complex Systems, volume (year) 1–1+
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a transition according to the distribution P0 is chosen with probability
(1 − d). All goes as if the random walk is performed on a weighted
complete graph with the same vertices as G and whose edge’s weights
wu→v are:

wu→v =







d

deg(u)
+ (1 − d)P0(v) if u → v in G,

(1 − d)P0(v) else.

(6)

From a cash flow point of view, P (d, P0) can be interpreted as fol-
lows. Consider a constant external cash source equals to (1 − d)P0. If
the cash flow is distributed at each step through the graph according
to dA (losses greater than (1−d) may occur if A is substochastic), then
P is the asymptotic repartition of cash in the vertices.

Both interpretations become more meaningful, if equation (4) is
rewritten as an infinite sum:

P (d, P0) = (1 − d)P0

∞
∑

i=0

diAi. (7)

For each i, (1 − d)P0d
iAi represents the result of a random walk

of length i starting from P0 (or a cash distribution with initial values
set according to P0 after i steps) with weight (1 − d)di. As

∑∞
i=0(1 −

d)di = 1, P (d, P0) is the mean over all random walks starting from
the distribution P0 with a geometrical damping of ratio d, since the
random walk length increases.

4.2 Using P (d, δu) instead of δuAk

As we have seen, random walks of length i have a weight (1 − d)di in
the computation of P (d, P0). So the average length of random walks
used in equation (7) is

∑∞
i=0(1 − d)dii = d

1−d .
A natural idea is to use equation (4) instead of equation (2) to

express u’s coordinates, where u is a vertex of G. Instead of using
a random walk of fixed length k starting from δu, we decide to use
P ( k

k+1 , δu). This is a geometric sum of all cash flows starting from u
with a damping set such that the average length is k.

This geometric sum will be referred to as F (u, k):

F (u, k) = (1 − d)δu

∞
∑

i=0

diAi,with d =
k

k + 1
. (8)

If leaves make A substochastic, F (u, k) may not be a probability,
although it is always a positive non-null vector (because F (u, k) ≥
(1 − d)δu). We choose to make it a probability through normalization
for the following reasons: first, it seems more practical to keep all

Complex Systems, volume (year) 1–1+
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the nodes on the ∆n−1 simplex; second, we have noticed that without
normalization, nodes close to leaves tend to be similar and we think
this is not desirable.

So from now on, the coordinates C(u, k) used to represent node u
will be the normalization of F (u, k):

C(u, k) =
F (u, k)

‖F (u, k)‖1

. (9)

4.3 Advantages of using damping

First, parameter k is not necessarily an integer, it can be any non-
negative number. This enables a more sensitive tuning that could not
be done before.

More importantly, we insist on the fact that using damping allows
all steps of the diffusion to be taken into account, and not only the kth

step. When two vertices are compared, if both flows have gone through
the same vertices, but not during the same steps, it will still have an
impact. That could not be done with a fixed number of steps. Damping
allows flows to be compared even in the presence of periodicities or
leaves.

As a consequence, equation (9) can be used for any kind of (di)graph:
there is no need for the graph to be reflexive or symmetrical. Aberra-
tions like the ones observed in Figure 4 are avoided. To our knowledge,
there does not exist another way to bypass issues pointed in Section 3,
without loosing information (by smoothing). Using damping paves the
way for using digraphs like Web graphs. We think it is the essential
feature of our approach that makes it worth using it.

In order to realize how powerful the damping approach can be, let’s
consider again the graph of Figure 3. If we compute the coordinates
of the nodes using equation (9) and PCA, we obtain Figure 6. We
first notice that we have none of the flaws observed in Figure 4 derived
from a fixed-length random walk. More importantly, we have gained
information compared to Figure 5 (that used a smoothed version of
the original digraph). Neither nodes 3 and 4, nor nodes 6 and 7 are
merged: the characteristics of graph G are preserved. Section 5 will
prove, based on more general results that give some insight into the
disposition of the nodes, that this is not an artifact due to our choice
of G.

4.4 Complexity

Using damping requires extra resources. However, we want to point out
that our model’s complexity is not excessive compared to fixed-length
model’s complexity. In both cases, each iteration requires ©(m). The
difference lies in the number of iterations required. For the fixed-length

Complex Systems, volume (year) 1–1+
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Figure 6. 2-dimensional illustration of the graph from Figure 3 using damping

over the original graph. k is set to 4 (thus d = k
k+1

= 0.8).

model, it is equal to k. For the damping model, we must evaluate
the number of iterations needed to have a good approximation of the

solution of equation (4). As said before, ln(n)
− ln(d) offers a very good

precision. Replacing d by k
k+1 leads to an estimation of the number of

iterations: k ln(n). The complexity is thus increased by a factor ln(n).
This seems reasonable even for very large graphs. Furthermore, the
number of iterations may be reduced at the detriment of precision (the
results will not be distorted, though).

5. Characteristics of the PageRank Induced Topology

The topology we have created using equation (9) instead of equa-
tion (2) copes with any kind of (di)graph. Moreover, this equation
has some interesting properties that can be analyzed, especially if we
consider the 1-norm. In the rest of this Section, C(u) denotes the
node u coordinates obtained with equation (9) (the parameter k is im-
plicit), and the distance between two nodes u and v will be defined by
dist(u, v) = ‖C(u) − C(v)‖1.

5.1 Maximal distance

As all nodes stand on a simplex, it is obvious that the 1-distance be-
tween two nodes is at most 2. In fact, as shown by Theorem 1, this

Complex Systems, volume (year) 1–1+
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maximal distance 2 characterizes nodes that have nothing in common
(nodes whose spheres of influence are strictly distinct).

Theorem 1 Let u and v be two distinct nodes of a graph G. dist(u, v)
is equal to 2 if, and only if, there exists no node w in G such that a
path from u to w and a path from v to w exist.

Proof. Notice that non-null components of C(u) are nodes that can
be reached from u. Thus, if there is a node w reachable from both u
and v, C(u) and C(v) have at least a common non-null component and
‖C(u) − C(v)‖1 is less than 2. Conversely, the non-existence of such w
indicates that non-null components of C(u) and C(v) are distinct. It
is then straightforward that ‖C(u) − C(v)‖1 is equal to 2.

5.2 Minimal distance

Unlike the fixed random walk topology seen in Section 2.2, two different
nodes would never have the same coordinates if damping is used. We
think that it is an important feature to alleviate distinct nodes merging
and to keep a minimal distance. Theorem 2 gives this minimal distance:

Theorem 2 Let u and v be two distinct nodes of a graph G. A lower
bound dmin for dist(u, v) is

dmin = 2
1 − d

1 + d
. (10)

This lower bound is reached if and only if u’s only outgoing link is v
and vice versa.

Proof. To prove 2, it is useful to define the notion of influence. Influ-
ence du→v of u on v is defined by the proportion of cash issued from u
that can reach v. It can be computed by summing with damping all
the paths from u to v that do not pass through v until the end. One
way to do this is to consider a diffusion process with damping similar
to dA except that cash that reaches v is preserved (without damping)
forever. More formally, if we consider the matrix A6v defined by:

(A6v)i,j =

{

dai,j if i 6= v,

δj
v if i = v,

(11)

then du→v can be defined as the limit of the (u, v) component of powers
of A6v:

du→v = lim
l→∞

(Al
6v)u,v. (12)

With this definition, we can see that for u 6= v, du→v is a positive
number smaller than d (except for the vth row, A6v is substochastic with

Complex Systems, volume (year) 1–1+
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ratio d. As u 6= v, the ratio of cash able to reach v can not be more
than d). However, a simpler way to express du→v is to consider Fv(u):

Fv(u) =

(

(1 − d)δu

∞
∑

i=0

diAi

)

v

=

(

(1 − d)
∞
∑

i=0

diAi

)

u,v

. (13)

As Fv(u) aggregates with damping all paths from u to v, we can
split each of these paths into a path from u to v that does not pass
through v and a path from v to v. The sum can, thus, be written as
follows:

Fv(u) =

(

(1 − d)du→vδv

∞
∑

i=0

diAi

)

v

= du→vFv(v). (14)

This leads to this equivalent expression of du→v:

du→v =
Fv(u)

Fv(v)
. (15)

Influence of v on u is similarly defined by:

dv→u =
Fu(v)

Fu(u)
. (16)

The next step in our proof is to notice that a lower bound for Fu(u)
is the sum of (1 − d) and of the cash coming forth and back from v:

Fu(u) ≥ (1 − d) + du→vFu(v)

≥ (1 − d) + du→vdv→uFu(u). (17)

So we can write:

Fu(u) ≥
1 − d

1 − du→vdv→u
. (18)

This result can be interpreted as follows: due to mutual influences
between u and v, an external constant source of cash of value (1 − d)
received by u is amplified (for u) by a factor of at least 1

1−du→vdv→u
that

corresponds to round-trips between u and v. This amplification lower
bound also stands for v.

Complex Systems, volume (year) 1–1+



PageRank Induced Topology for Real-World Networks 15

We now have all we need to complete our proof:

dist(u, v) =

∥

∥

∥

∥

F (u)

‖F (u)‖1

−
F (v)

‖F (v)‖1

∥

∥

∥

∥

1

≥

∣

∣

∣

∣

Fu(u)

‖F (u)‖1

−
Fu(v)

‖F (v)‖1

∣

∣

∣

∣

+

∣

∣

∣

∣

Fv(v)

‖F (v)‖1

−
Fv(u)

‖F (u)‖1

∣

∣

∣

∣

≥

∣

∣

∣

∣

Fu(u)

‖F (u)‖1

−
dv→uFu(u)

‖F (v)‖1

∣

∣

∣

∣

+

∣

∣

∣

∣

Fv(v)

‖F (v)‖1

−
du→vFv(v)

‖F (u)‖1

∣

∣

∣

∣

≥
1 − d

1 − du→vdv→u

(∣

∣

∣

∣

1

‖F (u)‖1

−
dv→u

‖F (v)‖1

∣

∣

∣

∣

+

∣

∣

∣

∣

1

‖F (v)‖1

−
du→v

‖F (u)‖1

∣

∣

∣

∣

)

≥
1 − d

1 − du→vdv→u

(

1

‖F (u)‖1

−
du→v

‖F (u)‖1

+
1

‖F (v)‖1

−
dv→u

‖F (v)‖1

)

≥
1 − d

1 − du→vdv→u

(

1 − du→v

‖F (u)‖1

+
1 − dv→u

‖F (v)‖1

)

≥ (1 − d)

(

2 − du→v − dv→u

1 − du→vdv→u

)

. (19)

Influences are less than or equal to d, so it appears that 2−du→v−dv→u

1−du→vdv→u

is minimal for du→v = dv→u = d, leading us to:

dist(u, v) ≥ (1 − d)

(

2 − 2d

1 − d2

)

= 2
1 − d

1 + d
. (20)

We have shown that 2 1−d
1+d is a lower bound for dist(u, v). It is easy

to verify that this bound is reached if u only links to v and v only links
to u. Conversely, this bound can only be reached if both influences are
equal to d. This only happens if u only links to v and v only links to
u.

5.3 Clones

In many real and modelized small-worlds, there exist nodes that have
exactly the same outgoing links. Such nodes will be called clones. For
instance, clones may occur in Web graphs when pages are the exact
copies of others. Distances between clones are rather easy to describe,
as shown by Theorem 3:

Theorem 3 If a node v is a clone of a node u (u and v have exactly
the same outgoing links), then dist(u, v) ≥ 2(1 − d). If no leave is
reachable from them, then there is equality.

Proof. If u and v have the same outgoing links, the expressions of F (u)
and F (v) only differ for the first term of the sum (see equation 8), so
we have:

F (u) − F (v) = (1 − d)(δu − δv). (21)
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16 Bruno Gaume and Fabien Mathieu

It appears then that ‖F (u)‖1 = ‖F (v)‖1, thus we have

dist(u, v) = ‖C(u) − C(v)‖1 =
2(1 − d)

‖F (u)‖1

≥ 2(1 − d). (22)

Equality stands for ‖F (u)‖1 = 1 (= ‖F (v)‖1). This is the case if, and
only if, no leaf-loss happens during the diffusion, meaning no leaf is
accessible from u (or v).

Note that the fact u and v are clones does not mean they cannot
be differentiated by other nodes. However, there is a case where nodes
different from u and v cannot distinguish u from v. Theorem 4 explicits
this case.

Theorem 4 If u and v have the same outgoing links and the same in-
coming links, then for any w /∈ {u, v}, we have dist(u, w) = dist(v, w).

In other words, even if u and v are different (Theorem 3 says there
is a distance of at least 2(1−d) between them), the other nodes cannot
separate them. We could say that u and v are different, but they are
the only ones aware of that fact. This is more subtle compared to
the fixed-length random walk approach where u and v just share the
same coordinates. Note that just having the same incoming links is
insufficient to deduce something. For instance, nodes 2 and 4 of Figure
6 (or nodes 6 and 8) have the same incoming links, yet there is little
resemblance between them.

Proof. As u and v are clones, F (u) and F (v) only differ by the uth

and the vth components. Having the same incoming links leads to
Fu(u) = Fv(v) and Fv(u) = Fu(v), but also to Fu(w) = Fv(w) for
any w /∈ {u, v}. This assures that dist(u, w) = ‖C(u) − C(w)‖1 =
‖C(v) − C(w)‖1 = dist(u, w). Note that this result does not depend
on the choice of the norm (it is just due to a permutation between two
components of the coordinates).

5.4 Uninfluenced nodes

Another special case is when two distinct nodes u and v do not share
a common cycle. That means at least one of those nodes, say v, is
not reachable from u. Influence from u to v is thus null. In other
words, v is uninfluenced by u. For instance, a node without incoming
link receives no influence from the rest of the graph. Distance between
such nodes has a lower bound, as shown by Theorem 5.

Theorem 5 Let u and v be two nodes, such that du→v = 0. Then
dist(u, v) is greater or equal to 2(1 − d).
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Proof. The vth component of C(v) verify Cv(v) ≥ Fv(v) ≥ (1 − d),
thus we also have

∑

w 6=v Cw(v) ≤ d. For u, we have Cv(u) = 0 and
∑

w 6=v Cw(u) = 1. This leads to:

dist(u, v) = ‖C(u) − C(v)‖1

≥ Cv(v) − Cv(u) +
∑

w 6=v

Cw(u) −
∑

w 6=v

Cw(v)

≥ 2(1 − d). (23)

This lower bound is reached, for instance, if v has no incoming link
and a single outgoing link to u and no leaf is reachable from u.

We note the lower bound for uninfluenced nodes is the same as
for clones, that is 2(1 − d). An interpretation of this coincidence is
that 2(1 − d) is a critical value. It may be a good idea to consider
nodes that are distant by less than 2(1− d) as close; being closer than
2(1 − d) means there is a non-trivial structural proximity with strong
reciprocal influence. For example, it is impossible to go below 2(1− d)
by duplicating the outgoing links.

5.5 Cycles

We have seen in Section 5.2 that the cycle of length 2 breaks the 2(1−d)
barrier. We can wonder what happens for a cycle of arbitrary length.
Fortunately, a cycle is a simple structure and distances between its
nodes are explicitly given by Theorem 6.

Theorem 6 Let G be a cycle of length n ≥ 2 and l a positive integer
less than n. If u and v are nodes of G such that v is the lth successor

of u, then dist(u, v) is 2 (1−dl)(1−dn−l)
1−dn .

Proof. If nodes of G are relabeled from 0 to n−1 starting from u, then
u is labeled 0 and v is labeled l. In order to prove that dist(u, v) =

2 (1−dl)(1−dn−l)
1−dn , we have to express coordinates of u and v:

{

C(u)=C(0)= 1−d
1−dn ( 1 , . . . , dl−1 ,dl, . . ., dn−1),

C(v)=C(l)= 1−d
1−dn (dn−l,. . . , dn−1,1, . . . ,dn−1−l).

(24)
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18 Bruno Gaume and Fabien Mathieu

Calculation of dist(u, v) is then straightforward:

dist(u, v) = ‖C(u) − C(v)‖1

=
1 − d

1 − dn

(

(1 − dn−l)

l−1
∑

i=0

di + (1 − dl)

n−1−l
∑

i=0

di

)

=
1 − d

1 − dn

(

(1 − dn−l)
1 − dl

1 − d
+ (1 − dl)

1 − dn−l

1 − d

)

= 2
(1 − dl)(1 − dn−l)

1 − dn
. (25)

Theorem 6 shows that the minimal distance in cycles is obtained for
consecutive nodes and has value

dist(0, 1) = 2(1 − d)
1 − dn−1

1 − dn
. (26)

As 1−dn−1

1−dn is strictly less than 1, consecutive nodes are below the critical
value 2(1 − d). As a special case, n = 2 leads to the already known
minimal distance dmin = 2 1−d

1+d .
On the other hand, maximal distance is reached for opposite nodes

and is equal to:

dist(0, ⌈
n

2
⌉) = 2

(1 − d⌈ n
2⌉)(1 − dn−⌈ n

2
⌉)

1 − dn
. (27)

The maximal distance is less than 2(1 − d) only for n = 2 and n = 3
(where it is the same as the minimal distance). For greater values, we
can consider that extrema of a cycle are not intimately connected.

Lastly, we notice that distances increase when the cycle length tends
towards infinity. Minimal distance asymptotically tends towards 2(1−
d), and maximal distance tends towards 2.

5.6 Cliques

According to Theorem 3, in a complete graph (with loops), all nodes
are 2(1 − d) distant (they have exactly the same outgoing links). One
can ask if a smaller universal distance can be achieve between a set of
nodes. The answer is yes, as shown by Theorem 7.

Theorem 7 Let G be a complete symmetric digraph without loop of
size n. The distance between any two distinct nodes u and v of G is

dist(u, v) = 2(1 − d)
n − 1

n − 1 + d
. (28)
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Proof. Let u be a node of G. The uth component of C(u) will be noted
x, while the value of other components (that have all the same value
for symmetry reasons) will be noted y. The relations between x and y
are:

x + (n − 1)y = 1 (C(u) is a probability), (29)

x = (1 − d) + dy (flow passing through u). (30)

The unique solution of this system is x = (n−1)(1−d)+d
n−1+d and y = d

n−1+d .

Considering that for v 6= u, C(v) is just an inversion of the uth and the
vth component of C(u), we have

dist(u, v) = 2 |x − y| = 2
(n − 1)(1 − d) + d

n − 1 + d
−

d

n − 1 + d

= 2(1 − d)
n − 1

n − 1 + d
. (31)

For n = 2, we find dmin (a 2-clique without loop is a 2-cycle). The
interpretation that a complete graph without loop brings the nodes
closer than the same complete graph with loops (with ratio n−1

n−1+d )
is that a loop on a node u tends to move away u from the nodes
reachable from u by reenforcing the uth component of u. This explains
for instance why in Figure 6, node 3 is farther from 5 that node 4.

5.7 Leaves

If u is a leaf, then C(u) = δu: leaves are placed at the ends of the
simplex. As shown by Theorem 8, there is a minimal distance between
a leaf and other nodes of the graph that is only reached by predecessors
of u.

Theorem 8 Let u be a leaf of G. For any node v distinct from u,
dist(u, v) is greater or equal to 2

1+d , with equality if, and only if, v’s
only outgoing link is u.

Proof. As C(u) = δu, we have

dist(u, v) = ‖C(u) − C(v)‖1

= |Cu(u) − Cu(v)| +
∑

w 6=u

|Cw(u) − Cw(v)|

= 1 − Cu(v) +
∑

w 6=u

Cw(v) = 2(1 − Cu(v)). (32)

Consequently, finding a lower bound for dist(u, v) comes down to
finding an upper bound for Cu(v). If we consider that Fu(v) = dv→uFu(u) =
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dv→u(1 − d), we can majorize Cu(v):

Cu(v) =
dv→u(1 − d)

‖F (u)‖1

≤
dv→u(1 − d)

Fu(u) + Fu(v)

≤
dv→u(1 − d)

(1 − d) + (1 − d)dv→u
≤

dv→u(1 − d)

(1 − d)(1 + dv→u)

≤ 1 −
1

(1 + dv→u)
. (33)

We know that an upper bound for dv→u is d, so Cu(v) is less than
1 − 1

1+d and dist(u, v) (that equals 2(1 − Cu(v))) is greater than 2
1+d .

We have shown that 2
1+d is a lower bound for dist(u, v). It is easy

to verify that this bound is reached if v only links to u. Conversely,
equality implies that dv→u equals d, and that can only happen if v only
links to u.

6. Conclusion

The main technical differences between the fixed-length model and the
damping model are summarized in Table 1.

The principal advantages of the method described above are:

We apply a PageRank-like importance algorithm, with damping factor
and importance. It enables working on weighted (di)graph, without
having to modify the graph by making it symmetrical and reflexive,
which is necessary if one uses a simple random walk.

Since the damping factor is a real number, it offers a continuous frame-
work for establishing the average length of random walks, whereas, if
one uses a simple random walk with a fixed length, the framework is
discrete and, therefore, less flexible.

As we saw in Section 4.4, this approach has a relatively limited com-
plexity since for a graph G with n nodes the complexity is only in-
creased by a factor of ln(n) relative to the classic fixed-length random
walks, without either a damping factor or importance source.

When we consider the distributions of the random walks in a graph G
with n nodes, we can then fit the graph into R

n. This allows us to use
the whole panoply of geometrical tools to analyze the graph structure.

This last point allows us, for example, to develop tools for visualizing
and navigating in small-world shaped real-world graphs such as the
Web with its associated relevant metrology, and also to develop new
models of small worlds generation[10].

6Complexity to compute coordinates of a single node.
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Fixed model Damping model

parameter k = d
1−d d = k

k+1

to be used with smoothed graphs any kind of graphs
iterative equation Pn+1 = PnA Pn+1 = dPnA + (1 − d)P0

# of iterations k ©(k ln(n))

average length k d
1−d

Complexity6 km ©(km ln(n))

Table 1. Fixed Model vs Fading Model: recapitulation.
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