
Enforcing CPU allocation in a heterogeneous IaaS

Boris Teabe, Alain Tchana, Daniel Hagimont

To cite this version:

Boris Teabe, Alain Tchana, Daniel Hagimont. Enforcing CPU allocation in a heteroge-
neous IaaS. Future Generation Computer Systems, Elsevier, 2015, vol. 53, pp. 1-12.
<10.1016/j.future.2015.05.013>. <hal-01343004>

HAL Id: hal-01343004

https://hal.archives-ouvertes.fr/hal-01343004

Submitted on 7 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50530522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01343004

To link to this article : DOI:10.1016/j.future.2015.05.013
URL : http://dx.doi.org/10.1016/j.future.2015.05.013

To cite this version : Teabe, Boris and Tchana, Alain and Hagimont,
Daniel Enforcing CPU allocation in a heterogeneous IaaS. (2015) Future
Generation Computer Systems, vol. 53. pp. 1-12. ISSN 0167-739X

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15389

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Enforcing CPU allocation in a heterogeneous IaaS

Boris Teabe, Alain Tchana ∗, Daniel Hagimont
University of Toulouse, Toulouse, France

h i g h l i g h t s

• We identify issues related to changing underlying hardware in public IaaS.
• We propose a solution for DVFS and VMmigration across heterogeneous nodes.
• We provide an implementation of our solution within the Xen hypervisor.
• The evaluation of our prototype confirms the accuracy of our solution.

Keywords:

SLA enforcement

Virtualization

Cloud

DVFS

Heterogeneity

a b s t r a c t

In an Infrastructure as a Service (IaaS), the amount of resources allocated to a virtual machine (VM)
at creation time may be expressed with relative values (relative to the hardware, i.e., a fraction of the
capacity of a device) or absolute values (i.e., a performancemetric which is independent from the capacity
of the hardware). Surprisingly, disk or network resource allocations are expressed with absolute values
(bandwidth), but CPU resource allocations are expressedwith relative values (a percentage of a processor).
Themajor problemwith CPU relative value allocations is that it depends on the capacity of the CPU, which
may vary due to different factors (server heterogeneity in a cluster, Dynamic Voltage Frequency Scaling
(DVFS)). In this paper, we analyze the side effects and drawbacks of relative allocations. We claim that
CPU allocation should be expressed with absolute values. We propose such a CPU resource management
system and we demonstrate and evaluate its benefits.

1. Introduction

Nowadays, many organizations tend to outsource the manage-
ment of their physical infrastructure to hosting centers. This way,
companies aim to reduce their costs by paying only for what they
really need. This trend is commonly called cloud computing. In
this context, virtualization [1] plays an increasing role. A major-
ity of cloud platforms implement the Infrastructure as a Service
(IaaS) model where customers buy virtual machines (VM) with a
set of reserved resources. This set of resource corresponds to a Ser-
vice Level Agreement (SLA) [2–4] and customers expect providers
to fully meet it. On their side, providers are interested in saving
resources (notably energy) while guaranteeing customers SLA re-
quirements.

In such platforms, two main techniques are used by providers
for energy management: VM migration [1] and device speed scal-
ing [5–9]. VM migration is used to gather VMs on a reduced set of

∗ Corresponding author.

E-mail addresses: boris.teabe@enseeiht.f (B. Teabe), alain.tchana@enseeiht.fr

(A. Tchana), daniel.hagimont@enseeiht.f (D. Hagimont).

machines (according to VM loads) in order to switch unused ma-
chines off, thus implementing a consolidation [10] strategy. Device
speed scaling (for underloaded devices) is also a means to save en-
ergy as reducing a device speed generally reduces its consumption.
For example, in the CPU case, processor manufacturers have de-
veloped a hardware technology called Dynamic Voltage and Fre-
quency Scaling (DVFS). DVFS allows dynamic processor frequency
control, and hence, helps in reducing power consumption. DVFS,
according to the hosts global CPU load, dynamically scales the pro-
cessor frequency. From a more abstract point of view, VM migra-
tion (between heterogeneous machines) or speed scaling on one
machine can be both considered as changing the nature and per-
formance of the underlying hardware.

The amount of resources allocated to a VM at creation time
(in a SLA) may be expressed with relative values (relative to the
hardware, i.e., a fraction of the capacity of a device, e.g., 30% of a
device) [11] or absolute values (i.e., a performance metric which is
independent from the capacity of the hardware, e.g., a throughput).
Resource allocation expressed with relative values (as a fraction of
a device) can be problematic, since the capacity of a device may
change as a consequence of the 2 above techniques. The negotiated
SLA should not vary according to energy management decisions

from the hosting center provider. As example, consider two virtual
machines VM1 and VM2 running on the same physical host (with
their respective allocated capacity expressed as a relative value:
30% and 60%), VM1 being overloaded and VM2 being underloaded,
the host may be globally underloaded leading to a reduction of
the processor frequency, which would penalize VM1. Similarly, if
the consolidation policy migrates VM1 to another machine with a
different CPU capacity, VM1 should not be given 30% of the new
machine capacity.

Surprisingly, while disk or network resource allocations are
expressed with absolute values (bandwidth) [12], CPU resource
allocations are most of the time expressed with relative values
(a percentage of a processor) [13], or whenever absolute values
are used, the implementation of scheduling transforms them into
relative values [14,15] thus losing the benefit from absolute values.
Few systems [16–18] addressed this issue as SLA enforcement
was mainly considered without DVFS and in homogeneous
environments [19].

In this article, we consider resource allocation in a heteroge-
neous IaaS environment where VM migration and device speed
scaling can both be used to save energy. We claim and motivate
that resource allocation should be based on absolute values for all
devices. This is already the case for disk and network devices. Since
current CPU resource allocations fail to implement a truly absolute
value based system [14], we propose an absolute allocation unit
for CPU and we show that such absolute allocations can be trans-
lated into relative values, which are generally understood by to-
day’s operating systems schedulers [20–23,14]. Such translations
take place when a VM is migrated or when the frequency of the
processor is changed. We implemented this resource allocations
system inXen, by improving its default Credit Scheduler. The Credit
Scheduler is a fair share algorithm based on proportional schedul-
ing; it relies on a credit system to fairly share processor resources
while minimizing the wasted CPU cycles.

We make the following contributions in this paper:

• We analyze resource allocation in public IaaS platforms and
identify issues related to changing underlying hardware.

• We propose a solution which addresses the problem raised by
processor allocation based on relative values, when DVFS and
VMmigration (across heterogeneous machines) are enabled.

• We provide an implementation of our solution within the Xen
hypervisor.

• We experimentally evaluate our solution in a private IaaS com-
posed of heterogeneous machines with DVFS and VM consoli-
dation enabled. These experiments confirm the effectiveness of
our approach. We also show that this is an important issue in
popular IaaS platforms such as EC2 and Rackspace.

The rest of the article is structured as follows. Section 2 introduces
the context of our work. Section 3 analyzes the issue we are
addressing. Section 4 provides an assessment of this issue based on
the study and evaluation of existing solutions. Section 5 presents
our contribution to this problem. An evaluation of our prototype is
reported in Section 6. Then, a review of related works is presented
in Section 7. Finally, we present our conclusions and perspectives
in Section 8.

2. Context

In the context of the development of cloud computing, IaaS
platforms are seeing widespread adoption. Such platforms provide
to customers an API for dynamically allocating VMs with a given
SLA. The latter generally takes the form of a type of VM (among
several pre-defined types). Each type of VM is characterized by the
fraction of resource associatedwith the VM (CPU capacity,memory
and disk spaces, network and disk IO capacities). Customers expect
providers to fully meet SLAs [3,2].

The goal of the provider, who manages the platform, is to make
profit, i.e., to reduce the cost of management of the platform. The
resources that are effectively used in the platform are varying a lot.
VMs may be allocated and freed dynamically, and the resources
used internally by each VM are also variable [24]. Therefore,
providers often implement a consolidation strategywhich relies on
VMmigration in order to gather VMs on a reduced set of machines
(according to VM loads). This kind of VM packing is a way to host
more VMs with fewer servers, and it is also a way to save energy
[25,26] by switching unusedmachines off. Anotherway to save en-
ergy is to adapt the speed of the CPU (actually its frequency and
voltage) according to the load.More generally, device speed scaling
(for underloaded devices) can be used to save energy [27,28], with
different type of device, e.g. network interfaces [29,30] or disks
[9,6].

The main issue for a provider is to enforce SLAs while reducing
energy consumption. Two elements in the previous techniques
may lead to SLA violations:

• a migration of a VM from a source to a target machine, if the
two machines are of different types, may result in a loss of
performance for that VM.

• a reduction of the speed of a device, if the device is underloaded
on the current machine, may result in a loss of performance for
VMs running on that machine.

These issues are analyzed in the next section. The rest of this
section introduces key technologies we rely on.

2.1. Xen hypervisor

Xen is a virtualization solution for building and running simul-
taneously several guest OS on top of an underlying host OS. The
key technique is to share hardware resources safely and efficiently
between these guest OS.

In this paper, we are particularly interested in CPU manage-
ment. In order to share CPU between guest OS, Xen relies on a
scheduler called the Credit scheduler. It is a fair share algorithm
based on the proportional scheduling. Each VM is assigned a credit
value for the VM. The credit value represents the CPU share that the
VM is expected to have. Therefore, the VMs should have an equal
fraction of processor resources if each VM is given the same credit
value.

2.2. Dynamic voltage and frequency scaling (DVFS)

Today, all processors integrate dynamic frequency scaling (also
known as CPU throttling) to adjust frequency at runtime. The
system service which adapts frequency in the operating system is
called a governor. Different governors can be implemented with
different policies regarding frequency management.

3. Problem statement

The main problem we are addressing is resource allocation
in a IaaS environment which includes varying speed devices.
The speed of a device may vary since (i) VMs can be migrated
between heterogeneous physical machines and (ii) devices often
have a dynamically adjusted speed in order to adapt their energy
consumption according to the load [5–7]. In such a context, since
resource allocations in a SLAmust correspond to a fixed amount of
resource, they must be expressed with absolute values.

Therefore, a memory capacity can be expressed in Bytes and an
IO capacity can be expressed in Bytes/s for a disk and Bit/s for a
network. Thesemetrics are totally independent fromanyhardware
architecture or any operating system. In the next section, we show

that cgroup [13] is able to enforce an allocated network IO capacity
expressed in Bit/s.

Regarding CPU capacity allocation, the situation is much more
sensitive. If we consider an allocation expressed in MIPS (millions
of instructions per second), this is not an absolute computing
capacity metric as it depends on the architecture of the processor.
A given MIPS capacity would not provide the same performance
on a RISC or a CISC processor. But since we are considering the
execution of a given VM with a given code format, we can assume
that it will be run on processors with the same instruction set
(e.g., x86) and MIPS can therefore be considered as an absolute
metric. However, schedulers in today’s operating systems are not
relying onMIPS allocation [14], and it would be very hard (difficult
to implement and/or intrusive at execution time [31]) to keep track
of executed instructions for each VM.

Many virtualization systems and/or IaaS systems rely on GHz
(cycles per second) for CPU allocations. As for MIPS, a GHz
allocation depends on the architecture of the processor. But
with GHz, even if we assume a unique instruction set, different
processor architectureswill lead to different performances as these
processors may execute a different number of instructions per
cycle (e.g., if processor pipelines have different depths). Now, let
us consider a homogeneous hardware environment (a single type
of machines), but with frequency scaling (DVFS) enabled (3 GHz
maximum frequency processors). GHzmay seem to be an absolute
metric, aswhenyou allocate 1GHz, you are granted 1million cycles
per second, be the current processor frequency set to 2 GHz or
3 GHz. This is theoretically true, but not when we take a look at
the implementation. Today’s scheduler’s CPU allocation is based
on weight or a percentage of the processor time. Most of the time,
when a VM is given a 1 GHz CPU capacity on a 3 GHz processor, the
VM is configured to be given 33% of the processor time. Therefore,
this allocation is not absolute, but relative to the speed of the
processor (if the processor frequency is scaled down to 2 GHz, the
VM will get 33% of 2 GHz).

Overall, our analysis of the situation is that:

• memory, disk and network IOs can be allocated with absolute
values and their allocations can be effectively enforced with
today’s operating system mechanisms that are also present in
today’s VM hypervisors.

• CPU allocations are most of the time (always according
to our knowledge) expressed with relative values, and if
they are expressed with absolute values their enforcement
implementation makes them relative.

• MIPS or MFLOPS would be ideal absolute metrics for CPU
allocation, but theywould be very difficult to implement and/or
intrusive in today’s kernels.

In the next section,we validate our analysis of the situationwith
actual measurements of network IOs and CPU.

4. Problem assessment

This section presents a set of experiments that we performed in
order to assess the problems highlighted earlier.

4.1. Experimental context

All the experimental results reported in this section were
gathered on three heterogeneous physical machines (PMs) whose
characteristics are presented in Table 1. All the PMs are configured
with a single processor/core. When necessary, they are virtualized
with the Xen system, version 4.1.0. All VMs are always configured
with a single vCPU. Each result is an average of 10 executions.
For all these experiments, we used the π-app CPU intensive
benchmark and we computed the tenth decimal of π . All the

Table 1

Experimental PMs.

(P0) DELL Intel Core 2 Duo CPU E7300 @ 2.66 GHz Ubuntu 12.04

(P1) HP Intel Core i7-3770 CPU @ 3.40 GHz –

(P2) ASUS AMD A6-6400K APU 3.919 GHz –

PMs were configured (when necessary) to use the on-demand
governor [32] DVFS policy. This governor changes the frequency
between the lowest level (when CPU usage is less than a threshold)
and the highest level (when CPU load is higher). We configured the
threshold to 40% for all experiments.

4.2. The heterogeneity problem

As we argued in Section 3, processor allocations based on GHz
are relative to the architecture of the hardware when the IaaS is
heterogeneous. Fig. 1 shows the results of the experiments we
performed to illustrate that. Firstly, we show that running an
application (π-app) on two heterogeneous processors may lead to
different execution times even if these processors provide the same
GHz capacity. The left histogram in Fig. 1 shows the results with
the two PMs P0 and P1 (we configured their processor to run at the
same speed, 1.6 GHz). We observe a difference of performance of
about 21% between the two machines. The right curves in Fig. 1
present the results when the experiments are performed on VMs.
For different CPU capacities expressed in GHz, we allocate a VM
and translate this capacity in credits in the Xen scheduler (as
described in the previous section). The top right figure presents
the execution times when we keep the same credit translation
regardless the type of the machine. Obviously the execution times
vary according to the type of the machines. Notice that execution
times on P3 (the ASUS/AMD) are higher than on P1 (HP) while P3
(3.9 GHz) has a higher frequency than P1 (3.40 GHz). This confirms
that GHz cannot be considered as an absolute allocation unit
and should at least be adapted according to the frequency of the
processor. The bottom right figure presents the results when the
credits in Xen are computed according to the processor frequency
of the machine (a rule of three is applied). Even in this case,
performance significantly depend on the processor architecture. A
smarter translation scheme would be required.

4.3. The speed scaling problem

This section illustrates the effect of dynamic device speed
scaling on relative value based resource allocation.

4.3.1. The problem may exist for network

Knowing that commonly used solutions for network are based
on absolute values, we implemented a solution which relies on
relative values in order to illustrate the importance of absolute
values. We updated the original implementation of tc (traffic
control in cgroup [13]) in order to introduce the notion of relative
values (instead of absolute values). To this end, we consider that
the network card is able to send/receive each second a fixed
number of packets, seen as a buffer with a fixed length. A relative
value for a VM corresponds here to a percentage of that buffer. The
network scheduler (HTB1 in our case) wakes up every second and
fills the buffer with VMs requests, according to their relative value.
If a VM has more requests than its buffer’s ratio, the remaining
requests are kept and delayed until the next scheduling time.
We also implemented a dynamic speed scaling which adapts the
speed of the network card according to the global utilization of
the buffer, which corresponds to the global saturation of the card.
A modification of the card speed (its throughput) modifies the

1 Hierarchical Token Bucket.

Fig. 1. CPU capacity booked for a VM in terms of GHz is not always guaranteed when dealing with heterogeneous machines or relative values.

Table 2

Experimental context to illustrate that the implementation of network allocation

may based on relative values.

PMs 2 PMs: first one for requests injection

(CLIF [34]), and the second hosts VMs

Network cards 2 levels of speed 1000 and 100 Mb/s

HTTP workload Constant

Micro bench workload Constant upper load and constant lower load

(as a decreased stair)

Metrics TPC-W throughput

size of packets, but does not modify the number of packets in the
buffer.

For this experiment, we used the TPC-W [33] benchmark and
the PMs P0 and P1 (equipped with the same type of network card).
We defined a scenario with two VMs, the first VM hosting TPC-W
servers (web and database) and having 10% ratio, while the second
VM runs a micro network benchmark with 80% ratio. 10% ratio
is reserved for the Xen dom0 (the host system). TPC-W servers
receive a constant workload while the second VM receives a two
phases workload: constant upper level workload until the middle
of the experiment and then a very low level until the end of the
experiment. When the load falls at the end of the first phase, the
network card speed is decreased. The first VM (with TPC-W) is our
indicator and the SLA violation will be observed on its throughput.
Table 2 summarizes the parameters of this experiment. Fig. 2
shows the comparison of both implementations (original tc and the
modified one). Note that the low peak in the figure occurs during
the modification of the speed of the network card. It corresponds
to the time needed by the network card driver to reconfigure
itself. We can see that the SLA of TPC-W is maintained when the
scheduler is based on absolute values while it is not the case
with relative values. In the latter case, the throughput of TPC-W
is affected (reduced) by the reduction of the speed of the network
card. Indeed, the VM is assigned a ratio of the buffer which limits
the number of packets the VM can send/receive. Since the card
speed reduction reduces the size of packets, the throughput of the
VM is also affected. The original tc uses as many packets as needed
to enforce the throughput specified with an absolute value.

90

80

70

60

50

40

30

20

10

0

Time (sec)

T
P

C
-W

 t
h
ro

u
g
h
 p

u
t

(r
eq

/s
ec

)

Adjustment of the network card speed:

from 1000Mb/sec to 100Mb/sec

Ratio allocation

(modified tc)

Proper value allocation

(original tc)

Fig. 2. Resource allocations based on relative and absolute values facing variable

device speed.

4.3.2. The problem exists with the CPU

In this section, we allocate CPU capacities to VMs as relative val-
ues and we want to illustrate the issues due to frequency scaling
(DVFS). Let us consider our two PMs P0 and P1 virtualized with
Xen. Let us consider the allocation of four VMs, VM201, VM702,
VM203, VM704. We assume that VM201 and VM203 have the same
capacity, and so do VM702 and VM704.

The IaaS initially distributes theVMsonPMsand computes their
corresponding credits for the scheduler (to take into account the
different frequencies of P0 and P1). VM201 and VM702 are deployed
on P0 and use respectively 20% and 70% of its capacity, VM203 and
VM704 are deployed on P1 and use respectively 15% and 55% of its
capacity (P0 is more powerful than P1). Fig. 3 shows the workload
run by each VM during the experiment. The different peak load
phases of VM201 are equal. Note that the CPU load shown for each
VM is the contribution of the VM to the global CPU load of its PM,
e.g., 20 for VM201 implies that it uses all its capacity. At time ‘‘a’’
and ‘‘b’’, VM702 and VM203 respectively end their job. We assume
that when a PM has all its VMs at very low level in terms of CPU
activity (less than 5%), the consolidation system will move them
to another PM which can run them (its CPU load is so that it can
accept the load of the incoming VMs). Thus at time ‘‘c’’ VM201 and
VM702 are migrated from P0 to P1 in order to switch P0 off. In this
experiment, reducing the processor speed on P0 slows down the
processor by 50%.

Migration

ba c

C
P

U
 l

o
ad

 f
o
r

ea
ch

 V
M

C
P

U
 l

o
ad

 f
o
r

ea
ch

 V
M

0

20

70

0

20

70

time

Fig. 3. Global scenario to illustrate the effects of CPU allocation based on relative

values when DVFS is enabled or when migrating VMs across heterogeneous PMs.

Fig. 4 presents the monitored load of each VM. It is interpreted

as follows:

• At time ‘‘a’’ the DVFS manager decreases the speed of P0’s

processor since its global utilization falls under the threshold

(40%). This operation leads to performance degradation on

VM201: the second peak load phase of VM201 is larger than the

first one (the expected duration). The SLA is not respected.

• Aswe shown in Section 4.2 the initial deployment ofVM203 and

VM704 on P1 impacts their performance (as the computation of

their credits based on the processors’ frequencies is not correct).

This can be observed on VM203 which ends its jobs earlier

(before time ‘‘b’’) than expected. The provider does not optimize

his infrastructure. After time ‘‘c’’ whereVM201 ismigrated to P1,

we observe the same phenomenon (its final peak is shorter than

its first one).

4.4. The problem in popular IaaS

We ran the π-app application in different IaaS platforms.
Regarding the DVFS problem, there is noway to externallymonitor
the activity of DVFS governors on IaaS’s PMs. Therefore, we
only investigated how they address the problem of hardware
heterogeneity. All results reported here have been validated with
several executions.

Rackspace: Fig. 5 top presents the results of this experiment,
performed in Virginia, Dallas and Sydney with a standard VM
instance type. In the morning, the VMs in Virginia and Dallas
provide the same performance, which is not the case in Sydney (up
to 34% of difference). We can explain that by the heterogeneity of
the processors.We found (using /proc/cpuinfo) that VMs in Virginia
and Dallas used the same type of processor for this particular
experiment: Intel Xeon E5-2670 2.6 GHz. It was an AMD Opteron
4332 in Sydney. We repeated the experiments at a different
time (afternoon) of the day and we observed different types of
processors as in the first time: AMD Opteron 4332 in Virginia
and Sydney, and AMD Opteron 4170 in Dallas. According to these
results, Rackspace does not address the problem raised by the
heterogeneity of processors. Referring to the documentation they
provide, the allocation unit for CPU is a vCPU. Nomore information
is given about the real computing capacity of this unit. The actual
computing capacity of a VM on this IaaS depends not only on the
VM type (for each type of VM corresponds a number of vCPU), but
also on its location, as we experimented.

Amazon EC2: It is the only IaaS (to the best of our knowledge)
which attempts to solve the issueswe address. It proposes a unique
allocation unit for CPU which is claimed to be independent from
the hardware: ECU. For instance, a m3.medium VM type is config-
ured with 3ECU. Since we do not have access to ECUs implementa-
tion, our evaluations study its ability to be consistent (a small VM
should lead to less performance than a big one, the same type of
VM should lead to the sameperformancewhatever the context). To
this end, we ran in EC2 two VM types: m3.medium and t1.micro.
We performed the same experiment within different geographi-
cal zones (Oregon and Ireland). Fig. 5 bottom presents the results
of these experiments. From Fig. 5 bottom left we can see that EC2
provides the same performance form3.mediumwhatever the con-
text (zone, type of virtualization, and VMs colocation). This can

Fig. 4. The effects of CPU allocation based on relative value when DVFS and VMmigration are performed.

Fig. 5. The capacity booked for a VM is not always satisfied in Amazon EC2 and Rackspace.

be explained by the fact that EC2 always runs that type of VM on
the same type of processor (Intel Xeon E5-2670v2 2.5 GHz) where
the single vCPU of the VM is always pinned to a dedicated hyper-
thread. This strategy is announced in advance by EC2. By doing that,
EC2 avoids the heterogeneity problem for the m3.medium type.
However, this approach may limit VM consolidation possibilities.
For example, a physical machine without an Intel Xeon E5-2670v2
2.5 GHz processor cannot host a VMof typem3.medium even if the
physical machine has enough resources.

However, regarding the t1.micro VM type, the results (Fig. 5
bottom right) show that EC2 provides no guarantee at all. Although
performance is stable in Oregon, we have an uncertain behavior in
Ireland. According to EC2 documentation, a t1.micro can run with
up to 2ECU, with one vCPU. Unlike the m3.medium type, no in-
formation is given about the mapping of that vCPU onto real re-
sources. For this type of VM, EC2 reserves itself the right to use
heterogeneous processors and also the right to allocate one or two
ECU. Thus, the capacity of that type of VM is unknown. This is not
the problemwewant to highlight since this behavior is announced
in advance to clients. But, what is even more surprising is the fact
that t1.micro instances can provide better performance (execution
time of about 40 s in Oregon) than m3.medium instances (execu-
tion time of about 47 s). VMs of type m3.medium are always al-
located 3ECU while t1.micro instances receive 2ECU at maximum.
A VM with 3ECU should be at least one-third more powerful than
a VM with less than 2ECU. Such an inconsistent behavior makes
performance predictability very sensitive. One possible explana-
tion is that the t1.micro instance in our experiment (within Ore-
gon) was deployed on a more powerful PM than an Intel Xeon
E5-2670 hyperthread (used for m3.medium instances) so that the
translation of 2ECU on that powerful machine leads to more per-
formance than the translation of 3ECU on an Intel Xeon E5-2670
hyperthread.

5. Contributions

This paper addresses the issue raised by CPU allocation when
dealing with variable speed processors in a IaaS (heterogeneous or
homogeneous processors with DVFS). Although our contributions

can be generalized to multi-core systems, we consider in this
paper IaaS with single-core machines. This section is organized as
follows. We first introduce useful notations that are used in the
rest of the section.We then present a resourcemapping (of booked
capacities onto real resources) solution based on absolute values
which guarantees the SLA.

5.1. Model

5.1.1. IaaS model

In this paper we assume there arem PMs in the IaaS denoted by
Pi, where 1 ≤ i ≤ m. To represent the heterogeneity of the IaaS,
we note Pi(t) to say Pi is of type ‘‘t’’. In addition we consider the fact
that a PM can run at different CPU speeds. Frequencies are discrete

values. We note Fi = {f
j

i , 1 ≤ j ≤ max, f
j

i < f
j+1
i }, the set of

available frequencies on Pi.
According to these notations, the activity of DVFS on Pi can

change the frequency from f curi to f cur
′

i . Thus,when aDVFS governor
(e.g. on-demand governor [32]) is enabled on a PM, that PM should
be noted Pi(t,f cur

i
): Pi is of type ‘‘t’’ and runs at frequency f curi .

From a more abstract point of view, the IaaS manages different
PMs Pi(t,f cur

i
) and both VM migration and frequency scaling are

operations which modify the PM which hosts a VM. To ease
reading, PMswill be noted Pi(cur) knowing that Pi itself tells us about
its type.

5.1.2. Resource selling model

A CPU allocation capacity is noted Cb. We claim that IaaS
providers should not use real units of allocation (e.g. GHz) when
dealing with customers. This is motivated by the fact that the type
of the PM which will run a VM is not always known in advance
at negotiation time (when the customer expresses his needs) and
may change during the lifetime of the VM. For these reasons, we
propose to define a unique unit of allocation which is independent
from any type of hardware. We call it ‘‘Virtual Unit (VU)’’. In
addition, the latter should make sense to the customer so that he
knows without any ambiguity to which capacity it corresponds.
Therefore, a VU should be illustrated by its capacity to run some

well known benchmarks. A computation capacity Cb for a VM is

an amount of VUs, which may belong to a set of IaaS proposed

capacities (VM types or sizes).

Because resources are shared between VMs on a PM, the main

questions we need to answer (considered in this paper as the SLA

enforcement problem) are the following: How to translate VU onto

PMresources andhow to guarantee the constancy of VUallocations

as the translation should take into account the change of PMduring

the VM lifetime?

5.2. Virtual resources translation to PMs

5.2.1. Overall design

Our translation scheme is based on a reference PM Pref (Pref
can be an arbitrarily PM type chosen from the IaaS). Pref defines

an absolute CPU capacity and a VU is defined as a fraction of this

capacity (a relative value of an absolute value is an absolute value).

From now on, such a fraction is called a credit.

The main problem we need to address is to guarantee that an

allocated computation power stays the same whenever the VM

moves to different PMs in the IaaS: this is howwe define ‘‘absolute

allocations’’ which do not depend on any PM. Themain idea behind

our solution is to rely on the calibration of the IaaS using a reference

CPU intensive benchmark (e.g. SPEC CPU2006 or SPLASH-2 LU [35])

that we run on each PM. We internally consider the execution

times of that benchmark in our resource management system

(see sections below). This solution is not intrusive comparing to a

solution which continuously monitors the execution of each VM in

order to count executed instructions. Based on this calibration, we

translate the allocated VUs (a credit on Pref (max)) to its equivalent

on the target PM (a credit on that PM) either at VM creation time,

or at migration time. Also, we dynamically translate the credits of

each VM whenever the processor frequency is modified by DVFS.

Therefore, we propose a three level translation solution

described below, which guarantees the VU allocations.

5.2.2. First level translation

Firstly, given a booked CPU capacity Cb (an amount of VU), we

provide a first level translation functionV2Rdefined as:V2R(Cb) =

C where C corresponds to the credit on Pref that corresponds to the

allocated VUs.

5.2.3. Calibration of the IaaS

This operation is performed only once for each type of PM in

the IaaS (when a PM with a different architecture is introduced in

the IaaS). We chose a CPU intensive benchmark and we determine

its execution time for each credits (sizes of VM) allowed by the

provider and for each type of PM in the IaaS. The calibration is

done at f max
i for any Pi (including Pref). At the end of this step

we have T C ′

i(max) which gives the execution time of the benchmark

within a VM with credits C ′ when it runs on top of the PM

Pi(max). As motivated earlier, we are addressing the problem of CPU

allocation. Therefore the calibration benchmark should respect the

following characteristics: (1) it should be CPU bound only, (2) all

the data it uses should fit within cache memories. According to

these characteristics, the Cloud provider can either write its own

benchmark or rely on a well configured reference benchmark such

as the SPLASH-2 LU [35] application as we have done.

5.2.4. Second level translation

If C is the translated credits on Pref , corresponding to the
capacity booked for a VM, and the IaaS manager (the module of

the IaaS which is responsible for the placement of VMs on PMs)
chooses PM Pi to run that VM (first instantiation of the VM or
migration), we first compute credits C ′ to give to that VM on Pi as if
the latter ran at its maximum frequency f max

i . To do that we rely on
the results of the calibration. The execution time of the benchmark
with credit C on Pref should be the same as with credit C ′ on Pi(max).
So, we choose C ′ such that:

T C ′

i(max) = T C
ref . (1)

5.2.5. Third level translation

When the speed of the processor is modified on a PM, we need
to recompute the credits associated with VMs on that PM in order
to counterbalance the effect of the frequency modification. We
need to compute the actual credit C ′′ on Pi which takes into account
its actual frequency f curi , set by the DVFS activity. C ′′ should be
computed so that ‘‘absolute allocation constraint’’ is enforced:

T C ′′

i(cur) = T C ′

i(max) = T C
ref (max). (2)

We implemented a Power Aware Scheduler (PAS for short) at
the hypervisor level (although it could have been implemented
separately). Actually it is implemented as an extension of the Xen
Credit scheduler [14], which is the default and most achieved VM
scheduler. It computes and sets at each scheduling tick the new
credits (C ′′) associated with VMs. The computation of a new credit
relies on two main assumptions:

• proportionality of frequency and performance. This property
means that if we modify the frequency of the processor, the
impact on performance is proportional to the change of the
frequency [5].

• proportionality of credit and performance. This propertymeans
that if we modify the capacity allocated to a VM, the impact on
performance is proportional to the change of the capacity.

We validated these proportionality rules in one of our previous
work [19].

Proportionality of frequency and performance.
This proportionality is defined by:

T C ′

i(max)

T C ′

i(cur)

=
f curi

f max
i

× cfi(cur) (cfi(cur) is close to 1) (3)

which means that on PM Pi, if we decrease the frequency from
f max
i down to f curi , the execution time of a VM with credits C ′ will

proportionally increase from T C ′

i(max) to T C ′

i(cur). For instance, if f
max
i is

3000 MHz and f curi is 1500 MHz, the frequency ratio is 0.5 which
means that the processor is running at half of its capacity at f curi

compared to f max
i . So if we consider a programwith execution time

T C ′

i(max) = 10 s at f max
i , its execution time T C ′

i(cur) at f curi should be

10
0.5

= 20 s. We define the frequency ratio on Pi as ratioi(cur) =
f cur
i

fmax
i

.

Even if cfi(cur) is very close to 1, we keep it in our equations aswe
observed that it may vary according to the machine architecture
and the considered frequency f curi .

Proportionality of credit and performance.
This proportionality is defined by:

T C ′

i(f)

T C ′′

i(f)

=
C ′′

C ′
× cs (cs is close to 1) (4)

whichmeans that ifwe increase the credits of a VM fromC ′ up toC ′′

on Pi(f), the execution time of that VMwill proportionally decrease

from T C ′

i(f) to T C ′′

i(f). For instance, if we increase the credits allocated
to a VM from 10% to 20%, we double the computing capacity of

the VM. Then the execution time should become half of the initial
execution time. As for the first proportionality, we have a variable
cs introduced in the equation. It is very close to 1 and may vary
according to the implementation of the scheduler which schedules
VMs according to their credits. As we observed that cs = 1 in the
case of Xen credit scheduler, we ignore cs in the rest of the paper.

Credits C ′′ computation in response to DVFS.
Eqs. (3) and (4) are used to compute the modification of VM

credits, which can compensate the performance penalty incurred
by a frequencymodification. Based on C ′ (the translated credits for
Pi at f

max
i), we provide in this section a way to compute the credits

C ′′ to give to the VM, taking into account the actual frequency f curi

of Pi. Remember that C ′′ should be computed so that the absolute
allocation constraint is respected (Eq. (2)).

According to Eq. (4), C ′′ =
TC

′

i(cur)
×C ′

TC
′′

i(cur)

.

According to Eq. (3), T C ′

i(cur) =
TC

′

i(max)

ratioi(cur)∗cfi(cur)
, and T C ′′

i(cur) =

TC
′′

i(max)

ratioi(cur)∗cfi(cur)

⇒

C ′′ =
T C ′

i(max) × C ′

T C ′′

i(max)

(5)

but from Eq. (3), T C ′′

i(max) = T C ′′

i(cur) × ratioi(cur) × cfi(cur) and we want

T C ′′

i(cur) = T C ′

i(max) (the absolute allocation constraint)

⇒

C ′′ =
C ′

ratioi(cur) ∗ cfi(cur)
. (6)

5.2.6. Calibration step optimization

Remember that the objective of calibration is to provide a way
to determine the credit C ′ of a VM (which corresponds to an
allocated credit C on Pref (max)) on a PM Pi(max) (chosen by the IaaS
manager).

The solutionwe proposed earlier (called brute force calibration)
has a complexity of O(#credits × m), with #credits be the number
of available VM sizes (with different credits) the IaaS provider
allows, and m the number of PMs. This solution is fastidious for
two reasons. Firstly it needs to calibrate all the available credits
for all types of PMs. Secondly if during the lifetime of the IaaS the
provider needs to consider a new credit (corresponding to a new
type of VM), he will need to calibrate this credit for all the types
of PM. Here we propose an optimization (called direct calibration)
which requires a reduced number of calibration, with a complexity
of O(m). This method consists in choosing arbitrarily a unique
credit Cref to calibrate, called the reference credit. The calibration
(as described in Section 5.2.3) is only performed with this credit.

Thus we have T
Cref

i(max) ∀ i ∈ {1, . . . ,m}. The calibration of another

credit C ′ is done as follows.
According to Eq. (4):

T C
ref (max)

T
Cref

ref (max)

=
Cref

C
(7)

⇒

T C
ref (max) =

Cref × T
Cref

ref (max)

C
(8)

∀ i ∈ {1, . . . ,m} we have
T C ′

i(max)

T
Cref

i(max)

=
Cref

C ′
(9)

⇒

T C ′

i(max) =
Cref × T

Cref

i(max)

C ′
. (10)

Since we want to guarantee absolute allocation (Eq. (1): T C ′

i(max) =

T C
ref (max)), from Eqs. (8) and (10) we have:

T C ′

i(max) = T C
ref (max) =

Cref × T
Cref

ref (max)

C
=

Cref × T
Cref

i(max)

C ′
. (11)

Therefore

C ′ =
T
Cref

i(max)

T
Cref

ref (max)

× C . (12)

Computing C ′ using Eq. (12) is the fastest solution and provides the
same results.

In summary, fromEqs. (6) and (12), the actual capacity C ′′ which
takes into account the actual frequency f curi on Pi is given by the
following equation

C ′′ =
T
Cref

i(max) × C

T
Cref

ref (max) × ratioi(cur) × cfi(cur)

. (13)

6. Evaluations

This section presents both the evaluations of our solution
applied in a private hosting center and an evaluation of the
ability of two popular IaaS (Amazon EC2 and Rackspace) to
guarantee a SLA. The experimental context of these evaluations
is the same as presented in Section 4.1 (with Pref be P0). As
mentioned in the previous section, a prototype of our solution
(called PAS) is implemented within the Xen credit scheduler. This
implementation incurs a low overhead and a good scalability.
Indeed the complexity of our solution is O(#VMs) and given that
the number of VMs a machine can host simultaneously is not
usually high, the CPU time required by our solution to compute
new credits is negligible (time for a division).

6.1. VM capacities calibration

The first type of experiment compares and validates the two
solutions (brute force solution (S1) and the direct solution (S2))
that we proposed for the calibration. Fig. 6 presents the results of
these experiments. For each curve, X1-axis presents the considered
credits on Pref , X2-axis presents the computed credits on P1 which
should lead SPLASH-2 LU to the same execution time, and Y-
axis presents the execution time of the benchmark. Corresponding
credits are computed using the considered solution ((S1) or (S2)).
For each credit on X1-axis, the reference curve (solid line) gives
the execution time on Pref , and the other curves (for (S1) and (S2))
give the execution times on P1 with the computed credits. These
results confirm the fact that solutions (S1) and (S2) (calibratedwith
a single credit Cref = 90) are equivalent and accurate.

6.2. Computation of cf∗(∗)

The second type of experiments is dedicated to the computation
of cf∗(∗) for the three types of PMs we used (DELL, HP, and
ASUS). Recall that cfi(f) represents the variable which corrects the
imperfection of the proportionality of frequency and performance
on Pi at frequency f. The results of these experiments are reported
in Table 3. We can see that except cf1(∗) (Intel core i7-3770), the
other variables are very close to 1.

Fig. 6. VMs capacities calibration on P1 using the two solutions we proposed.

Table 3

Computation of cf∗(∗) .

PM Freq. (GHz) cf∗(∗) PM Freq. (GHz) cf∗(∗)

Pref 2.667, 2.133, 1.6 1 P1 3.4–3.3 0.87

2.4, 1.867 0.99 3.1–2.2 0.86

P2 3.9 1 2–1.7 0.85

1.8 0.96 1.6 0.84

3.6, 3.1, 2.2 0.95

2.6 0.96

6.3. Heterogeneity and DVFS

The third type of experiment validates the effectiveness of
our solution. We ran the workload scenario (Fig. 3) presented in
Section 4.3 where the Xen credit scheduler is replaced by our PAS
scheduler (which implements our solution) and a IaaS manager
which gathers VMs with migrations whenever it can free a PM. In
this scenario, P0 is the reference machine, Pref . Therefore, any CPU
capacity is booked relatively to Pref . Fig. 7 presents the results of
these experiments. The first two curves in Fig. 7 show the expected
results, corresponding to the execution of the scenario on two
machines of the same type as Pref , without DVFS (homogeneous
environment). The last two curves in Fig. 7 show the results of the
experiment when it is performed under the same conditions as in
Section 4.3 (two PMs of different types, with our solution).

We can see that the experiment runs within the same expected
time. VM203 and VM704 are assigned the appropriate credits on P1
which is more powerful than Pref (resp. 11 and 40). This allows the
provider to avoid resource waste as seen in Section 4.3. Regarding
our VM201, it is assigned much more credits (from 20 to about
35) when the DVFS decreases the speed of the processor on Pref
(because of the termination of VM702’s job at time ‘‘a’’). After the
migration of VM201 and VM702 to P1 (at time ‘‘c’’), their credits are
recomputed. We can see that during the experiment, the length
of each upper peak load of VM201 is the same (about 55 s) as
expected. The sporadic peaks observed on P1 frequency curve are
explained by the fact that the CPU load on that machine is near the
DVFS threshold (40%). This is not the case on Pref . In summary, we
can see that our solution addresses the problems we identified in
Section 3.

6.4. Comparison with popular IaaS

As argued in Section 4.4, Rackspace does not address the
problem of hardware heterogeneity. Referring to Rackspace
documentations, the allocation unit for CPU is a vCPU. No more
information is given about the real computing capacity of this unit.

The actual computing capacity of a VM on this IaaS depends not
only on the VM type, but also on its location, as we experimented.
Amazon EC2 proposes ECU as allocation unit (Section 4.4). In
order to provide performance guarantee for some of its VM
types (m3.medium), EC2 always run them on the same type of
processor. This approach may significantly limit VM consolidation
possibilities.

7. Related work

We discuss related work with respect to different aspects of
cloud computing and resource allocation and place them in the
context of our work: SLA enforcement.

SLA model. The benefits of Cloud computing come at the cost
of fully trusting cloud providers. [36] presents a framework for
building collaborative applications that run within an untrusted
environment, while meeting SLA constraints. Our work is part of
a larger body of work (e.g. [3,4,37]) on SLA enforcement in shared
hosting centers. [2,38] propose a cloud computing negotiation
model which formalizes the negotiation process between the
customers and the provider. In our case, we focus on the selling
model (i.e., the metric used in the SLA). [17] presents Quasar,
a cluster manager where resource reservation are left to the
responsibility of the provider (instead of the customer itself). He
allocates just enough resource to meet customers application QoS.
[39] uses the same approach. Neither resource presentation to
customers nor booked capacity translation onto real resources (as
we did) are considered by these works.

Resource accounting in theCloud. SLA enforcement aswe studied
in this paper for CPU could be addressed by effectively counting
CPU cycles used by each VM. [40] presents ALIBI, a monitoring tool
which counts effective memory and CPU cycles used by a guest
VM. Monitoring stats are sent to the customer so that he is able
to check if his VM behaves consistently (detecting intrusions or
SLA violations). [41,42] present similar works. [42] presents an
implementation of accountable VM and hypervisor. There have
been many efforts to add support for hardware event counters in
virtualized environments [43–47]. In our research work, some of
these tools could be used by the provider in order to implement
an absolute CPU allocation metric but such tools introduce non
negligible overhead and they often depend on a particular type of
hardware.

Relative and absolute values based scheduling. Many scheduling
algorithms use relative values [11] to allocate resources [48,49,14,
20–23]. [24] studies IO bandwidth reservation in a IaaS. It presents
mClock, an IO resource allocation in a hypervisor. mClock supports
proportional-share fairness subject to aminimum and amaximum
limit on the IO allocations. It combines absolute and relative
allocations in order to address workload fluctuation. Absolute
values allow it to guarantee the minimum and the maximum
limits. [15] does a similar work but relies exclusive on relative
values. Unlike [15], mClockmay not suffer from the dynamic speed
scaling and heterogeneity problems.

Heterogeneity aware resource allocation. Many research works
have investigated the problem of heterogeneity in shared hosting
centers [50–53]. Heterogeneity can be divided into two categories:
hardware and workload heterogeneity. [18] evaluates the impact
of assuming a homogeneous data center while it is heterogeneous.
It proposes a metric to express the sensibility of an application
facing heterogeneity. According to their respective documentation,
Amazon EC2 and Microsoft Azure avoid the problem of hardware
heterogeneity by dedicating the same type of hardware for
each VM of a given type, even if we highlighted a problem
of performance guarantee when moving from one geographic
zone to another. No information is given about Rackspace where

Fig. 7. Two left curves (top and bottom): execution of the scenario on two Pref PMs (baseline). It corresponds to what we expect for each VM during its lifetime in the IaaS.

Two rightmost curves: evaluation of our solution.

we encountered the same problem. [54] studies all the facets
of heterogeneity in EC2 and observes the same behavior as us.
Instead of providing a solution to guarantee performance, [54]
proposes a gaming based placement which places VMs according
to their analyses of the EC2 environment. [55–57] investigate the
same approach. [16] presents Paragon, a QoS-aware scheduling
for heterogeneous workload in a datacenter. Its objective is to
minimize performance degradation while we present a way to

enforce an SLA defined in terms of resources allocated to a VM.

[58–60] present similar works.

Speed scaling aware resource scheduling. Dynamic speed scaling

is one of the commonly used technology to save energy [27,28,

61,29,30]. Driven on the success of DVFS for processors, [7,8]

present a DVFS solution for memory. [62] presents an approach

which combines service selection (replicated across many clusters

of the same provider) and dynamic speed scaling in web service
systems in order to achieve high energy efficiency while meeting
performance requirements. [63] presents CoScale, a system which
coordinates CPU and memory power management in order
to improve energy savings compared to existing approaches
which manage these devices separately. However, none of them
investigated the issue of SLA enforcementwhile relying on variable
speed devices.

8. Conclusion

In this paper, we studied resource allocation in a IaaS
environment.We showed that existing resource allocation systems
which rely on relative values may lead to SLA violations in
the context of a IaaS with heterogeneous machines or variable
speed devices. While disk or network resource allocations are
expressed with absolute values, CPU allocations are expressed
with relative values (a percentage of a processor). We proposed
an absolute allocation system for CPU and showed how it can be
dynamically mapped onto physical resources. We implemented
this solution in the Xen virtualization system and evaluated it in
a private IaaS composed of heterogeneous machines with DVFS
and VM consolidation enabled. These evaluations validated the
effectiveness of our solution (no SLA violation). We also showed
that this is an important issue in popular IaaS platforms such as
Rackspace or EC2. EC2 proposes a unique allocation unit for CPU
which is independent from the hardware: ECU, but to guarantee
the performance EC2 always runs a type of VM on the same type
of processor. This approach reduces VM consolidation possibilities.
Rackspace provides vCPU as the allocation unit for CPU. Results
obtained with Rackspace showed that they do not address the
problem raised by the heterogeneity of processors. In the near
future, we plan to generalize our solution for multi-core machines.
We are also considering the implementation of such an absolute
value CPU allocation based on hardware instruction counters.

References

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, AndrewWarfield, Xen and the art of virtualization,
in: Proceedings of the Symposium on Operating Systems Principles, SOSP’03,
pp. 164–177.

[2] LinlinWu, Saurabh Kumar Garg, Rajkumar Buyya, Chao Chen, Steven Versteeg,
Automated SLA negociation framework for cloud computing, in: Cluster, Cloud
and Grid Computing 2013, CCGrid’13, pp. 235–244.

[3] Lionel Eyraud-Dubois, Hubert Larcheveque, Optimizing resource allocation
while handling SLA violations in cloud computing platforms, in: IEEE 27th
International Symposium on Parallel & Distributed Processing, IPDPS’13,
pp. 79–87.

[4] Jonathan Lejeune, Luciana Arantes, Julien Sopena, Pierre Sens, Service level
agreement for distributed mutual exclusion in cloud computing, in: Cluster,
Cloud and Grid Computing, CCGRID’12, pp. 180–187.

[5] Kihwan Choi, Ramakrishna Soma, Massoud Pedram, Dynamic voltage and
frequency scaling based on workload decomposition, in: Low Power
Electronics and Design 2004, ISLPED’04, pp. 174–179.

[6] Tom Bostoen, Sape Mullender, Yolande Berbers, Power-reduction techniques
for data-center storage systems, ACM Comput. Surv. 2011 (2011) 45.

[7] Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, Onur Mutlu,
Memory power management via dynamic voltage/frequency scaling, in: ICAC
2011, pp. 31–40.

[8] Qingyuan Deng, David Meisner, Luiz Ramos, Thomas F. Wenisch, Ricardo
Bianchini, MemScale: Active low-power modes for main memory, in: ASPLOS
2011, pp. 225–238.

[9] Kester Li, Roger Kumpf, Paul Horton, ThomasAnderson, A quantitative analysis
of disk drive powermanagement in portable computers, in: Proceedings of the
USENIX Winter 1994 Technical Conference, WTEC’94, pp. 22–22.

[10] Hui Lv, Yaozu Dong, Jiangang Duan, Kevin Tian, Virtualization challenges:
a view from server consolidation perspective, in: Proceedings of the 8th
ACMSIGPLAN/SIGOPS Conference on Virtual Execution Environments, VEE’12,
pp. 15–26.

[11] Antonio Nicolo, Efficiency and truthfulness with Leontief preferences. A note
on two-agent, two-good economies, Rev. Econ. Des. (2004).

[12] http://lartc.org/howto/lartc.qdisc.classful.html visited on April 2014.

[13] Patrick Bellasi, Giuseppe Massari, William Fornaciari, Exploiting Linux
Control Groups for Effective Run-time Resource Management, HiPEAC 2013.
https://www.kernel.org/doc/Documentation/cgroups/blkio-controller.txt
visited on April 2014.

[14] Ludmila Cherkasova, Diwaker Gupta, Amin Vahdat, Comparison of the three
CPU schedulers in Xen, ACM SIGMETRICS Perform. Eval. Rev. 35 (2007) 42–51.
SIGMETRICS Performance Evaluation Review.

[15] Ajay Gulati, Irfan Ahmad, Carl A.Waldspurger, PARDA: Proportional allocation
of resources in distributed storage access, in: Proccedings of the 7th
Conference on File and Storage Technologies, Usenix FAST’09, pp. 85–98.

[16] Christina Delimitrou, Christos Kozyrakis, Paragon: QoS-aware scheduling for
heterogeneous datacenters, in: Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’13, pp. 77–88.

[17] Christina Delimitrou, Christos Kozyrakis, Quasar: Resource-efficient and
QoS-aware cluster management, in: Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2014, pp. 127–144.

[18] Jason Mars, Lingjia Tang, Whare-map: heterogeneity in ‘‘homogeneous’’
warehouse-scale computers, in: Proceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA’13, pp. 619–630.

[19] Daniel Hagimont, Christine LarissaMayap Kamga, Laurent Broto, Alain Tchana,
Noel Depalma, DVFS aware CPU credit enforcement in a virtualized system,
in: ACM/IFIP/USENIX International Middleware Conference, Middleware’13,
8275, 2013, pp. 123–142.

[20] Carl A. Waldspurger, William E. Weihl, Lottery scheduling: flexible
proportional-share resource management, in: Proceedings of the First
USENIX Symposium on Operating System Design and Implementation,
OSDI’94.

[21] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, Ion Stoica, Mesos: A platform for fine-
grained resource sharing in the data center, in: Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, NSDI’11,
pp. 295–308.

[22] Zhibo Chang, Jian Li, Ruhui Ma, Zhiqiang Huang, Haibing Guan, Adjustable
credit scheduling for high performance network virtualization, in: Cluster
Computing, CLUSTER’12, pp. 337–345.

[23] SudiptoDas, VivekNarasayya, Feng Li,Manoj Syamala, CPU sharing techniques
for performance isolation in multi-tenant relational database-as-a-service, in:
Proceedings of the VLDB Endowment, VLDB’13, Vol. 7.

[24] Ajay Gulati, Arif Merchant, Peter Varman, mClock: Handling throughput
variability for hypervisor IO scheduling, in: Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, OSDI’10.

[25] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat,
Managing energy and server resources in hosting centers, in: Proceedings of
the Eighteenth ACM Symposium on Operating Systems Principles, SOSP’01,
pp. 103–116.

[26] Can Hankendi, Sherief Reda, Ayse K. Coskun, vCap: Adaptive power capping
for virtualized servers, in: IEEE International Symposium on Low Power
Electronics and Design, ISLPED’13, pp. 415–420.

[27] Stijn Eyerman, Lieven Eeckhout, Fine-grained DVFS using on-chip regulators,
in: ACM Transactions on Architecture and Code Optimization, TACO 2011,
Vol. 8.

[28] Michael Butler, Leslie Barnes, Debjit Das Sarma, Bob Gelinas, Bulldozer: An
approach to multithreaded compute performance, in: MICRO 2011, pp. 6–15.

[29] Chamara Gunaratne, Ken Christensen, Ethernet adaptive link rate: System
design and performance evaluation, in: Local Computer Networks 2006,
pp. 28–35.

[30] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy, David
Wetherall, Reducing network energy consumption via sleeping and rate-
adaptation, in: Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation, NSDI’08, pp. 323–336.

[31] Vincent M. Weaver, Dan Terpstra, Shirley Moore, Non-determinism and
overcount on modern hardware performance counter implementations, in:
Performance Analysis of Systems and Software 2013, ISPASS’13, pp. 215–224.

[32] Venkatesh Pallipadi, Alexey Starikovskiy, The ondemand governor: past,
present and future, in: Proceedings of Linux Symposium 2006, 2, 2006,
pp. 223–238.

[33] Daniel A. Menascé, TPC-W: a benchmark for e-commerce, Internet Comput. 6
(3) (2002) 83–87.

[34] CLIF is a Load Injection Framework, http://clif.ow2.org/ visited on April 2014.

[35] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh,
Anoop Gupta, The splash-2 programs: Characterization and methodological
considerations, in: SIGARCH 1995, pp. 24–36.

[36] Ariel J. Feldman, William P. Zeller, Michael J. Freedman, Edward W.
Felten, SPORC: group collaboration using untrusted cloud resources, in:
Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10.

[37] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrish-
nan, Marcos K. Aguilera, Hussam Abu-Libdeh, Consistency-based service level
agreements for cloud storage, in: Proceedings of the Twenty-Fourth ACMSym-
posium on Operating Systems Principles, SOSP 2013, pp. 309–324.

[38] Xianrong Zheng, Patrick Martin, Kathryn Brohman, Cloud service negotiation:
Concession vs. tradeoff approaches, in: Cluster, Cloud and Grid Computing,
CCGRID’12, pp. 515–522.

[39] Nedeljko Vasic, Dejan Novakovic, Svetozar Miucin, Dejan Kostic, Ricardo Bian-
chini, DejaVu: Accelerating resource allocation in virtualized environments,
in: Proceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2012,
pp. 423–436.

[40] Chen Chen, Petros Maniatis, Adrian Perrig, Amit Vasudevan, Vyas Sekar,
Towards verifiable resource accounting for outsourced computation, in:
Proceedings of the 9th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE’13, pp. 167–178.

[41] Vyas Sekar, Petros Maniatis, Verifiable resource accounting for cloud
computing services, in: Proceedings of the 3rd ACM Workshop on Cloud
Computing Security Workshop, CCSW’11, pp. 21–26.

[42] Andreas Haeberlen, Paarijaat Aditya, Rodrigo Rodrigues, Peter Druschel,
Accountable virtual machines, in: Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation, OSDI’10.

[43] Ruslan Nikolaev, Godmar Back, Perfctr-Xen: A framework for performance
counter virtualization, in: Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE’11,
pp. 15–26.

[44] Jiaqing Du, Nipun Sehrawat, Willy Zwaenepoel, Performance profiling
of virtual machines, in: Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE’11,
pp. 3–14.

[45] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janakiraman,
Willy Zwaenepoel, Diagnosing performance overheads in the Xen virtual
machine environment, in: Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE’05,
pp. 13–23.

[46] Vmkperf utility for VMWare ESX 4.0, 2011.
[47] Shirley Browne, Jack Dongarra, Nathan Garner, Kevin London, Philip Mucci,

A scalable cross-platform infrastructure for application performance tuning
using hardware counters, in: Proceedings of the 2000 ACM/IEEE Conference
on Supercomputing, Supercomputing’00.

[48] Wei Jin, Jeffrey S. Chase, Jasleen Kaur, Interposed proportional sharing for a
storage service utility, in: ACM SIGMETRICS Performance Evaluation Review
2004, pp. 37–48.

[49] Ali Ghodsi,Matei Zaharia, BenjaminHindman, Andy Konwinski, Scott Shenker,
Ion Stoica, Dominant resource fairness: Fair allocation of multiple resource
types, in: Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI’11, pp. 323–336.

[50] Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan Ragan-Kelley,
Saman Amarasinghe, Portable performance on heterogeneous architectures,
in: Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS’13,
pp. 431–444.

[51] David Koufaty, Dheeraj Reddy, Scott Hahn, Bias scheduling in heterogeneous
multi-core architectures, in: Proceedings of the 5th European Conference on
Computer Systems, EuroSys’10, pp. 125–138.

[52] Marco Canini, Vojin Jovanovic, Daniele Venzano, Dejan Novakovic, Dejan
Kosti, Online testing of federated and heterogeneous distributed systems,
in: Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM 2012,
pp. 434–435.

[53] Alexandra Fedorova, David Vengerov, Daniel Doucette, Operating system
on heterogeneous core systems, in: Proceedings of 2007 Operating System
Support for Heterogeneous Multicore Architectures, ASPLOS’13.

[54] Benjamin Farley, Venkatanathan Varadarajan, Kevin D. Bowers, Ari Juels,
Thomas Ristenpart, Michael M. Swift, More for your money: Exploiting
performance heterogeneity in public clouds, in: Proceedings of the Third ACM
Symposium on Cloud Computing. SoCC’12.

[55] Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen, Antti Yla-Jaaski, Pan Hu,
Exploiting hardware heterogeneity within the same instance type of Amazon
EC2, in: Proceedings of the 4th USENIX Conference on Hot Topics in Cloud
Ccomputing, HotCloud’12, pp. 4–4.

[56] Zhonghong Ou, Hao Zhuang, Andrey Lukyanenko, Jukka K. Nurminen, Pan Hu,
Vladimir Mazalov, Antti Yla-Jaaski, Is the same instance type created equal?
Exploiting heterogeneity of public clouds, in: IEEE Transactions on Cloud
Computing, TCC 2013, 1, 2013, pp. 201–214.

[57] Alexander Lenk, Michael Menzel, Johannes Lipsky, Stefan Tai, Philipp
Offermann, What are you paying for? Performance benchmarking for
infrastructure-as-a-service offerings, in: IEEE International Conference on
Cloud, pp. 484–491.

[58] Christina Delimitrou, Christos Kozyrakis, QoS-aware scheduling in heteroge-
neous datacenters with paragon, ACM Trans. Comput. Syst. 31 (2013) 17–30.

[59] Gunho Lee, Byung-Gon Chun, Randy H. Katz, Heterogeneity-aware resource
allocation and scheduling in the cloud, in: Proceedings of the 3rd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’11, pp. 4–4.

[60] Alexey Tumanov, James Cipar, Michael A. Kozuch, alsched: Algebraic
scheduling of mixed workloads in heterogeneous clouds, in: Proceedings of
the Third ACM Symposium on Cloud Computing, SOCC’12, article No. 25.

[61] RustamMiftakhutdinov, Eiman Ebrahimi, Yale N. Patt, Predicting performance
impact of DVFS for realistic memory systems, in: MICRO 2012.

[62] Jiwei Huang, Chuang Lin, Agent-based green web service selection and
dynamic speed scaling, in: IEEE 19th International Conference on Web
Services, ICWS 2013, pp. 91–98.

[63] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F. Wenisch,
Ricardo Bianchini, CoScale: Coordinating CPU and memory system DVFS
in server systems, in: 45th Annual IEEE/ACM International Symposium
Microarchitecture, MICRO, 2012, pp. 143–154.

Boris Teabe received hisM.S. in National Advanced School
of Engineering Cameroon in 2013. Since January 2014 he
is carrying out a 6 month internship at IRIT lab, Toulouse
France. He is a member of SEPIA research group. His main
research interests are in Virtualization, Cloud Computing,
and Operating System.

Alain Tchana received his Ph.D. in Computer Science in
2011, at the IRIT laboratory, Polytechnic National Institute
of Toulouse, France. Since September 2013 he is a Associate
Professor at Polytechnic National Institute of Toulouse,
France. He is a member of SEPIA research group at IRIT
laboratory, Toulouse. His main research interests are in
Virtualization, Cloud Computing, and Operating System.

Daniel Hagimont is a Professor at Polytechnic National
Institute of Toulouse, France and a member of the IRIT
laboratory, where he leads a group working on operating
systems, distributed systems and middleware. He received
a Ph.D. from Polytechnic National Institute of Grenoble,
France in 1993. After a postdoctorate at the University of
British Columbia, Vancouver, Canada in 1994, he joined
INRIA Grenoble in 1995. He took his position of Professor
in Toulouse in 2005.

