
Merging Flows in Terminal Moneuvering Area using

Time Decomposition Approach

Ji Ma, Daniel Delahaye, Mohammed Sbihi, Marcel Mongeau

To cite this version:

Ji Ma, Daniel Delahaye, Mohammed Sbihi, Marcel Mongeau. Merging Flows in Terminal
Moneuvering Area using Time Decomposition Approach. 7th International Conference on
Research in Air Transportation (ICRAT 2016), Jun 2016, Philadelphie, PA, United States.
<hal-01343823>

HAL Id: hal-01343823

https://hal-enac.archives-ouvertes.fr/hal-01343823

Submitted on 10 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50530493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-enac.archives-ouvertes.fr/hal-01343823

Merging Flows in Terminal Maneuvering Area
using Time Decomposition Approach

Ji Ma, Daniel Delahaye, Mohammed Sbihi, Marcel Mongeau
ENAC – Université de Toulouse

7 av. Edouard Belin, 31055 Toulouse cedex 4, France

Abstract—With a continuous growth of air traffic demand, more
effort must be made to alleviate the current overloaded airspace
charges. This research focuses on the aircraft merging and
sequencing problem at Terminal Maneuvering Area. Tactical
conflict detection and resolution methods are applied to a
predefined route network structure. Speed and time changes are
proposed via an optimization methodology to resolve conflicts
and maintain separation between aircraft with regard to the
wake turbulence constraints and runway occupancy time. A
new time decomposition approach is introduced. It consists in
partitioning the whole time interval under consideration into
several overlapping time windows, and in solving the merging
and sequencing problem individually in each such sub-window.
Four aircraft status are defined to classify flights according to
their temporal position relative to the current sliding window.
Moreover, an adapted simulated annealing heuristic is proposed
to solve the corresponding sub-problems. Finally, computational
experiments of the proposed algorithm, performed on real-world
case studies of Paris Charles De-Gaulle airport, show the benefits
of this sliding-window time-decomposition approach.

Keywords-Air Traffic Control; Aircraft Merging Problem; Time
Decomposition; Simulated Annealing

I. INTRODUCTION

The global air traffic will grow at 4.6 percent annually for
the next 20 years according to the Airbus global market fore-
cast [1]. Therefore, the research on Air Traffic Management
(ATM) in order to ensure safety and to enhance efficiency
and capacity has become more and more important. One
of the most critical parts related to ATM is the Terminal
Maneuvering Area (TMA). The TMA is a designated area of
controlled airspace surrounding a major airport where there is
a high volume of traffic. This complex airspace has become
a sensitive area with an uncertain and dynamic environment.
Therefore, there is a need to improve the use of available air
capacity and to alleviate the more and more serious airspace
congestion by using efficient approaches and algorithms. In
this paper, we focus on the problem of merging flight flows
into the TMA in order to ensure safety and improve efficiency
of the TMA.

The remainder of this paper is organized as follows. First,
the background and related research, the precise description
of the problem including the objectives and constraints, and
a mathematical model are introduced in Section II. Then, the
resolution algorithms for the merging and sequencing problem
are proposed in Section III. Next, we perform experiments and
we analyze the results in Section IV. Finally, Section V gives
some conclusions and perspectives.

II. PROBLEM DESCRIPTION AND MATHEMATICAL MODEL

A. Problem description

During the transition from the en-route to the terminal
airspaces, aircraft arriving from different entry points must
be merged and organized into an orderly stream, typically in
a short time horizon of about 45 minutes [2].

The aircraft arrival sequencing and scheduling problem
(ASS) has been considered as a classical problem for the
last few decades. Beasley et al. [3] present mixed-integer
zero-one programs of the static aircraft landing problem for
both the single and multiple-runway cases. Bianco et al. [4]
proposed a job-shop scheduling model combining a local
search algorithm for the ASS problem with multiple runways
and multiple approach and leaving procedures. An overview of
different aircraft landing and take-off scheduling techniques is
summarized in [5] where the main research works, including
heuristics, meta-heuristics, branch and bound, and dynamic
programming, are presented.

The First-Come-First-Served (FCFS) order is the most
common technique that controllers use to sequence aircraft.
Although this approach reasonable to maintain equity of
scheduling, FCFS does not consider most useful criteria to
alleviate congestion and does not make an efficient use of
the airport capacity, due to its large spacing requirement.
Typically, controllers may shift aircraft by a small number
of rank positions in the FCFS order, which means that each
aircraft must land within a pre-specified number of positions of
its place in the FCFS sequence. This explains why constrained
position shifting (CPS) methods have been widely studied.
Balakrishnan et al. [6] present a Dynamic Programming ap-
proach subject to several operational constraints in a CPS
environment to minimize the makespan (landing time of the
last aircraft).

Some researches have been conducted by decomposing
the problem into a sequence of sub-problems based on a
sliding time window. Hu et al. [7] design an efficient Ge-
netic Algorithm based on a binary representation of arriving
queues combined with a receding horizon control. Furini et
al. [8] propose an improved rolling-horizon approach which
partitions the aircraft sequence into chunks (sub-sequences),
and solves the corresponding sub-problems individually with
a tabu-search heuristic.

In this paper we consider the problem of merging ar-
rival flows on a single runway using a time decomposition

Fig. 1. The route structure model for LFPG runway 26L

approach. Next, a mathematical model for this problem is
introduced. It is the work of Zuñiga et al. [2] which aims to
remove conflicts at merging points and to maintain separation
between aircraft following same route link. In their work, a
genetic algorithm is applied to Gran Canaria airport in Spain
with a one-hour real data set.

B. Given data

We assume that a route network graph G(N ,L), in which
the aircraft are allowed to fly, is given, where N is the node
set and L is the link set. We have N = Ne ∪ Nw ∪ {r},
where Ne = {1, . . . , ne} represents the set of entering points,
ne is the total number of entering points, r represents the
node at the runway threshold, and Nw is the set of nodes
between the entering point until the runway threshold which
constitutes the route network. Similarly, we have L = Le ∪
Lw ∪ {lr}, where Le = {1, . . . , ne} is the set of the links
connecting the entering point, lr is the last link connecting
the runway threshold, and Lw contains the remaining links.
Each entering point e ∈ Ne corresponds to one route, defined
by re = {e, l1e , n2e, l2e , . . . , nr−1

e , lr, r}. Each route is defined
by a succession of nodes and links; the first link starts from the
entering point, e, and the last link ends at the runway, r. The
set of routes is denoted as R = {re}ne

e=1. Each aircraft follows
exactly one of these routes corresponding to its entering point.

Fig. 1 displays a model example of a route network: Paris
Charles De-Gaulle (CDG) airport runway 26L. In the arrival
procedure, four routes fuse into one single route towards the
runway. Each of the starting nodes of these four routes is a so-
called Initial Approach Fix (IAF). The set of entering points
is Ne={MOPAR, LORNI, OKIPA, BANOX}, with ne = 4. In
this route network structure, there are |N | = 16 nodes and
|L | = 15 links.

Assume that we are given a set of flights (or aircraft), F =
{1, . . . , Nf}, and for each flight f ∈ F the following data is
also given:

• ef ∈ Ne: entering waypoint number at TMA;

(a) Real aircraft speed profile with respect to time

(b) Speed change model

Fig. 2. Example of real aircraft speed profile and speed change model with
respect to time

• tfs : RTA (Required Time of Arrival) at TMA;
• vfs : entering speed at TMA;
• cf : wake turbulence category.
Let us now detail the assumptions and simplifications re-

quired to address our problem.
First, the aircraft speed is considered to be equal to the

Ground Speed (the wind effect will not be taken into account).
Next, in order to understand our speed profile assumption,
consider the following example: the real-world operations of
an aircraft of type B737 that lands at CDG airport. First, the
ICAO rules require the maximum speed not to exceed 250
kt below FL100, which corresponds to a distance of 30 NM
from the runway threshold. Moreover, this aircraft must reduce
its speed to 250 kt at a distance of 11 NM from the runway
threshold, and to 140 kt at a distance of 3 NM from the runway
threshold. The aircraft is assumed to reduce its speed in a
way that is compatible with the above-mentioned rules. Figure
2a shows an example of how an aircraft changes its speed
during the final approach. In our model, in order to remain
close to the reality while simplifying the problem to optimize,
we approximate the real speed profile as a step function, as
illustrated in Fig. 2b. More precisely, we assume that the
initial speed of each aircraft is kept constant throughout the
first link. Then, from the beginning of the second link of the
route, the aircraft speed is decreased so as to meet the ICAO
requirements. Next, the aircraft keeps this constant speed for
the remaining of the route, except for the last link. When the
aircraft arrives at the beginning of its last link, the speed is
decreased again, to reach the final-approach speed, noted as
vrf . This final-approach speed depends on cf , as follows:

vrf =

 150 kt, if cf =Heavy
130 kt, if cf =Medium
110 kt, if cf =Small

(1)

and is kept constant throughout the last link of the route.

C. Decision variables

We consider two possible maneuvers for each flight to
resolve the potential conflicts:

• Shifting its entering time at TMA;
• Modifying its entering speed.

First, we assume that we are given a maximum delay and
a minimum delay, denoted respectively ∆tmax and ∆tmin,
which define the range of possible entering times at TMA.
We choose to discretize this time interval because in the real
ATC environment, the controller radars usually display updates
every five seconds and discretizing the time-slot variable
makes more sense for ATC practice. We therefore define, for
each flight f ∈ F , a time-slot decision variable tf ∈ Tf ,
where

Tf = {tfs + j∆t |∆tmin/∆t 6 j 6 ∆tmax/∆t, j ∈ Z},

where ∆t is a discretized time increment, an input parameter
whose value is to be set by the user. In order to shift an
aircraft entering time at TMA, we can either delay it or speed
it up during the en-route procedure. In practice, the latter
strategy consumes more fuel, and may be far less interesting
for the airlines. As a consequence, our time slot interval is
asymmetric, with |∆tmax| ≥ |∆tmin|. In this study, we set
∆tmax = 500s, ∆tmin = −100s and ∆t = 5s.

The second decision of our conflict resolution strategy
consists in changing the entering speed of the flights. Again,
we choose to discretize the interval of possible speed values,
in accordance with current practice of controllers, who usu-
ally modify aircraft speed by accelerating or reducing by a
discretized value. Thus, for each flight f ∈ F , we define an
entering speed decision variable vf ∈ Vf , where

Vf = {vfmin + j∆f
v | j ∈ Z, |j| 6 (vfmax − v

f
min)/∆f

v},

where ∆f
v is a (user-defined) time increment, vfmin and vfmax are

given input data corresponding to the minimum and maximum
allowable speeds for aircraft f . In this study, we set vfmin =

0.9vfs , vfmax = 1.1vfs and ∆f
v = 0.01vfs . We also make sure a

priori that vfmax is not exceeding the maximum speed defined
by the aircraft type.

As mentioned before, our speed-decrease model follows a
step-function profile, as illustrated in Fig. 2b. For the first link
of aircraft f , the speed remains constant at vf . Then, from the
second link until the beginning of the last link, it is reduced
to a constant speed αvf , where α is a parameter whose value
is set to:

α =

 1.0, if vf ≤ 250kt
0.7, if 250kt < vf ≤ 360kt
0.6, if vf > 360kt

(2)

Finally, for the last link, the aircraft keeps its speed at the
constant value given by (1) until the runway.

To summarize, our decision vector is x = (t, v), where t is
the vector whose ith component is the decision variable ti, and
v is the vector whose ith component is the decision variable
vi (both of which correspond to flight i).

D. Separation rules

We consider three separation requirements: wake turbulence
constraints, horizontal separation, and runway separation.

• Wake turbulence separation constraints:
In order to model the wake turbulence constraints, let
us define sfg , the minimum allowed separation between
flights f and g, a given input data that depends on the
wake turbulence categories, cf , cg , of these two flights.
The minimum separation standards are given in Table I
[9].

TABLE I
SEPARATION MINIMA, sfg , IN NM.

Category Leading Aircraft, f
Heavy Medium Light

Trailing Aircraft, g
Heavy 4 3 3

Medium 5 3 3
Light 6 5 3

• Horizontal separation constraints: Aircraft must satisfy
a minimum horizontal separation based on radar, which
shall be 3 NM in the TMA.

• Runway separation constraints: The runway separation
rules are calculated by incorporating the different flight
velocities and their impact on the final approach segment.
Here we use the data of [10], shown in Table II:

TABLE II
SINGLE-RUNWAY SEPARATION REQUIREMENTS, IN SECONDS.

Category Leading Aircraft, f
Heavy Medium Light

Trailing Aircraft, g
Heavy 96 60 60

Medium 157 69 69
Light 207 123 82

E. Conflicts detection

We explain here how to evaluate the above-defined separa-
tion constraint functions. Three kinds of conflicts are defined:
link conflict, node conflict and runway conflict, in order to meet
the requirements of wake turbulence separation, horizontal
separation and runway separation respectively. Note that once
the decision variable values are set, we can calculate the
corresponding times at which the aircraft passes each node
and each link. Then, we use these time values to determine
the three types of conflicts. These are defined below.

• Link conflict: For each given link, we verify twice
whether a conflict occurs, i.e., the minimum wake tur-
bulence separation is violated: at the entry and at the
exit of the link. Moreover, we make sure that the order
of sequencing remains the same along the link. As the
speed is assumed to stay constant when the aircraft flies
through one link, if no conflict is detected at the entry
nor at the exit of the link, then this link is guaranteed
to be conflict free. Fig. 3 illustrates an example of link
conflict detection: two consecutive flights f, g are flying

Fig. 3. Example of link conflict detection

through a link l = (u, v). The minimum separation
between these two aircraft, sfg , is obtained based on their
respective wake turbulence category (Table I). Then, the
actual separation distance of these aircraft at the entry
time, dufg(x), and at the exit time of link l, dvfg(x), are
computed and compared with sfg (here sfg = 5NM) to
detect an eventual link conflict.
Let us define, the link conflict indicator, Ll

fg(x), for
aircraft f and g at link l:

Ll
fg(x) =

1,

if Tu
f (x) < Tu

g (x) and
(dufg(x) < sfg
or dvfg(x) < sfg
or T v

f (x) > T v
g (x))

0, otherwise

• Node conflict: If no link conflict is detected, wake-
turbulence separation can be guaranteed. However, at the
intersection of two successive links, violation of the hor-
izontal separation requirement between two consecutive
aircraft can still occur. Therefore, we introduce the node
conflict, illustrated in Fig. 4. Considering a node n and
two aircraft f, g that fly over node n, we consider a
disk centered at node n with radius Rn, defined as a
detection zone. We must ensure that at every moment
only one aircraft passes this detection zone. Suppose
that aircraft f enters the zone of node n before aircraft
g. We denote the entering time to and exit time from
this zone for aircraft f (g, respectively) as T f,n

In (x)
(T g,n

In (x)) and T f,n
Out (x) (T g,n

Out (x)). A conflict is detected
when T g,n

In (x) < T f,n
Out (x), which means that aircraft g

enters the detection zone before aircraft f exits.
Zuñiga et al. [2] choose Rn = 3NM, which ensures
the minimum required separation. However, it induces
some waste of separation and may limit the possibility
of finding a good-quality solution. Therefore, we propose
a value of Rn that takes into account the worst case of
aircraft speeds and intersection angles based on the route
map of CDG runway 26L. Suppose that the following
aircraft speed, vg , is higher than the leading aircraft
speed, vf . They pass consecutively the node n, which is
the intersection of two perpendicular links. In our route
network, the minimum angle between two consecutive
links of one route is larger than 90 degrees. Therefore,
the worst case to consider for our node conflict detection

Fig. 4. Example of node conflict detection

is the perpendicular link illustrated on Fig. 5. We suppose
that the node n is the origin point of our coordinate axes,
and that at time 0 flight f arrives at node n. To ensure that
aircraft f exits the zone of node n before aircraft g enters,
the minimum distance between the two aircraft when the
first one is at node n should be dfg(0) = (1+vg/vf)Rn.
The coordinates of flights f and g as a function of the
time t are:

xf (0) = 0

xf (t) = vf t

yf (t) = 0

(3)

yg(0) = (1 + vg/vf)Rn

xg(t) = 0

yg(t) = yg(0)− vgt
(4)

and the distance between them at time t is:

dfg(t) =
√

(xg(t)− xf (t))2 + (yg(t)− yf (t))2 (5)

After the deviation, the time at which this is minimal is:

tmin =
(1 + vg/vf)vn

v2g + v2f
(6)

The corresponding distance, is:

dfg(tmin) =
(vg + vf)Rn√

v2g + v2f

, (7)

should be larger than 3NM. We consider the extreme case
of aircraft speed in our problem: vf = 250kt and vg =
430kt, which corresponds to the minimum and maximum
speeds in our data. After calculation, we obtain a radius
of Rn = 2.2NM.
We define the node conflict indicator for aircraft f
(leading) and g (following) as follows:

Nn
fg(x) =

{
1, if T f,n

In (x) ≤ T g,n
In (x) < T f,n

Out (x)
0, otherwise

Moreover, as the angle between two links becomes small,

Fig. 5. Aircraft minimum distance calculation for node conflict

Fig. 6. Example of merge conflict detection

undetected conflict outside the detection zone are likely
to occur without being detected. In order to address this
issue, we redefine and adapt to the conflict detection zone
depending on the angle between two links. When two
aircraft f and g come from different directions and merge
at one node n, a fan-shaped area with a radius Rm is
defined as the detection zone, as illustrated in Fig. 6,
where Rm = 3/sinβ NM, with β calculated by using
the coordinates of the three nodes that constitute this
angle. Similarly to the node conflict detection, suppose
that aircraft f exits the fan zone (detection zone) of node
n before aircraft g enters. We note the entering and the
exit times, and we ensure that aircraft g enters the node
zone before aircraft f exits.

• Runway conflict: The landing time difference of any two
consecutive aircraft must respect the time separation that
we mentioned before, considering the different speeds
and runway occupancy times. Otherwise, a runway con-
flict is incurred. We define the runway conflict indicator
between two successive aircraft f and g as:

Pfg(x) =

{
1, if 0 ≤ T r

g (x)− T r
f (x) < tfg

0, otherwise

where T r
f (x) denotes the time at which aircraft f ar-

rives at the last node r (the runway threshold), which
corresponds to its landing time, and tfg is the minimum

runway separation between flights f and g.

F. Objective function

The objective is to minimize the total number of conflicts
in the nodes, in the links, and at the runway threshold for each
flight. At the same time, we aim at minimizing the number of
flights that must implement a change in decision. Our objective
function, to be minimized is:

S(x) = λ

 ∑
f,g∈F
f 6=g

 ∑
n∈rf∩rg

Nn
fg(x) +

∑
l∈rf∩rg

Ll
fg(x) + Pfg(x)

+ γD(x)

where D(x) = |{f ∈ F |tf (x) 6= tfs or vf (x) 6= vfs }|, is
the number of flights implementing a change in decision, the
first item represents the total number of conflicts in all the
nodes, all the links and at the runway, λ and γ are weighting
coefficients for the total number of conflicts and the decision
deviations respectively. The user can adjust these coefficients
to find a solution resolving all conflicts without implementing
too many changes in decision.

This optimization problem is proven to be nondeterministic
polynomial (NP) hard [3], which, roughly speaking, means
that the computation times to solve it is likely to increase
exponentially as the size of the problem grows. However, in
practice, controllers need a quick and efficient (not necessarily
optimal) solution. In the next section, a rapid and efficient
resolution approach will be proposed.

III. SOLUTION APPROACHES

We propose a time decomposition approach combined with
a simulated annealing algorithm to address the aircraft merg-
ing problem, modeled as the conflict minimization problem
introduced in the previous section. First, we introduce the
new concept of sliding-window approach. Then, a simulated
annealing algorithm adapted to this problem and to this
sliding-window approach is proposed.

A. Sliding-window approach

The approach we are proposing addresses the original
problem by decomposing it into several sub-problems using a
sliding window in order to reduce the computational burden.
This specific approach is generic and can be extended and
applied to other real-time operation problems.

Let us introduce some notations. Suppose that we are given
a total time interval, [tINIT, tFINAL], over which we want to
optimize. Then, four parameters are introduced:

• W : the time length of the sliding window;
• S: time shift of the sliding window at each iteration;
• Ts(k): the starting time of the kth sliding window,
Ts(k) = tINIT + kS;

• Te(k): the ending time of the kth sliding window,
Te(k) = tINIT + kS +W .

Fig. 7 illustrates how the operating window slides along
the time axis. The first sliding window begins at tINIT and, the

Fig. 7. Sliding windows from iteration 0 to iteration k

optimization algorithm (to be defined later) is applied in the
corresponding time interval [Ts(0), Te(0)]. Next, the sliding
window recedes in the future by S, and the current optimizing
interval becomes [Ts(1), Te(1)]. Then, we repeat this receding
process until we reach the kth sliding window with Te(k) =
tFINAL.

Some parameters are needed to describe the sliding-window
approach for each flight f ∈ F :

• tfs : initial entering time at TMA;
• tfs : the earliest possible entering time at TMA (initially
tfs = tfs + ∆tmin);

• tfs : the latest possible entering time at TMA, (initially
tfs = tfs + ∆tmax);

• tfe : the landing time;
• tfe : the earliest possible landing time. Initially calculated

by considering the maximum allowed speed and the
minimum delay;

• tfe : the latest possible landing time. Initially calculated
by considering the minimum allowed speed and the
maximum delay.

Each aircraft is classified into one of the following four
different status, based on the positions of the parameters of
flight f relative to the starting and ending times of the current
sliding window, k:

• Completed flight: tfe 6 Ts(k). The latest landing time
for aircraft f , tfe , is lower than the beginning time of
the kth sliding window, Ts(k), which means that aircraft
f has already landed before the start of the kth sliding
window;

• On-going flight: tfs 6 Ts(k) < tfe . The beginning time
of the kth sliding window, Ts(k), is between the earliest
arrival time at TMA, tfs , and the latest landing time, tfe ,
which means that aircraft f has already been assigned,
but it may still impact the assignment of the following
aircraft;

• Active flight: Ts(k) < tfs and tfs 6 Te(k). The time
decision interval of flight f is included in the sliding
window interval [Ts(k), Te(k)];

Fig. 8. Four flights status, related to the time position of flight f relative to
the current sliding window (k)

• Planned flight: Te(k) < tfs . The latest arrival time at
TMA, tfs , is larger than the ending time of the kth

sliding window, Te(k), which means that the temporal
decision variable interval is not totally included in the
time window, so that we could not solve the problem in
this interval. The flight will be considered later.

The status of flight f is updated and changed according to
the sliding window currently under consideration. Remark that
for completed and on-going aircraft, we have tfs = tfs = tfs

and tfe = tfe = tfe , since their decision variables have been
assigned and fixed.

Fig. 8 illustrates the four different flight status and their
positions relative to the sliding window. The different time
positions of the aircraft and those of the sliding-window are
indicated respectively with blue and red triangles.

At each step, we take into account the active and on-
going aircraft in the sliding window interval to be merged
and sequenced. Decisions for the on-going flights have already
been made, but these flights still have some influence on the
decisions to be made for the active flights. On the other hand,
the conflicts involving completed flights have already been
resolved and they can not have any impact on the active
flights, so they can be cleared out of the decision process and
ignored. Then, the optimization window recedes in the future
by the time step S. The status of aircraft are updated, a new
set of flights waiting to be addressed are considered, and the
optimization process is repeated, as illustrated in Algorithm 1.

B. Simulated Annealing Algorithm

Simulated Annealing (SA) is a meta-heuristic well known
for its ability to trap out of local minima by allowing random
local changes. Moreover, it can easily be adapted to large-scale
problems with continuous or discrete search spaces.

We propose a SA algorithm adapted to our problem. First,
a neighborhood function is defined to generate a local change
from the current solution. Two criteria are considered: min-
imizing the computational time and keeping the proposed

Algorithm 1 Sliding-Window Management
1: procedure SLIDINGWINDOW
2: k ← 0;
3: Ts(k)← tINIT;
4: Te(k)← Ts(k) +W ;
5: Determine each flight status relative to sub-window;
6: FOPT ← Active and on-going flights;
7: while Te(k) < tFINAL do
8: if at least one active flight in FOPT then
9: Subproblem: optimize considering FOPT;

10: end if
11: Ts(k)← Ts(k) + S;
12: Te(k)← Te(k) + S;
13: k ← k + 1;
14: Update each flight status relative to sub-window;
15: Update FOPT;
16: end while
17: end procedure

changes local, so that each step does not boil down to a pure
random search.

To generate a neighborhood solution, instead of simply
choosing randomly a flight f in the active-flight set, we
use a method similar to the roulette wheel selection. Let us
denote Cf the total number of conflicts involving aircraft f .
Suppose that we have a total of N active flights, indexed in
chronological order (with respect to our entering times) in a
sliding window. We propose to change the decision variables

of the first aircraft i satisfying
i∑

f=1

Cf ≥ µ
N∑

f=1

Cf , where µ

is a random number between 0 and 1.
The fact that our neighborhood definition is based on the

total number of conflicts, augments the likelihood that a flight
involving many conflicts, or its neighboring aircraft, will be
chosen.

At the level of modifying the values of the decision variables
related to the chosen flight f , two strategies are applied:
modifying vf , the entering speed at TMA, or modifying tf ,
its entering time at TMA. Then, the new flight trajectory
information is updated with regard to the modified decision
variables.

IV. SIMULATION RESULTS

This section compares two resolution approaches to solve
the merging and sequencing problem. Numerical results with
different settings of (user-defined) algorithm parameters are
presented and discussed.

The study is based on three 24-hour real data cases of
arrival traffic at Paris CDG Airport on runway 26L. The overall
process is run on a 2.33GHz Debian 3.2 Linux operating
system PC based on a Java code.

A. Real data analysis

We choose the data set of three consecutive days to test our
algorithm viability and performance. The data of November

TABLE III
DAILY TRAFFIC FLOW CHARACTERISTICS

Scenario Arrivals Entry
Node Medium Heavy Traffic flow

proportion

1 239

MOPAR 23 14 15.5 %
LORNI 57 22 33 %
OKIPA 72 6 31.8 %

BANOX 44 3 19.7 %

2 355

MOPAR 40 22 17.5 %
LORNI 72 24 27 %
OKIPA 101 25 35.5 %

BANOX 65 6 20 %

3 374

MOPAR 37 30 17.9 %
LORNI 66 31 25.9 %
OKIPA 117 18 36.1 %

BANOX 65 10 20.1 %

Fig. 9. Traffic flow of Paris CDG runway 26L on three days traffic

24, 2015, November 25, 2015 and November 26, 2015 are
noted as scenario 1, scenario 2 and scenario 3 respectively.
The daily traffic flow characteristics and the repartition are
presented in Table III and in Fig. 9 respectively.

B. Parameters setting and results comparison

To evaluate the benefit of our sliding-window approach, a
comparative experiment is performed, involving applying our
SA algorithm implementation at once on the 24-hour data, and
combing SA and the sliding-window approach.

The related user-defined parameters for the SA algorithm
and the sliding-window approach are set empirically to the
values shown in Table IV and kept constant for both the
pure SA algorithm and the SA algorithm within sliding-
window approach, and for the three scenarios. The deviation
coefficient, γ, is set to a much lower value than λ, in order to
ensure that the conflicts resolution is the first priority.

Table V shows the potential (initial) conflicts for the three
scenarios without any conflict-resolution strategy applied. We
reach a conflict-free solution for scenario 1 and 2 with both ap-
proaches. As expected, the sliding-window approach requires
less CPU time for the three scenarios, as it addresses smaller
NP-hard problems. In scenario 3, there remain unsolved con-
flicts. However, the sliding-window approach enables us to
decrease the number of unsolved conflicts from 48 (for the
pure SA approach) down to 14. In this preliminary study, each

TABLE IV
USER-DEFINED PARAMETER VALUES

Parameter Value
Number of iterations at each temperature step 150
geometrical temperature-reduction coefficient 0.95
Final temperature T0 × 0.0001
Probability of changing the speed 0.5
Probability of changing the time slot 0.5
Conflicts weighting coefficient, λ 1
Deviation weighting coefficient, γ 0.06
Time length of the sliding window, W 5400 s
Time shift of the sliding window, S 1200 s

TABLE V
COMPARISON OF THE TWO METHODS

Scenario 1 2 3
Initial conflicts 626 1642 1510

SA Residual conflicts 0 0 48
CPU time 252 s 687 s 896 s

SA+
sliding-window

Residual conflicts 0 0 16
CPU time 191 s 347 s 469 s

TABLE VI
COMPARISON OF THE TWO METHODS FOR SCENARIO 2

Method SA algorithm SA+sliding-window
Number of aircraft
without time-slot changes 27 (7.6%) 136 (38.3%)

Number of aircraft
without speed changes 45 (12.7%) 153 (43%)

Number of aircraft
without any change 16 (4.5%) 133 (37.5%)

Average delay of
entrance time at TMA 86 s 81 s

Entrance delay
standard deviation 177 s 160 s

Minimum entrance
delay change -100 -100

Maximum entrance
delay change 495 500

Average speed change
in % 0.3 0.3

Speed change
standard deviation in % 5.7 4.6

Minimum speed
change in % -10 -10

Maximum speed
change in % 10 10

aircraft is presumed to execute exactly one route. In future
study, we intend to allow vectoring adjustment to absorb any
remaining conflicts.

Table VI gives the results in more detail for scenario 2,
one observes that the sliding-window approach modifies much
fewer aircraft decision variables than the pure SA algorithm
does, which is of practical significance. Both approaches yield
similar averages and standard deviations for speed–change
percentage and delay of entrance time. The results are similar
for scenario 1, 2 and 3.

V. CONCLUSIONS AND FUTURE DEVELOPMENT

In this paper, we introduced a mathematical formulation of
the aircraft merging problem, considering minimum separation
constraints. Then, a new sliding-window approach combined
with simulated annealing algorithm is proposed to solve the
problem. To do so, we further introduced four different status
into which the aircraft are classified depending on their relative
time position within the current sub-window. This hybrid
algorithm successfully reached conflict-free solutions within
less computational time and less aircraft deviations than the
pure SA algorithm.

Further developments may focus on tests with more scenar-
ios, and other optimization methods to solve the same (sub-)
problems. The model could also be extended to the airport, in
view of optimizing the approaching procedure and the ground
movements simultaneously, in order to maximize the airport
throughput.

ACKNOWLEDGMENTS

This work has been supported by Civil Aviation University
of China and by French National Research Agency (ANR)
through JCJC program (project ATOMIC nANR 12-JS02-009-
01). We would like to thank Serge Roux for his assistance with
data, technical support and helpful discussions.

REFERENCES

[1] Airbus, “Global market forecast 2015-2034,” Technical report, Tech.
Rep., 2015.

[2] C. Zuñiga, D. Delahaye, and M. A. Piera, “Integrating and sequencing
flows in terminal maneuvering area by evolutionary algorithms,” in
DASC 2011, 30th IEEE/AIAA Digital Avionics Systems Conference.
IEEE, 2011, pp. 2A1–1 – 2A1–11.

[3] J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, and D. Abramson,
“Scheduling aircraft landings - The static case,” Transportation Science,
vol. 34, no. 2, pp. 180–197, 2000.

[4] L. Bianco, P. DellOlmo, and S. Giordani, “Scheduling models for air
traffic control in terminal areas,” Journal of Scheduling, vol. 9, no. 3,
pp. 223–253, 2006.

[5] J. A. Bennell, M. Mesgarpour, and C. N. Potts, “Airport runway
scheduling,” 4OR, vol. 9, no. 2, pp. 115–138, 2011.

[6] H. Balakrishnan and B. Chandran, “Scheduling aircraft landings under
constrained position shifting,” in AIAA Guidance, Navigation, and
Control Conference and Exhibit, Keystone, CO, 2006.

[7] X.-B. Hu and E. Di Paolo, “Binary-representation-based genetic algo-
rithm for aircraft arrival sequencing and scheduling,” IEEE Transactions
on Intelligent Transportation Systems, vol. 9, no. 2, pp. 301–310, 2008.

[8] F. Furini, M. P. Kidd, C. A. Persiani, and P. Toth, “Improved rolling
horizon approaches to the aircraft sequencing problem,” Journal of
Scheduling, pp. 1–13, 2015.

[9] ICAO, “Air traffic management,” Doc-4444, 2007.
[10] M. J. Frankovich, “Air traffic flow management at airports: A unified

optimization approach,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2012.

