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ROBUST MEMORY-AWARE MAPPINGS FOR PARALLEL
MULTIFRONTAL FACTORIZATIONS

EMMANUEL AGULLO∗, PATRICK R. AMESTOY† , ALFREDO BUTTARI‡ , ABDOU

GUERMOUCHE§ , JEAN-YVES L’EXCELLENT¶, AND FRANÇOIS-HENRY ROUET‖

Abstract. We study the memory scalability of the parallel multifrontal factorization of sparse
matrices. In particular, we are interested in controlling the active memory specific to the multifrontal
factorization. We illustrate why commonly used mapping strategies (e.g., the proportional mapping)
cannot provide a high memory efficiency, which means that they tend to let the memory usage of the
factorization grow when the number of processes increases. We propose “memory-aware” algorithms
that aim at maximizing the granularity of parallelism while respecting memory constraints. These
algorithms provide accurate memory estimates prior to the factorization and can significantly enhance
the robustness of a multifrontal code. We illustrate our approach with experiments performed on
large matrices.

AMS subject classifications. 05C50, 65F05, 65F50, 68W10

1. Introduction. We consider the memory scalability of sparse direct methods
for the solution of linear systems on distributed-memory architectures. We focus on
the multifrontal method [6, 7]. In this method, the consumed memory space consists
of the factors to be computed (e.g., the LU factors of a given matrix A) and some
temporary data that we call the active memory and that we describe in detail in the
next section. Both the size of the factors and of the active memory depend on the input
matrix permutation [12] (nested dissection methods are commonly used on large size
problems); in this work we focus on studying the memory consumption resulting from
different mapping techniques for a fixed matrix permutation. The active memory
can represent a significant fraction of the total memory, and, as we will show in
Section 2, it does not naturally scale when the number of processes increases. This
means that the total memory usage of the factorization can dangerously grow with the
number of processes. This highlights the need for mapping and scheduling algorithms
that are able to control the active memory. In Section 3, we suggest memory-aware
mapping algorithms that aim at maximizing the granularity of parallelism under a
given memory constraint (the maximum memory usage of a process). We illustrate
our approach in Section 4 with experiments carried out on large matrices using up to
256 processes.

Although we focus on the multifrontal method, our study can be applied to any
application with a tree-shaped workflow graph since, as we recall in the next subsec-
tion, the multifrontal method relies on the so-called elimination tree [24]. A similar
problem has also been recently explored from a more theoretical point of view [8].

1.1. Background and context. We briefly recall the main ingredients of the
multifrontal method. We are to compute a factorization of a given matrix A, A = LU
if the matrix is unsymmetric, or A = LDLT if the matrix is symmetric. Without
loss of generality, in the rest of the paper we assume that A is non-reducible. For a
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matrix A with an unsymmetric pattern, we assume that the factorization takes place
using the structure of A + AT , where the summation is structural. In this case, the
multifrontal method relies on a structure called the elimination tree. A few equivalent
definitions are possible (we recommend the survey by Liu [17]); we use the following:

Definition 1. Assume A = LU where A is a sparse, structurally symmetric,
N ×N matrix. Then, the elimination tree of A is a tree of N nodes, with the ith node
corresponding to the ith column of L and with the parent relations defined by:

par(j) = min{i : i > j and `ij 6= 0}, for j = 1, . . . , N − 1

In practice, nodes are amalgamated : nodes that represent columns and rows of
the factors with similar structures are grouped together in a single node. In the end,
each node is a square dense matrix (referred to as a frontal matrix ) with the following
2× 2 block structure: [

F11 F12

F21 F22

]
Factoring the matrix consists in a bottom-up traversal of the tree, following a topo-
logical order (a node is processed before its parent). Processing a node consists in:

• forming (or assembling) the frontal matrix: this is achieved by summing the
rows and columns of A corresponding to the variables in the (1, 1) block with
temporary data that has been produced by the child nodes;

• eliminating the pivots in the (1, 1) block F11: this is done through a partial
factorization of the frontal matrix which produces the corresponding rows
and columns of the factors. At this step, the so-called Schur complement or
contribution block is computed as F22 ← F22 − F21 · F−1

11 · F12 and stored in
a temporary memory; it will be used to form the frontal matrix associated
with the parent node. Therefore, when a node is activated, it “consumes”
the contribution blocks of its children.

In the multifrontal factorization, the active memory (at a given step in the factoriza-
tion) consists of the frontal matrix being processed and a set of contribution blocks
that are temporarily stored and will be consumed at a later step. The multifrontal
method lends itself very naturally to parallelism since multiple processes can be em-
ployed to factor a large frontal matrix together, or to process concurrently frontal
matrices belonging to independent subtrees. These two sources of parallelism are
commonly referred to as node and tree parallelism, respectively, and their correct
exploitation is the key to achieving high performance on parallel supercomputers.

1.2. Notations, assumptions and definitions. We define some notations
that will be useful in the rest of the paper: Ti is the subtree rooted at node i of
the elimination tree; Pi is the set of nodes in the path that connects node i to the
root of the tree; cbi is the memory requirements for storing the contribution block
F22 associated with node i; similarly, mi (or m when there is no ambiguity) is the
memory for the frontal matrix associated with a node i.

We rely on the following assumption:

Assumption 2. In the case of a sequential execution, or in the case of a whole
subtree processed on a single process, the corresponding tree nodes are visited following
a postorder traversal, that is, a topological ordering such that nodes in any subtree are
ordered consecutively.

Among all topological orderings, postorderings have been shown to have good
properties in terms of memory usage [13]. Furthermore since the memory used in a
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sequential context will be used in this paper as a target for global memory usage in a
parallel environment, a postordering based on the work of [15] has been used for our
experiments.

We also introduce the notion of stacked set1:

Definition 3 (Stacked set). The stacked set Si of a node i is the set of nodes
that are visited before i and still have unvisited siblings when the traversal reaches
node i:

Si = {j : j is numbered before i in the postorder and sib(j) ∩ Pi 6= ∅} ,

where sib(j) is the set of siblings of node j.

We illustrate the notion of stacked set in Figure 1. At a given node i in the
tree, the active memory consists of the frontal matrix associated with i and the
contribution blocks of the nodes in Si. In the rest of the study, we denote by Si

the sequential peak of active memory associated with a node i, i.e., the peak of active
memory yielded by a sequential traversal of the subtree rooted at i. We note that
such a traversal is included in the traversal of the subtree rooted at the parent of i;
therefore, by construction, the property Si ≤ Spar(i) holds. Note that Si is different
from the peak of active memory when reaching i during the traversal of the whole tree.
When reaching i, the maximum active memory usage is at least Si plus the memory
for the contribution blocks of the nodes in Si, the stacked set of i, that are stored
when i is reached. We insist that Si is the peak of active memory for traversing the
subtree rooted at i, regardless of the rest of the tree. In order to compare sequential
and parallel executions (see also Section 1.4 for notations that are specific to parallel
executions), we denote by Sseq the peak of active memory for a sequential traversal
of the entire tree; if r denotes the root of the tree, we have Sseq = Sr.

i

Figure 1. Stacked set of a node i (solid nodes); the nodes that have been visited (but do no
longer contribute to the active memory) are shaded.

1.3. Controlling the active memory in the serial multifrontal method.
Reducing the memory requirements of the serial multifrontal method (in particular
the active memory) has been extensively studied [15, 16, 11, 14]. Liu [15] proposed a
way to compute the postorder traversal of the tree that minimizes the active memory
when considering an in-place assembly scheme, in which the memory for the frontal
matrix of a parent node is allowed to overlap with the contribution block of its last
child. Essentially, the idea is to reorder the children i of a given node in decreasing
order of maxi{Si,m} − cbi, where m = mpar(i) denotes the storage of the frontal

1The notion is derived from [26] where it is called the “visited set” and defined for binary trees.
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matrix associated with the parent node. In this paper, we consider that the memory
for a frontal matrix is allocated after all its children have been processed (terminal
allocation scheme); in this variant, the postorder that minimizes memory is obtained
by processing the children of a given node in decreasing order of Si − cbi. However,
other schemes exist and they have different properties with respect to the memory
usage and, in the out-of-core case, disk traffic [2, 11, 14].

In terms of traversals, a postorder is generally used (Assumption 2) because it
allows for using a stack mechanism for storing the contribution blocks, which sig-
nificantly enhances the memory management. Liu also showed how to compute the
topological ordering (which might not be a postorder) that minimizes the active mem-
ory [17], using a tree pebble game formulation that we briefly describe in Section 5.
More recently, Jacquelin et al. [13] revisited this problem. Their experimental findings
are that, on trees corresponding to large sparse matrices coming from real applications,
the optimal traversal is a postorder 95% of the time. In the worst case, the memory
overhead induced by using the best postorder instead of the best order is 18%. This
confirms that using a postorder traversal (in the serial case) is a reasonable choice,
especially since it allows for an efficient stack mechanism.

1.4. Memory efficiency and problem statement. In the parallel case, the
active memory footprint depends on the node-to-process mapping followed during
the factorization. We detail different strategies in the next section and highlight their
influence on the active memory in further sections. Here, we define our problem. First,
we emphasize that the memory usage for a parallel execution might be completely
different from that of a sequential execution; therefore, the problem is not only about
evenly distributing the amount of memory needed for a sequential execution among
the different processes. A bad mapping and/or scheduling might yield a total memory
usage significantly higher than that of a sequential execution. We give a simplistic
example in Figure 2; the tree is mapped on two processes. We assume that the two
leaf nodes are significantly larger than the two other nodes (C � ε) and that the
size of their contribution block is negligible. The total amount of active memory
for a sequential traversal is (approximately) Sseq = C. However, using the mapping
proposed in the figure (which may seem reasonable since it aims at enforcing some
balance), the total amount of memory is 2C (assuming that the two leaf nodes are
active at the same time, which is very likely in a parallel execution). This demonstrates
that the mapping and the scheduling strategies influence not only the balance of the
memory usage but also the total consumption.

Figure 2. The tree is mapped on two processes P0 and P1. We assume C � ε. The peak of
active storage for a sequential traversal is (roughly) C. However, the total amount of active memory
in a parallel execution is 2C.
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In a parallel setting, the objective depends on the type of system we consider:
• In a shared-memory context, the objective is to minimize the total memory

footprint. Unless one considers memory locality issues, balancing the memory
usage on the different processes is not important.

• In a distributed-memory context, minimizing the total memory consumption
is desirable but it is also crucial to maintain a balanced memory usage between
the processes, to prevent a process from running out of memory (assuming
that all the processes can access the same amount of memory, which is the
most frequent setting).

Minimizing the overall memory consumption in a parallel setting is complicated
unless a schedule with very specific properties is used. In our distributed memory
context, the maximum peak of active memory (over the set of processes) is the target
for our optimization problem. Note that the sum of the peaks of the different processes
provides an upper bound on the total consumption (which might be loose). For a
parallel execution on p processes, we denote by Smax(p) and Savg(p) the maximum
and average peaks of active memory among the p processes, respectively. Savg(p) is
computed as the sum of the p peaks divided by p; with the above observation p·Savg(p)
is an upper bound on the total consumption.

The performance of a parallel algorithm executed on p processes is often assessed
using a notion of efficiency ; given the above observations, we consider two kinds of
memory efficiency metrics that depend on p:

• eavg(p) =
Sseq

p · Savg(p)
; this metric compares the total memory usage (using

an upper bound, as described above) to that of a sequential execution and is
relevant in a shared-memory context as well as in a distributed-memory one.

• emax(p) =
Sseq

p · Smax(p)
; this metric detects that one (or more) process(es)

use(s) too much memory, which is only relevant in a distributed-memory
context.

Assuming pi processes are mapped on the subtree rooted at node i of the tree, a
lower bound on the average storage needed by these processes to process the subtree
is defined as S̄i = Si/pi. This quantity corresponds to the memory consumption per
process in the ideal case where the peak Si is uniformly distributed; as we explain
below, this case is very unlikely in practice, unless very specific mapping schemes are
used within the subtree.

Consider the following parallel scheme. The tree is processed following the pos-
torder used in the sequential case (tree serialization) and each node of the tree is
mapped on all processes; this is what we will refer to as tree serialization mapping. If
we assume a perfect memory balance within each node and within each contribution
block, this tree serialization mapping technique clearly provides a perfect memory
scalability (Savg = Smax = S̄i and eavg(p) = emax(p) = 1). However, it does not ex-
ploit tree parallelism (all the branches are serialized). It also leads, by forcing a large
number of processes to be used at each node, to an unnecessary increase in communi-
cation (both within nodes when performing dense partial factorizations, and between
nodes when communicating contribution blocks). Finally, it does not deliver an ade-
quate granularity of operations within nodes. These drawbacks are likely to induce a
significant performance penalty, as we assess in Section 4. This is why no solver that
we are aware of relies on this strategy. An improvement of this approach could consist
in introducing some tree parallelism near the leaves, as long as this does not increase
the overall memory peak too dangerously. In practice, minimizing the active memory
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is not the best formulation of the problem we want to solve. Instead of minimizing it,
we would rather control the active memory by enforcing a given memory constraint
that would be provided by the user or defined by hardware specifications. Then, for
this memory constraint, we would like to maximize tree parallelism and parallelism
granularity, in order to avoid as much as possible the aforementioned drawbacks re-
lated to communication volume and small task granularity; this is exactly the aim of
the mapping technique we describe in Section 3.

1.5. Mapping techniques. Different mapping strategies are commonly used in
multifrontal codes. The subtree to subcube mapping by Liu, George and Ng [10] and
the proportional mapping by Pothen and Sun [19] are popular strategies and are the
basis for more sophisticated schemes. These are special cases of the wider family of
tree partitioning methods where the set of processes mapped on a node of the tree is
partitioned into disjoint subsets and each subset is assigned to a child subtree. Tree
partitioning mappings are well appreciated because they help reducing the volume of
data transfers thanks to a good data locality and because they allow for a good use of
both tree and node parallelism. In the proportional mapping method, this recursive
splitting of processes sets is guided by a balancing criterion. This mapping technique
consists in a top-down traversal of the tree where every node is assigned a set of
processes. All the processes are assigned to work on the root node. This is a natural
choice since the root node is the last task to be performed in the factorization. Then,
for every node in the tree, the set of processes working at that node is split among
its children, proportionally to the weights (determined according to a given metric)
of the subtrees rooted at these children. Denoting by wi the weight of the subtree
rooted at node i, and by par(i) the parent of node i, the number of processes pi given
to node i is then

(1) pi =
wi∑

j; par(j)=par(i)

wj
· ppar(i).

This procedure is applied in a recursive fashion to the whole tree, starting from the
root r; the recursion stops when leaf nodes are reached or entire subtrees are mapped
onto single processes, which happens because the number of nodes in the tree is
commonly much larger than the number of processes. Not considering the case where
fractions of processes are allowed to be mapped on different subtrees (meaning that
such a process would work less than the others on a given subtree, and be assigned
less memory), rounding is performed in (1) in order to ensure that:

• pi is an integer for all nodes i; and
• the tree partitioning property holds, i.e., ppar(i) =

∑
j; par(j)=par(i)

pj .

The metric used at each step of the mapping in the original method proposed by
Pothen and Sun is the workload of each subtree; we refer to this case as the workload-
based proportional mapping. Clearly, this criterion can be replaced by another one
depending on the objectives. If one aims to achieve a memory balance rather than a
load balance, a possible heuristic consists in using a memory-based variant; we report
on experimental results using this strategy in the experimental section. Prasanna
and Musicus proposed a scheduling strategy for tree-shaped task graphs when the
time for computing a parallel task (a malleable task) using p processes is exactly L

pα

(with 0 < α 6 1) where L is the length of the task [20]. Beaumont and Guermouche
assessed this behaviour in the multifrontal method [5].

An interesting property of the tree partitioning mapping is that the traversal of
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every process, i.e., the set of tasks that a process executes and the order in which
they are processed, is deterministic. Indeed, every process is in charge of a sequential
subtree and takes part in the computation of the parallel nodes in the path between
that subtree and the root of the elimination tree; this defines a single possible traversal.
Denoting by i the root of the sequential subtree mapped on a given process, the
traversal followed by that process consists of a postorder traversal of the subtree
rooted at i, Ti, followed by the path from i to the root node, Pi. It is then very easy
to estimate the memory usage of a process by simply simulating the traversal followed
by the process together with the variations in its memory usage.

In the family of tree partitioning mappings discussed above, the set of processes
associated with a node is split into disjoint sets that are distributed to its children.
As we will demonstrate in Sections 2.1 and 2.2, this is not a memory-friendly strategy.
One can also choose to use a relaxed mapping in which the sets of processes given
to different siblings can overlap. Such a relaxed scheme may (slightly) reduce the
memory usage in a parallel context and may allow for dynamic executions: a process
being allowed to work on two parallel branches follows a traversal that interleaves the
nodes of these branches depending on the progress of each branch. In that latter case,
however, the traversal followed by a process can no longer be forecast and the memory
usage cannot be accurately estimated. Also, note that one could devise different tree
partitioning mapping techniques that provide a more balanced memory use and better
memory efficiency than the proportional mapping; discussing such techniques is out
of the scope of this document. In the remainder, we will thus use the proportional
mapping as a representative of the whole family of tree partitioning mappings; it
must be noted, though, that the novel techniques proposed in Section 3 are perfectly
compatible with any tree partitioning technique.

2. Memory scalability issues. Here we show that commonly-used mapping
techniques, such as the proportional mapping, do not achieve a good memory scala-
bility. First, we provide a very simple but realistic example where we analyze step-
by-step, on a given tree, the behavior of the proportional mapping with respect to
the active memory. In this example, after three steps of proportional mapping, i.e.,
once the grand-grandchildren of the root node are mapped, the memory efficiency is
bounded by 0.125, which is unacceptably low. We then provide a theoretical result
showing that, on regular grids ordered with nested dissection, the memory efficiency
rapidly tends to zero when the number of processes increases.

2.1. A simple example. We illustrate the behavior of the proportional map-
ping on a simple yet realistic elimination tree. We consider a memory-based propor-
tional mapping strategy, but we could make the same observations about a workload-
based strategy. We consider the tree in Figure 3(a) (which could correspond to the
top of the elimination tree from a real problem), which is to be mapped on 64 pro-
cesses. First, these 64 processes are assigned to the root node l. Then, a first step of
memory-based proportional mapping is used to distribute these 64 processes among
the four children of l: a, e, f , and k, as illustrated in Figure 3(b). The sequential
peaks of active memory of the subtrees rooted at a, e, f , and k are 8 GB, 5 GB,
3 GB and 3 GB, respectively. Therefore, a gets 8

8+5+3+3 · 64 ≈ 27 processes; e gets
5

8+5+3+3 · 64 ≈ 17 processes and f and k get 3
8+5+3+3 · 64 ≈ 10 processes. Note that

we have chosen to round the numbers of processes so that they add to 64 and are
distributed without any overlap; a relaxed technique could be used but this would
not significantly change the result. At this stage, we can compute a lower bound
of the peak of active memory of every process. Consider the 27 processes working
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on the subtree rooted at a. The sequential peak of active memory of this subtree is
8 GB. Therefore, at best, i.e., assuming a perfect memory scalability can be attained
for this subtree, the maximum peak of active memory among these 27 processes will
be S̄a = 8 GB

27 = 0.296 MB. Similarly, the maximum peaks of active memory for
the processes working on the subtree rooted at e (f and k respectively) are bounded
from below by S̄e = 5GB

17 (S̄f = 3GB
10 and S̄k = 3GB

10 , respectively); ignoring the
rounding applied to obtain integer numbers of processes, all these peaks are the same
(S̄a ≈ S̄e ≈ S̄f ≈ S̄k ≈ 0.3 GB) since we have applied a memory-based proportional
mapping. We can, thus, derive a first lower bound on the memory efficiency for this
problem; since the sequential peak of active memory for the whole tree is 8 GB, the
memory efficiency is bounded as follows:

emax(p) =
Sseq

p · Smax(p)
6

8 GB

64 · 0.3
6 0.42

It is fairly easy to see why the efficiency is low. The sequential peaks of the whole
tree and the subtree rooted at a are the same; however, only a small subset of the
processes work on the latter subtree. Therefore, even if a perfect memory scalability
is attained on the subtree rooted at a, the memory usage for the 27 processes working
on that subtree is more than twice what we are targeting ( 8 GB

27 instead of 8 GB
64 ).
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(a) Elimination tree.
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(b) Proportional mapping.
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(c) Best-case average peak.

Figure 3. An example of memory-based proportional mapping on p = 64 processes. In (a), we
indicate next to each node the sequential peak of active memory Si (in GB) of the corresponding
subtree, and within each node, the size of its contribution block cbi (in GB). In (b), we indicate
within each node the number of processes pi assigned by the proportional mapping. In (c), we

indicate within each node the lower bound S̄i = Si
pi

on the average storage required per process (in

MB).

We can refine this upper bound on memory efficiency by looking at the lower levels
of the tree. By considering the grandchildren of the root node, we see in Figure 3(c)
that the memory usage Smax(p) is at least max

(
S̄b, S̄c, S̄d, S̄i, S̄j

)
= 0.5 GB, yielding

emax(p) 6
Sseq

p · 0.5
= 0.25

We assumed that a perfect memory scalability was reached in the different sub-
trees rooted at the grandchildren of the root node, which means that this bound on
memory efficiency is likely to be optimistic. Finally, by considering the lowermost
level (see node h in Figure 3(c)), we have e(p) 6 0.125.
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This example is simplistic but illustrates real-life practical situations. In our
example, the subtree rooted at a can be seen as a “memory attractor”; since the
proportional mapping partitions the list of processes and distributes them among a
and its siblings, the memory efficiency necessarily decreases. At this stage of the
mapping process, the only way to guarantee a perfect memory scalability is to assign
the 64 processes to the subtree rooted at a. Of course, this prevents us from using
a strategy similar to a proportional mapping since there is thus no way to assign
disjoint sets of processes to siblings. This observation is one of the motivations for
the strategies presented in Section 3.

As mentioned earlier, different tree partitioning mappings that behave better than
the proportional mapping can be devised. In our example, one can notice that the
memory efficiency is limited by the fact that not enough processes are available on
node h. Therefore, assigning more processes to the subtree rooted at node k (ancestor
of node h) is likely to yield a better memory efficiency.

2.2. Theoretical analysis. We have carried out a theoretical analysis on 2D
regular grids ordered with nested dissection and have shown that if a proportional
mapping is used to map the elimination tree associated with the grid, the memory
efficiency rapidly tends to zero when the number of processes increases. The complete
proof can be found in [21]; here we report the main ideas. We used the model described
by George [9] and showed that for a regular 2D grid with n2 nodes, the sequential
peak of active memory is

Sseq ' 6.25n2

Then, in order to compute the memory efficiency of the proportional mapping, we
used the same reasoning as in the previous examples: for every subtree Ti (rooted
at node i), the memory consumption of a process working at that subtree is at least
S̄i = Si

pi
, where pi is the number of processes assigned to Ti. Therefore, maxi S̄i is a

lower bound on Smax and thus allows us to derive an upper bound on emax(p). We
found that, for p large enough, this maximum is attained at level 0.5 log p (level 0
being the root node) and gives

Smax > 29n2p−0.8

Therefore, we deduce the following result:

Theorem 4 (Sub-optimality of the proportional mapping; [21, Theorem 8.1]).
Let T be an elimination tree corresponding to a nested dissection of a regular 2D

square grid with a nine-point stencil. For a given number of processes p, the memory
efficiency of a strict memory-based proportional mapping of T verifies:

emax(p) =
Sseq

p · Smax(p)
6

6.25

29
p−0.2 ' 0.22 p−0.2

(for p sufficiently large).

This shows that, for example, the memory efficiency emax(p) is limited to 0.10
for p = 32, and to 0.06 for p = 512.

To illustrate Theorem 4, we study the memory efficiency obtained with a memory-
based proportional mapping on a 2D grid of size 8000×8000 (leading to a sparse matrix
of order 64 millions). For these experiments, we used a more standard 5-point scheme,
but we expect the same type of behavior as for a 9-point scheme. This is confirmed
by the results presented in Table 1, where the behavior of emax(p) is close to that of
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Proportional Mapping
p (MPI Smax emax(p)

processes) (MB) (observed) emax(p)
p−0.2

32 966.6 0.10 0.20
64 524.9 0.09 0.21

128 336.5 0.07 0.19
256 193.8 0.06 0.19
512 112.9 0.05 0.19

Table 1
Memory scalability of the Proportional Mapping method on a 5-point discretization of a Lapla-

cian on a 8000 × 8000 grid (Sseq = 3112.0 MB). We provide the maximum peak of active memory,

the memory efficiency as well as the
emax(p)

p−0.2 coefficient.

the model. These experiments confirm that the memory efficiency is low even with a
small number of processes and decreases significantly when the number of processes
increases. We recall that emax(p) ≤ 0.10 means that peak of active memory Smax is
over ten times the target memory usage Sseq/p, which may be unacceptable in some
situations.

Finally, in Table 2, we illustrate the behavior of the proportional mapping strategy
for a set of matrices from real-life applications (described in Table 3). We observe
that, for 64 and 256 processes, the memory efficiency emax lies between 0.04 and
0.37; the average is 0.13. These experimental results, along with the theoretical result
presented above, show that there is a need for a mapping technique able to achieve a
much better memory scalability.

Matrix Sseq Smax emax Savg eavg
name (MB) (MB) (MB)

cage13 21400.5 911 0.37 737 0.45
pancake2 3 11158.3 1723 0.10 619 0.27
as-Skitter 3810.3 556 0.11 190 0.31
HV15R 88857.6 23623 0.07 10126 0.15
MORANSYS1 17845.3 1732 0.16 939 0.30
meca raff6 6638.0 2951 0.04 1740 0.06
Geoazur 192 65949.7 4416 0.06 1851 0.14

Table 2
Memory scalability of the Proportional Mapping method for the matrices described in Table 3

(with p = 64, except for Geoazur 192 for which p = 256).

3. Memory-aware mapping algorithms. We demonstrated that a memory-
based proportional mapping leads to a low scalability of the active memory. However
this mapping is interesting in terms of performance since it maximizes tree parallelism
and reduces the volume of communication within parallel nodes and between nodes
of the tree. We also introduced a “tree serialization mapping” which consists in a
constrained traversal of the tree where all the processes work at every node, following
a postorder. However, this solution generates prohibitive amounts of communications,
it does not exploit tree parallelism and yields small granularity of computations on
nodes at the bottom of the tree. Therefore it is not time efficient; we assess this in the
experimental section. Here, we introduce a “memory-aware mapping” that hybridizes

10



these two techniques and tries to enforce a given memory constraint (the maximum
amount of active memory that a process can use). The idea was first worked on
during the PhD thesis of one of the authors [1] and is described in Section 3.1. It
consists in a tree serialization mapping in memory demanding parts of the tree, and
a proportional mapping whenever we can be sure that it will not violate the memory
constraint. We suggest in Section 3.2 some refinements that improve the granularity
of parallelism while enforcing the same memory constraints.

3.1. Flat memory-aware algorithm.

3.1.1. Main idea. We assume that we are given a memory constraint M0 that
represents the maximum amount of active memory that a process is allowed to use.
We will also use the notation Mi, i > 0, to denote the memory constraint for a subtree
τi rooted at i (M0 = Mr in case r is the root of the entire tree). The memory-aware
mapping works as follows. We assume that the tree has been reordered to reduce the
sequential peak of active memory (as mentioned in Section 1.3) and that the sequential
peaks Si have been computed for every subtree Ti. Then, a top-down traversal of the
tree is performed to compute the mapping. All the processes are first assigned to
the root node r. Then, recursively, once a subtree τr rooted at r is mapped on pr
processes, its children are mapped as follows. We first check whether a proportional
mapping of the children is feasible by simulating a proportional mapping and verifying
that the memory constraint is respected at every child i. Denote pi the number of
processes that a proportional mapping would assign to child i (Equation 1). For every
child i, we check the condition S̄i = Si

pi
6Mr:

• If all child subtrees Ti respect this condition, then the step of proportional
mapping is accepted; the child subtrees will be processed in parallel on the
number of processes provided by the step of proportional mapping. For the
subsequent steps of the mapping procedure, the memory constraint is un-
changed: Mi = Mr.

• If at least one of the subtrees does not respect the condition, then the step
of proportional mapping is rejected. All the child subtrees τi inherit the pro-
cesses of their parent (pi = pr) and will be processed one after another during
the factorization, following the same order as the one of the sequential execu-
tion. In this case, when a child subtree Ti is processed, the contribution blocks
of the previous siblings j (par(j) = par(i) = r, j < i, assuming the order of
the siblings is in agreement with the postorder) are stacked and equally dis-
tributed in the memory of the pj = pi = pr processes. Therefore, for the next
steps of the mapping procedure, the memory constraint is modified in order
to take into account these contributions blocks: Mi = Mr−

∑
par(j)=r,j<i

cbj
pj

(where pj = pi = pr).
At each step of the traversal, the condition S̄i 6 Mr means “is it possible to process
the subtree Ti on pi processes, using a memory at most equal to Mi = Mr on each
process?”. Thus, when a step of proportional mapping is accepted, we ensure that
every subtree will respect the memory constraint. In the end, this algorithm yields a
hybrid mapping in-between a proportional mapping and a tree serialization mapping.

The memory-aware mapping algorithm is presented in a recursive fashion in the
pseudo-code of Figure 4; we provide a simplified version where we only compute the
number of processes given to each node, not a true mapping.

Every time a tentative proportional mapping is not acceptable (line 15) at a
given subtree, the memory-aware algorithm decides that the child subtrees should be
serialized (line 17). The dependency induced by this serialization is stored during the
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1 subroutine ma_mapping(r, p, M, S)

2 ! r : root of the subtree

3 ! p(:) : number of processes mapped each node

4 ! input : p(r)

5 ! output : p(i), i in subtree rooted at r, i < r

6 ! M(:) : memory constraint per process for each node

7 ! input : M(r)

8 ! output : M(i), i in subtree rooted at r, i < r

9 ! S(:) : sequential peak memory consumption for all nodes (

input)

11 call prop_mapping(r, p, M)

13 forall (i children of r)

14 ! check if the constraint is respected (here M(i)=M(r))

15 if( S(i)/p(i) > M(i) ) then

16 ! reject prop. mapping and revert to tree serialization

17 call tree_serialization(r, p, M)

18 exit ! from forall block

19 end if

20 end forall

22 forall (i children of r)

23 ! apply MA mapping recursively to all siblings

24 call ma_mapping(i, p, M, S)

25 end forall

26 end subroutine ma_mapping

29 subroutine prop_mapping(r, p, M)

30 forall (i children of r)

31 p(i) = share of p(r) from proportional mapping (Equation (1))

32 M(i) = M(r)

33 end forall

34 end subroutine prop_mapping

37 subroutine tree_serialization(r, p, M)

38 stack_siblings = 0

39 forall (i children of r) ! in increasing order

40 p(i) = p(r)

41 ! update the memory constraint for the subtree

42 M(i) = M(r) - stack_siblings

43 stack_siblings = stack_siblings + cb(i)/p(r)

44 end forall

45 end subroutine tree_serialization

Figure 4. Flat memory-aware algorithm.

execution of the mapping algorithm and will then have to be taken into account by
the parallel factorization algorithm.

We mentioned that the memory-aware mapping aims at ensuring that a given
memory constraint is respected. Another favorable property is that, like a strict
proportional mapping or a tree serialization mapping, it allows for computing accurate
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memory estimates prior to the factorization. Indeed, at a given set of siblings in the
tree, the set of processes is either perfectly split (when a step of proportional mapping
is accepted) or the traversal of the set of siblings is completely constrained (when a
step of proportional mapping is rejected). Therefore, as in the proportional mapping
and in the tree serialization mapping, it is possible to compute memory estimates
simply by simulating a (partial) postorder traversal of the tree for every process.

3.1.2. Example. We illustrate a few steps of memory-aware mapping in Fig-
ure 5, using the tree of Figure 3(a) again. The tree is to be mapped on p = 64
processes and we choose a rather tight memory constraint M0 = 160 MB (i.e., we
target emax = 8 GB

64·160 MB = 0.8). First, the 64 processes are assigned to the root node
l; then the four children a, e, f and k of l are mapped. The first step consists in
computing a proportional mapping of the four child nodes. a is given 27 processes, e
is given 17 processes and f and k are given 10 processes each. Then, the memory con-
straint is checked for the subtrees. At node a, the sequential peak of active memory
is 8 GB; thus S̄a = 8 GB

27 = 296 MB is greater than M0. Therefore, the subtree rooted
at a cannot be processed using 27 processes without violating the memory constraint.
Thus the step of proportional mapping is rejected; the four child subtrees are mapped
on the 64 processes and are serialized (Ta will be processed first, then Te, and so on).
Then the four subtrees are mapped using the same procedure.

Now consider the mapping of the subtree rooted at e. Since we have serialized
the four child subtrees of l, we have to take into account that, when processing Te,
the contribution block of a is stacked in memory and equally distributed among the
processes. For a given process, the available memory is no longer Ml = M0 but
Me = Ml − 2 GB

64 = 129 MB. A proportional mapping of the three children of e
assigns 25 processes to b and c and 14 processes to d. This step of proportional
mapping can be accepted since the memory constraint is respected for all the subtrees
of e: S̄b = Sb

25 = S̄c = Sc
25 = 80 MB < 129 MB and S̄d = Sd

14 = 72 MB < 129 MB. A
step of proportional mapping is also accepted when mapping the two subtrees below
k since Mk = 160MB − 2 GB

64 −
1 GB
64 −

1 GB
64 = 98 MB (because of the contribution

blocks of a, e and f) is greater than both S̄i = Si
28 and S̄j =

Sj
38 . However, the children

of i cannot be mapped using a proportional mapping. This would assign 23 processes
to g and 15 to h, leading to S̄g =

Sg
27 = 3 GB

27 = 111 MB, but the memory available
for processing Ti is only Mi = Mk = 98 MB. In the end, the mapping of the tree is a
combination of local proportional mappings and local tree serialization mappings; it
ensures that the efficiency is at least emax = 8 GB

64·160 MB = 0.8, which is much better
than what a proportional mapping delivers (as shown in the previous section).

3.2. Aggregated memory-aware algorithm. The main idea of the memory-
aware mapping is to detect memory-demanding parts of the tree. When a problematic
subtree is detected among a set of siblings, the whole set of siblings it belongs to is
mapped using a local tree serialization mapping; all the siblings inherit the mapping
from their parent, and all the subtrees are serialized, i.e., processed one after another.
Although this works well in enforcing the memory constraint, this is quite constraining
as it potentially maps small subtrees on many processes and forces many serializations
even in less memory-demanding parts of the tree. Indeed for a given set of siblings in
the tree, subtrees rooted at these siblings might have a large sequential peak of active
memory while other ones might have a small peak and do not require to be mapped on
many processes. This is unlikely to happen for regular problems (e.g., PDEs with finite
elements discretizations) ordered with nested dissection where the trees are quite often
fairly well balanced, and it is more common on irregular problems. In this situation,
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a

b c d

e f

g h

i j

k

l

64

25 25 14 38 26

38 38

64 64 64 64

Figure 5. Simple example of memory-aware mapping. The tree shown in Figure 3(a) is mapped
using the flat memory-aware mapping with M0 = 160 MB. The scheduling constraints resulting from
tree serialization are shown with arrows. The subtree rooted at a is processed first and is followed
by the subtrees rooted at e and f , and the subtree rooted at k is processed last. Similarly, the subtree
rooted at i is mapped using a local tree serialization mapping.

we would like to relax the baseline strategy and avoid serializing the whole set of
siblings. In this section, we refine the main idea of the memory-aware mapping and
propose a strategy where, when working on a set of siblings, we try to detect groups
of subtrees within which a proportional mapping is applied and that are serialized in
such a way that, like the flat strategy, memory constraints are always respected. The
interest is that this variant allows us to decrease the number of serializations as well
as the number of processes in the “easier parts” of the tree. In the remainder of the
paper, this variant will be referred to as aggregated memory-aware algorithm.

3.2.1. A motivating example. We use the same example as before (see Fig-
ure 3(a)), with the same memory constraint (M0 = 160 MB). As shown in the
previous section, the memory-aware mapping applies a local tree serialization map-
ping to assign processes to the four children of the root node. We can however go one
step further. Since the subtree rooted at a is the most constraining subtree, using all
the processes at this subtree is a reasonable strategy, but we can try something else
for the mapping of e, f , and k. A first try consists in mapping e, f , and k using a
proportional mapping and in enforcing a serialization constraint that ensures that the
subtrees rooted at e, f , and k start only after a is completed. This would assign 29
processes to e, 13 to f and 12 to k. This does not work with respect to the memory
constraint: indeed, the remaining memory (of a single process) after a is completed
is Me = M0 − cba

64 = 160 MB− 2 GB
64 = 129 MB, but S̄e = Se

29 = 172 MB > Me. Once
again, the idea is that one of the subtrees has to be left alone while some subtrees
can be mapped using a proportional mapping. The configuration shown in Figure 6 is
valid; in this setting, the subtrees rooted at e and f are mapped using a proportional
mapping. A serialization constraint is set so that the subtrees rooted at e and f start
only after a is completed, and another constraint is set so that the subtree rooted at
k can start only when both the subtrees rooted at e and f are completed.

We also have to check that, taking into account what is stacked at e and f ,
the subtree rooted at k can be processed using 64 processes. A major difference
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Figure 6. Aggregated memory-aware mapping: the two subtrees rooted at e and f can be put
in a group within which a proportional mapping is applied. The subtree rooted at k can only start
when the subtree rooted at e and the subtree rooted at f , that are processed in parallel, are finished.

compared to the flat memory-aware algorithm is that, in the flat case, whenever a
tree serialization mapping is locally used, all the processes stack the same amount of
data. This is not the case in the aggregated variant. In our example, the 36 processes
working on the subtree rooted at e stack equal parts of the contribution block of e;
similarly, the 28 processes working on the subtree rooted at f stack equal shares of the
contribution block of node f . These two contribution blocks have the same size, but
since they are distributed on different numbers of processes, processes stack different
amounts of memory. This implies that the algorithm has to control the active memory
of each process, while it is possible to rely on a global stack in the flat case. The
algorithm is still able to ensure the memory constraint on every process, but it might
yield more imbalance in memory because of the distribution of contribution blocks.
This imbalance could prevent from processing a subtree even using all the processes
used at its parent node. In this example, things work well; for the 36 processes working
on the subtree rooted at e, the memory constraint (remaining memory) when mapping
k is M0 − 2 GB

64 − 1 GB
36 = 101 MB. For the 28 processes working on the subtree

rooted at f , the memory constraint at k is M0 − 2 GB
64 −

1 GB
28 = 93 MB. On every

process, enough memory is available for processing the subtree rooted at k if the 64
processes are used on this subtree; indeed S̄k = Sk

64 = 47 MB, which is smaller than
the remaining memory on any process (whether it works on the subtree rooted at e
or on the subtree rooted at f).

Note that, in this example, one can show that putting f and k together (instead
of e and f) is also a valid strategy with respect to the memory constraint. In general,
multiple partitions may be valid and we need a strategy for selecting a partition.

3.2.2. Heuristic. This section gives a formal presentation of how our aggre-
gated variant of the memory-aware mapping is built. As for the flat memory-aware
mapping, it consists in a top-down traversal of the tree; the only difference is the
way a set of siblings is processed. In the flat memory-aware mapping, the whole set
is mapped using a proportional mapping; then the memory constraint is checked for
every subtree, and if the constraint cannot be ensured on at least one subtree, the
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whole set of siblings is reset to a tree serialization mapping. Our algorithm tries to
detect groups of siblings within which a proportional mapping can be applied without
violating the memory constraint, and taking into account the fact that groups are
serialized which, as mentioned above, requires to track the active memory of every
process. This problem could be formalized in terms of partitioning: how to parti-
tion the set of siblings so that there is a minimum number of parts and the memory
constraint is ensured in each part? This partitioning problem is complex since the
constraint to be checked on a part depends on the other parts, and its solution is out
of the scope of this work. We propose, instead, the following scheme:

• We are given an order for traversing the list of siblings.
• Following this order, we form groups of nodes as large as possible.

By forming groups as large as possible, our aim is to decrease the number of serial-
izations, and to obtain a mapping that is closer to a proportional mapping than with
a flat memory-aware algorithm, while ensuring the memory constraint. In our exper-
iments, the order we choose to guide our heuristic is the one corresponding to the
memory-minimizing postorder for sequential executions (see Section 1.3), although
any order could be used.

Following this strategy, we form a group using the following procedure. We denote
by i the ith node in a set of sorted siblings, and assume that the previous nodes have
been processed, i.e., have been given a number of processes. First, we need to check
that i can at least be a singleton, i.e., it can be alone in a group. Indeed, it could
happen that, because unbalanced shares of the contribution blocks of the previous
siblings have been stacked, the memory constraint cannot be ensured on at least one
process, even if i forms a group by itself. In that case, we reset all the previous siblings
to a tree serialization mapping; this will enforce a good balance of the contribution
blocks of this set of siblings among the processes. Then, starting from i, we add nodes
to the group until the memory constraint can no longer be satisfied. We repeat this
process until the whole set of siblings has been partitioned. Finally, the mapping is
computed (a proportional mapping is applied within each group) and the scheduling
constraints are set (each group has to wait for the previous one to finish before it
starts).

In the following we formalize the constraints to be ensured within each group.
We consider the root r of a given subtree τr, mapped on pr processes, and its ordered
children. Let us assume that we are building the g-th group of children of r, denoted
by Vg, and that g − 1 groups V1, . . . ,Vg−1 have been built already. We denote by
j a node of the g − 1 first groups and by i a node of the group being built. For a
given child node i (or j), pi is the number of processes i is mapped on, mi is the
size (memory) of the frontal matrix associated with i, and cbi is the size (memory)
of the contribution block of i. Finally, we keep track of the active memory of every
process in an array PSTACK . PSTACK (i, p) is the size of the contribution blocks
that are stacked on process p before the factorization enters in the subtree rooted at
i; this corresponds to the nodes in the stacked set of i that are mapped on p. The
constraints we ensure when forming groups are the following:

• The nodes within a group can be mapped using a proportional mapping
without violating the memory constraint:

(Cstk): ∀i ∈ Vg,∀p among the pi processes working on i,

S̄i 6M0 − PSTACK (r, p)−
g−1∑
k=1

(
cbj

pj
, j ∈ Vk ; j mapped on p

)
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• The assembly of the parent node can be done without violating the memory
constraint2:

(Casm): ∀i ∈ Vg,∀p among the pi processes working on i,

cbi

pi
+

mr

pr
6M0 − PSTACK (r, p)−

g−1∑
k=1

(
cbj

pj
, j ∈ Vk ; j mapped on p

)

The last term in both formulas,
cbj
pj

, is justified by the fact that within each group

a strict tree partitioning mapping is applied. As a result, process p works only on one
branch of each group Vk. Note that the right-hand side of both formulas can also be
written as M0 − PSTACK (i, p).

Algorithm 1 summarizes our grouping strategy.

Algorithm 1 Computation of groups of siblings.

// Input: a set of children of a node r
// a given order used to traverse the list of nodes (order)

1: while not all the children have been collected (following order) do
2: i= current child node
3: if i cannot be processed alone without violating (Cstk) or (Casm) then
4: Reset previous siblings to a tree serialization mapping
5: end if
6: Starting from i: collect as many nodes as possible as long as both (Cstk) and

(Casm) can be ensured
7: Use a proportional mapping on the group, serialize with the previous ones
8: end while

4. Experiments. We implemented the proposed algorithms within the MUMPS
(MUltifrontal Massively Parallel Solver) software package [3, 4], a general-purpose
distributed-memory sparse direct solver that implements the multifrontal method.

In this section, we assess different mapping strategies on the set of matrices
described in Table 3. The largest problem (Geoazur 192) is processed using 256
MPI processes while the other matrices are processed using 64 MPI processes. The
Geoazur 192 matrix [18] is unsymmetric and complex and corresponds to a 27-point
stencil discretization of a 3D visco-acoustic wave propagation model on a grid of size
192 × 192 × 192. All the matrices are ordered using MeTiS. The experiments were
carried out using a Bullx DLC B710 system at the Centre Interuniversitaire de Calcul
de Toulouse (CICT). Each node of the machine has two ten-core 2.8 GHz Intel Xeon
E5-2680v2 processors and 64 GB of main memory. For the Geoazur 192 problem, we
used 16 nodes of the system, and we used 4 nodes for the other matrices (i.e., we
used 16 MPI processes per node). In Table 3, we present the characteristics of the
matrices and also statistics for the amount of active memory used by the MUMPS
solver, version 5.0.0, for the factorization. The mapping strategy used in MUMPS is
described in Amestoy et al. [4]: at the top of the tree, a relaxed proportional mapping
is used whereas on lower layers of the tree, a strategy that aims at balancing memory
requirements and workloads is used. The results reported in the table show that the

2This condition is not new and is in practice also integrated in the flat memory-aware mapping,
but we had not mentioned it before for simplicity.

17



memory efficiency of MUMPS, although slightly better than with a strict proportional
mapping, is quite low: emax lies between 0.07 and 0.32 (the average is 0.19).

Matrix Order Entries Factors Sseq Smax emax Savg eavg Time Description; origin
name N (×106) (GB) (GB) (MB) (MB) (s)

cage13 445,315 7.5 30.7 21.4 1050 0.32 709 0.47 385.1
Directed weighted
graph; Utrecht Univ.

pancake2 3 1,004,060 49.1 39.8 10.5 832 0.21 481 0.36 278.0
3D electromagnetism;
Padova Univ.

as-Skitter 1,696,415 23.9 17.7 3.8 566 0.11 197 0.30 171.1
Internet topology
graph; SNAP

HV15R 2,017,169 283.1 366.4 88.6 10638 0.13 4883 0.28 N/A
CFD, 3D engine fan;
FLUOREM

MORANSYS1 2,734,008 81.3 63.5 17.9 998 0.28 715 0.39 390.3
Model Order Reduc-
tion; CADFEM

meca raff6 3,269,763 130.2 63.5 6.6 1393 0.07 859 0.12 335.3
Thermo-mechanical
coupling; EDF

Geoazur 192 7,077,888 189.1 251.9 65.9 1151 0.22 827 0.31 1308.2
3D Geophysics;
Seiscope consortium

Table 3
Set of matrices used for the experiments; active memory (Smax and Savg) and run time for the

factorization using MUMPS (with p = 64 except for Geoazur 192 for which p = 256). For matrices
as-Skitter and meca raff6, symmetric, an LDLt decomposition is computed; for the other matrices
(unsymmetric) an LU decomposition is computed. Matrices pancake 2 and Geoazur 192 use single
precision, complex, arithmetic; the other matrices use double precision, real, arithmetic.

First, we assess the behavior of the following strategies for matrix Geoazur 192
in Table 4:

• A plain, memory-based, proportional mapping;
• A flat memory-aware mapping, with different constraints M0;
• An aggregated memory-aware mapping, with different constraints M0;
• A tree serialization mapping on the whole tree, where all processes work at

every node (except in case of frontal matrices with less rows than processes).

Mapping M0 Smax (MB) emax Savg (MB) eavg Time (s)

Proportional 4417 0.06 1852 0.14 1465

Memory-aware 1288 940 0.27 672 0.38 1369
Aggregated memory-aware 1288 875 0.29 676 0.38 1381

Memory-aware 644 478 0.54 364 0.71 2061
Aggregated memory-aware 644 399 0.65 390 0.66 1961

Memory-aware 429 453 0.57 294 0.87 2695
Aggregated memory-aware 429 392 0.66 289 0.89 2301

Memory-aware 322 292 0.88 258 0.99 3141
Aggregated memory-aware 322 279 0.92 258 0.99 2799

Memory-aware 258 259 0.99 258 1.00 3765
Aggregated memory-aware 258 259 0.99 258 1.00 3370

Tree serialization 260 0.99 258 1.00 9070
Table 4

Experiments with the Geoazur 192 matrix. For the memory-aware mapping, the imposed mem-
ory bounds of 1288, 644, 429, 322, and 258 MB correspond, respectively, to a memory efficiency of
0.2, 0.4, 0.6, 0.8 and 1.0.
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As expected, the tree serialization approach delivers a near-perfect memory scal-
ability (emax = 0.99 and eavg = 1.00). However, the run time is over six times higher
than the one obtained with the plain proportional mapping strategy. This is due
to the prohibitive amount of communications generated by this mapping. For the
Geoazur 192 problem, and using 256 MPI processes, the volume of communication
with the tree serialization mapping is roughly nine times the volume generated by the
proportional mapping strategy, and the number of messages is over 30 times larger
than the number of messages with the default mapping. We also experimented with
different numbers of processes and observed that the performance of the tree serializa-
tion strategy degrades significantly when the number of processes increases, which is
due to the large number of messages and the small granularity of tasks. These obser-
vations show that the tree serialization mapping is in general prohibitive in practice,
especially for large number of processes.

For matrix Geoazur 192, we also report results with four values of M0 to illustrate
how the memory-aware algorithm can be used. The four values that we use correspond
to constraining the mapping such that emax > 0.2, emax > 0.4, emax > 0.6, emax >
0.8, and emax ≈ 1.00 respectively. Note that value 0.2 is similar to the value of emax

obtained using the default mapping in MUMPS (see Table 3), while the others are
significantly higher. Thanks to the memory-aware mapping, the memory constraint
is respected and performance is interesting since the run time remains comparable to
our references (proportional mapping and default mapping in MUMPS 5.0.0) which
need significantly more memory. On this matrix, we also observe that the larger the
size of the memory is, the lower the run time is. This makes sense although it is not
guaranteed by our memory-based mapping heuristics. It is also interesting to see that,
with M0 = 258 MB, we indeed reach a near-perfect memory scalability, but with a
much better performance than the one obtained with the tree serialization strategy.

When groups are added to our memory-aware algorithm, we generally observe
an improvement in the run time. This strategy exploits more tree parallelism but
enforces the same memory constraints as the baseline approach. Aggregated memory-
aware mapping is thus the most robust approach and will be used in the rest of this
experimental section.

We visually assess the behavior of the different strategies for emax > 0.4 and
emax > 0.6 in Figure 7. In this figure, we show how a given strategy behaves compared
to a strict proportional mapping, as a function of the depth in the tree. The convention
is that the root node is at depth 0, its children at depth 1, etc. There is a marker for
every strategy, and the ordinate of a point is the ratio between:

1. the average number of processes given to the nodes lying at a given depth in
the tree and

2. the average number of processes given by a strict proportional mapping to
the nodes lying at the same depth in the tree.

At the bottom of the tree (here depth 12 and below), we notice that the ratios
are close to 1, which means that all strategies behave like a proportional mapping.
At the top of the tree, the ratios are greater than 1, which means that, on average,
nodes are mapped onto more processes than if a proportional mapping were used.
For example, for nodes at depth 2, a memory-aware mapping with M0 = 322 MB
assigns 4 times more processes on average than a proportional mapping. This means
that, at that level, there is less tree parallelism (serialization was used), and the
average task granularity decreases. We notice that when M0 increases, the memory-
aware mapping tends to behave more like a proportional mapping. Finally, for a
given memory constraint, the aggregated variant (“w/ groups” in Figure 7) allows
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the memory-aware mapping to be closer to a proportional mapping while maintaining
the same memory constraint.
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Figure 7. Ratio of the average number of processes with a given mapping strategy and
with a strict memory-based proportional mapping, as a function of the depth in the tree (matrix
Geoazur 192).

Matrix Mapping Smax emax Savg eavg Time (s)

cage13 PM 912 0.37 737 0.45 406
MA e = 0.4 639 0.52 516 0.66 381
MA e = 0.8 360 0.93 338 0.99 372

pancake2 3 PM 1723 0.10 619 0.27 425
MA e = 0.4 324 0.51 257 0.63 538
MA e = 0.8 177 0.93 176 0.93 560

as-Skitter PM 556 0.11 190 0.31 144
MA e = 0.4 142 0.42 76 0.78 168
MA e = 0.8 72 0.83 61 0.98 232

HV15R PM 23624 0.07 10126 0.15 N/A
MA e = 0.4 2778 0.50 1855 0.75 4718
MA e = 0.8 1407 0.98 1390 0.99 4511

MORANSYS1 PM 1733 0.16 939 0.30 320
MA e = 0.4 695 0.40 477 0.59 392
MA e = 0.8 322 0.87 285 0.98 475

meca raff6 PM 2951 0.04 1741 0.06 305
MA e = 0.4 226 0.46 128 0.81 433
MA e = 0.8 124 0.84 103 1.00 514

Table 5
Comparison of the memory-based proportional mapping with the aggregated memory-aware al-

gorithm for two target efficiencies.

In Table 5 we report results on a large class of matrices; we compare a proportional
mapping strategy and the aggregated memory-aware algorithm. We observe that
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using a memory-aware strategy that targets emax = 0.8, we are able to decrease the
memory peak by factors between 2.5 (matrix cage13) and 23.8 (matrix meca raff6).
This comes at the price of a moderate increase in run time for most problems. The
worst case is meca raff6 for which the increase in run time is about 70%. For matrix
cage13, the memory-aware mapping actually delivers slightly better performance with
emax = 0.8 than with both emax = 0.4 and proportional mapping. Although counter-
intuitive, it may happen that smaller task granularities yield better time performance,
especially since the proportional mapping heuristic is designed to balance memory
rather than optimize time. Matrix HV15R is particularly interesting because the
factorization cannot complete when proportional mapping (or the default mapping in
MUMPS 5.0.0) is used. Indeed, we use 16 MPI processes per node and the average
memory peak (estimated during the analysis phase) is 23.6 GB per MPI process with
the default strategy, while each node of our system only has 64 GB of memory.

Overall, the memory-aware mapping exhibits very interesting results compared to
the default strategy in MUMPS, since we are able to significantly decrease the mem-
ory footprint without dramatically decreasing performance. For all matrices, we have
decreased the maximum memory peak by an important factor that is increasing with
our target for memory efficiency emax. The penalty in run time also depends on the
target for memory efficiency and is typically between 40% and 60% on 64 processes
with respect to the performance of the proportional mapping strategy. When com-
paring with the default mapping used in MUMPS 5.0.0 (Table 3), we observe similar
results. Although the mapping strategy of MUMPS typically yields lower memory
consumption than a proportional mapping, using a memory-aware algorithm can sig-
nificantly reduce memory usage, at the price of a moderate penalty in factorization
time.

5. Related work. In this section, we mention some related problems and pos-
sible directions for future work.

5.1. The tree pebble game. We mention an interesting formulation of our
problem. A pebble game is a game played on an acyclic graph (here we consider only
trees). Every node in the graph has a weight τi. Nodes can carry pebbles; if a node i
carries τi pebbles, it is said to be satisfied. The rules of the game are the following:

• Initially no vertices carry pebbles.
• A pebble may be placed on a input vertex (for us, a leaf of the tree) at any

time.
• If all the predecessors (for us, the children) of an internal vertex are satisfied,

a new pebble may be placed on that vertex,
• A pebble can be removed from the graph at any time.

The goal is to place pebbles on output vertices (for us, the root node); this yields
a topological traversal of the tree. The objective can be to minimize the number
of pebbles that are used (the pebble cost) or the number of time steps (turns). This
game has applications in the VLSI community and in semantics [23]. Liu shows how to
modify the elimination tree to obtain a tree pebble game that represents the memory
usage of a serial sparse factorization [16]. He provides an algorithm that minimizes
the number of pebbles, i.e. that finds a topological traversal of the tree that minimizes
memory requirements of the multifrontal method. It finds the same traversal as the
more general (and more recent) algorithm by Jacquelin et al. [13].

In our parallel setting, the tree pebble game formulation might be generalized by
using pebbles with different colors, with a color for each process. A pebble would
thus represent a unit of memory for a given process. We are interested in finding a
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traversal of the tree that maximizes tree parallelism under a given memory constraint.
Our memory constraints can be modeled with a limit on the number of pebbles of
each color, whereas the number of turns can serve as a representation of the time for
traversing the tree. Rules would need to be added in order to have a realistic model
of a parallel execution. For example, several pebbles of the same color cannot be
placed on different nodes at the same time. This represents the fact that a process
cannot work on different tasks at the same time. Rules also need to be added to
penalize some undesirable configurations; for example, intra-node communication can
be penalized by setting a penalty in the number of turns whenever too many colors
are used at a given node. We have not pushed this formulation further.

5.2. Scheduling algorithms. We presented a task mapping algorithm along
with a constrained scheduling strategy. This strategy is not dynamic, which implies
that it can not adapt on the fly to workload or memory imbalances that might occur
during the factorization. We recall that in a multifrontal factorization with delayed
pivoting, the tree can be dynamically modified since a pivot can be delayed and
transferred from a node to its parent, perhaps several times. This implies variations
in workload and memory usage that cannot be forecast before the factorization. This
highlights the need for memory-aware dynamic scheduling strategies. The dynamic
scheduling in MUMPS is already able to balance memory loads on the fly, by using
global information messages [4]; using this scheduling strategy could be considered but
would not provide a formal guarantee that memory constraints are ensured. Another
option is the use of deadlock avoidance algorithms [22, 25]. In these algorithms, a
critical resource (such as memory) is granted to a requesting process only if there is
a guarantee that all the processes still have a way to complete their tasks. This is a
direction for future work.

6. Conclusion. We demonstrated that there is a need for mapping and schedul-
ing algorithms that are able to limit the active memory of the multifrontal factoriza-
tion in a parallel setting. Indeed, we showed both theoretically and experimentally
that commonly-used mapping strategies, such as the proportional mapping, can dan-
gerously let the memory usage grow with the number of processes.

We proposed a memory-aware mapping method that aims at maximizing paral-
lelism granularity (and tree parallelism) under a given memory constraint; it consists
in using a proportional mapping whenever it is possible (with respect to the con-
straint) and in serializing a set of sibling subtrees whenever a proportional mapping
cannot be used without violating the memory constraint. We also suggested a variant
that improves parallelism by enforcing serializations only between groups of siblings,
each group being mapped with a proportional mapping. Although we focused on a
memory-based proportional mapping in our experiments, any other tree partitioning
mapping (e.g., a memory-minimizing tree partitioning mapping, or a workload-based
proportional mapping ensuring a good balance of the work on the processes), can
be used in combination with memory-aware subtree serializations; this could help
reducing the number of serializations and/or improving performance.

Our experimental results demonstrate that the memory-aware mapping is able to
ensure that a given memory constraint is respected. In general, the looser the memory
constraint is, the better performance is, since the memory-aware mapping tends to
behave more like a proportional mapping. We also showed that the aggregated variant
is closer to a proportional mapping while still ensuring memory constraints. Overall,
the results are interesting since, compared to both proportional mapping and the
strategy described in [4], we are able to decrease the maximum memory peak by a
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large amount at the cost of a very reasonable increase in the run time.
A very attractive feature of the proposed algorithms is that they allow users to

adapt the memory usage of the solver to the memory available for their application;
indeed, setting M0 to the available memory, the solver will limit the amount of par-
allelism of the tree that is exploited to reach this objective. When the memory given
gets close to the minimum (Sseq/p memory available on each process) then perfor-
mance might strongly degrade. In cases where more memory is available, M0 can
be loosened and the performance of the solver will in general improve. We believe
that this feature of the proposed memory-aware algorithms significantly improves the
robustness of multifrontal solvers in a parallel environment.
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