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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01352772


CONVERGENT ALGORITHM BASED ON CARLEMAN ESTIMATES1

FOR THE RECOVERY OF A POTENTIAL IN THE WAVE2

EQUATION.∗3

LUCIE BAUDOUIN† , MAYA DE BUHAN‡ , AND SYLVAIN ERVEDOZA§4

Abstract. This article develops the numerical and theoretical study of the reconstruction5
algorithm of a potential in a wave equation from boundary measurements, using a cost functional built6
on weighted energy terms coming from a Carleman estimate. More precisely, this inverse problem7
for the wave equation consists in the determination of an unknown time-independent potential from8
a single measurement of the Neumann derivative of the solution on a part of the boundary. While its9
uniqueness and stability properties are already well known and studied, a constructive and globally10
convergent algorithm based on Carleman estimates for the wave operator was recently proposed in11
[BdBE13]. However, the numerical implementation of this strategy still presents several challenges,12
that we propose to address here.13

Key words. wave equation, inverse problem, reconstruction, Carleman estimates.14

AMS subject classifications. 93B07, 93C20, 35R30.15

1. Introduction and algorithms.16

1.1. Setting and previous results. Let Ω be a smooth bounded domain of17

Rd, d ≥ 1 and T > 0. This article focuses on the reconstruction of the potential in a18

wave equation according to the following inverse problem:19

Given the source terms f and f∂ and the initial data (w0, w1), con-20

sidering the solution of21

(1)

 ∂2
tW −∆W +QW = f, in (0, T )× Ω,
W = f∂ , on (0, T )× ∂Ω,
W (0) = w0, ∂tW (0) = w1, in Ω,

22

can we determine the unknown potential Q = Q(x), assumed to23

depend only on x ∈ Ω, from the additional knowledge of the flux of24

the solution through a part Γ0 of the boundary ∂Ω, namely25

(2) M = ∂nW, on (0, T )× Γ0 ?26

Beyond the preliminary questions about the uniqueness and stability of this inverse27

problem, already very well documented as we will detail below, we are interested in28

the actual reconstruction of the potential Q from the extra information given by the29

measurement of the flux M of the solution on a part of the boundary. This issue was30

already addressed theoretically in our previous work [BdBE13] based on Carleman31

estimates. However, the algorithm proposed in [BdBE13], proved to be convergent,32

cannot be implemented in practice as it involves minimization processes of function-33

als containing too large exponential terms. Therefore, our goal is to address here the34
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2 L. BAUDOUIN, M. DE BUHAN, AND S. ERVEDOZA

numerical challenges induced by that approach.35

36

Before going further, let us recall that if Q ∈ L∞(Ω), f ∈ L1(0, T ;L2(Ω)),37

f∂ ∈ H1((0, T ) × ∂Ω), w0 ∈ H1(Ω) and w1 ∈ L2(Ω), and assuming the compati-38

bility condition f∂(0, x) = w0(x) for all x ∈ ∂Ω, the Cauchy problem (1) is well-posed39

in C0([0, T ];H1(Ω))∩C1([0, T ];L2(Ω)), and the normal derivative ∂nW is well-defined40

as an element of L2((0, T )× ∂Ω), see e.g. [Lio88, LLT86].41

42

Our results will require the following geometric conditions (sometimes called “mul-43

tiplier condition” or “Γ-condition”):44

∃x0 6∈ Ω, such that45

Γ0 ⊃ {x ∈ ∂Ω, (x− x0) · ~n(x) ≥ 0},(3)46

T > sup
x∈Ω
|x− x0|.(4)47

Space and time conditions (3)–(4) are natural from the observability point of view, and48

appear naturally in the context of the multiplier techniques developed in [Ho86, Lio88].49

They are more restrictive than the well-known observability results [BLR92] by Bar-50

dos Lebeau Rauch based on the behavior of the rays of geometric optics, but the51

geometric conditions (3)–(4) yield much more robust results, and this will be of pri-52

mary importance in our approach.53

54

In fact, under the regularity assumption55

(5) W ∈ H1(0, T ;L∞(Ω)),56

the positivity condition57

(6) ∃α > 0 such that |w0| ≥ α in Ω,58

the knowledge of an a priori bound m > 0 such that59

(7) ‖Q‖L∞(Ω) ≤ m, i.e. Q ∈ L∞≤m(Ω) = {q ∈ L∞(Ω), ‖q‖L∞(Ω) ≤ m},60

and the multiplier conditions (3)–(4), the results in [Baufr] (and in [Yam99] under61

more regularity hypothesis) state the Lipschitz stability of the inverse problem con-62

sisting in the determination of the potential Q in (1) from the measurement of the63

flux M in (2).64

65

We will introduce our work by describing what was done in our former article66

[BdBE13], in order to highlight stage by stage the main challenges when performing67

numerical implementations.68

In [BdBE13], we proposed a prospective algorithm to recover the potential Q from69

the measurement M on (0, T ) × Γ0, that we briefly recall below. We assume that70

conditions (3)–(4) are satisfied for some x0 /∈ Ω, and we set β ∈ (0, 1) such that71

(8) βT > sup
x∈Ω
|x− x0|.72

We then define, for (t, x) ∈ (−T, T )× Ω, the Carleman weight functions73

(9) ϕ(t, x) = |x− x0|2 − βt2, and for λ > 0, ψ(t, x) = eλ(ϕ(t,x)+C0),74

This manuscript is for review purposes only.



RECOVERY OF A POTENTIAL IN THE WAVE EQUATION. 3

where C0 > 0 is chosen such that ϕ + C0 ≥ 1 in (−T, T ) × Ω and λ > 0 is large75

enough. The chore of the algorithm in [BdBE13] is the minimization of a functional76

Ks,q[µ] given for s > 0, q ∈ L∞≤m(Ω) and µ ∈ L2((0, T )× Γ0) by77

(10) Ks,q[µ](z) =
1

2

∫ T

0

∫
Ω

e2sψ|∂2
t z−∆z+qz|2 dxdt+ s

2

∫ T

0

∫
Γ0

e2sψ|∂nz−µ|2 dσdt,78

set on the trajectories z ∈ L2(0, T ;H1
0 (Ω)) such that ∂2

t z−∆z+ qz ∈ L2((0, T )×Ω),79

∂nz ∈ L2((0, T ) × Γ0) and z(0, ·) = 0 in Ω. Note in particular that [BdBE13] shows80

that there exists a unique minimizer of the above functional under the aforementioned81

assumptions. The algorithm then reads as follows:

Algorithm 1 (see [BdBE13])

Initialization: q0 = 0 (or any guess in L∞≤m(Ω)).
Iteration: From k to k + 1
• Step 1 - Given qk, we set µk = ∂t

(
∂nw[qk]− ∂nW [Q]

)
on (0, T )× Γ0, where w[qk]

denotes the solution of (1) with the potential qk and ∂nW [Q] is the measurement
given in (2).
• Step 2 - Minimize Ks,qk [µk] (defined in (10)) on the trajectories z ∈ L2(0, T ;H1

0 (Ω))
such that ∂2

t z−∆z+ qkz ∈ L2((0, T )×Ω), ∂nz ∈ L2((0, T )×Γ0) and z(0, ·) = 0 in Ω.
Let Zk be the unique minimizer of the functional Ks,qk [µk].
• Step 3 - Set

q̃k+1 = qk +
∂tZ

k(0)

w0
, in Ω,

where w0 is the initial condition in (1) (recall assumption (6)).
• Step 4 - Finally, set

qk+1 = Tm(q̃k+1), with Tm(q) =

{
q, if |q| ≤ m,
sign(q)m, if |q| > m,

where m is the a priori bound in (7).

82

Algorithm 1 comes along with the following convergence result:83

Theorem 1 ([BdBE13, Theorem 1.5]). Under assumptions (3)-(4)-(5)-(6)-(7)-84

(8), there exist constants C > 0, s0 > 0 and λ > 0 such that for all s ≥ s0, Algorithm85

1 is well-defined and the iterates qk constructed by Algorithm 1 satisfy, for all k ∈ N,86

(11)

∫
Ω

|qk+1 −Q|2e2sψ(0) dx ≤
C ‖W [Q]‖2H1(0,T ;L∞(Ω))

s1/2α2

∫
Ω

|qk −Q|2e2sψ(0) dx.87

In particular, for s large enough, the sequence qk strongly converges towards Q as88

k →∞ in L2(Ω).89

This algorithm presents the advantage of being convergent for any initial guess q0 ∈
L∞≤m(Ω) without any a priori guess except for the knowledge of m. This is why we
call this algorithm globally convergent. However, while this algorithm is theoretically
satisfactory as at each iteration, it simply consists in the minimization of the strictly
convex and coercive quadratic functional Ks,q, it nevertheless contains several flaws
and drawbacks in its numerical implementation. In particular, we underline that the
functional Ks,q involves two exponentials, namely

exp(sψ) = exp(s exp(λ(ϕ+ C0))),

This manuscript is for review purposes only.



4 L. BAUDOUIN, M. DE BUHAN, AND S. ERVEDOZA

with a choice of parameters s and λ large enough and whose sizes are difficult to
estimate. In particular, for s = λ = 3 - which are not so large of course - Ω = (0, 1),
x0 ' 0−, T ' 1+ and β ' 1−, the ratio

max
(0,T )×Ω

{exp(2sψ)}

min
(0,T )×Ω

{exp(2sψ)}

is of the order of 10340 ! The numerical implementation of Algorithm 1 therefore90

seems doomed.91

The goal of this article is to improve the above algorithm so that it can fruitfully be92

implemented. This will be achieved following several stages: working on the construc-93

tion of the cost functional (specifically on the Carleman weight function), considering94

the preconditioning of the cost functional, and adapting the new cost functional to95

the discrete setting used for the numerics.96

Before going further, let us mention that the inverse problem under consideration97

has been well-studied in the literature, starting with the uniqueness result in the98

celebrated article [BK81], see also [Kli92], which introduced the use of Carleman99

estimates for these studies. Later on, stability issues were obtained for the wave100

equation, first based on the so-called observability properties of the wave equation101

[PY96, PY97] and then refined with the use of Carleman estimates, among which102

[IY01a, IY01b, IY03, KY06]. In fact, a great part of the literature in this area, con-103

cerning uniqueness, stability and reconstruction of coefficient inverse problems for104

evolution partial differential equations can be found in the survey article [Kli13] and105

we refer the interested reader to it. A slightly different approach can also be found in106

the recent article [SU13] based on more geometric insights.107

Let us also emphasize that we are interested in the case in which one performs only108

one measurement. The question of determining coefficients from the Dirichlet to109

Neumann map is different and we refer for instance to the boundary control method110

proposed in [Bel97] or to methods based on the complex geometric optics, see [Isa91].111

Here, as we said, we will focus on the reconstruction of the potential in the wave equa-112

tion (1) from the flux M in (2). This question has been studied only recently, though113

the first investigation [KI95] appears in 1995, and we shall in particular point out114

the most recent works of Beilina and Klibanov [KB12], [BK15], who study the recon-115

struction of a coefficient in a hyperbolic equation from the use of a Carleman weight116

function for the design of the cost functional. However, these techniques differ from117

ours as they work on the functions obtained after a Laplace transform of the equation.118

119

In what follows, we propose to develop a numerical algorithm in the spirit of120

the one in [BdBE13], study its convergence and his implementation. Before going121

further, let us also mention the fact that one can find in [CFCM13] some numerical122

experiments based on the minimization of a quadratic functional similar to the one in123

(10), but with s and λ rather small, namely s = 1 and λ = 0.1, see [CFCM13, Section124

4]. Our goal is to overcome this restriction on the size of the Carleman parameters,125

as we request them to be large for the convergence of the algorithm.126

1.2. New weight functions, new cost functionals, and a new algorithm.127

In a first stage, we aim at removing one exponential from the cost functional Ks,q in128

(10). Similarly to [BdBE13], looking again for a cost functional based on a Carleman129

estimate for the wave equation, we will work with the Carleman weight function130

This manuscript is for review purposes only.



RECOVERY OF A POTENTIAL IN THE WAVE EQUATION. 5

exp(sϕ) instead of exp(s exp(λ(ϕ + C0))). This requires an adaptation of the proof131

of [BdBE13] with such a weight function and the use of the Carleman estimates132

developed in [LRS86] (see also [IY01b]), that we will briefly recall in Section 2.133

In particular, instead of minimizing Ks,q[µ] introduced in (10) as in Step 2 of134

Algorithm 1, we will perform a minimization process on a new functional Js,q[µ̃],135

to be defined later in (13), based on the simplified weight function exp(sϕ). Before136

introducing that functional, we shall define the following restricted set O:137
138

(12) O = {(t, x) ∈ (0, T )× Ω, βt > |x− x0|}139

= {(t, x) ∈ (0, T )× Ω, |∂tϕ(t, x)| ≥ |∇ϕ(t, x)|},140141

which is depicted in Figure 1.142

0 1

ϕ =
0, slo

pe
1√ β|x−

x 0
| =
βt

, slo
pe

1
β

O

x0 x

T

t

Ω

Fig. 1: Illustration of domain O in the case Ω = (0, 1).

For s > 0, q ∈ L∞(Ω) and µ̃ ∈ L2((0, T )× Γ0), we then introduce the functional143

Js,q[µ̃] defined by144

145

(13) Js,q[µ̃](z) =
1

2

∫ T

0

∫
Ω

e2sϕ|∂2
t z −∆z + qz|2 dxdt146

+
s

2

∫ T

0

∫
Γ0

e2sϕ|∂nz − µ̃|2 dσdt+
s3

2

∫∫
O
e2sϕ|z|2 dxdt,147

148

to be compared with Ks,q[µ] in (10), on the trajectories z ∈ C0([0, T ];H1
0 (Ω)) ∩

C1([0, T ];L2(Ω)) such that ∂2
t z −∆z + qz ∈ L2((0, T )× Ω) and z(0, ·) = 0 in Ω.

This functional Js,q[µ̃] is quadratic, and as we will show later in Section 2.3, under
conditions (3)–(4)–(8), it is strictly convex and coercive, therefore enjoying similar
properties as the functional Ks,q[µ]. Nevertheless, let us once more emphasize that
the functional Js,q[µ̃] is less stiff than the functional Ks,q[µ] as now the weights are of
the form exp(2sϕ) instead of exp(2sψ) = exp(2s exp(λ(ϕ+C0))) in (10). This already
indicates the possible gain we could have by working with the functional Js,q[µ̃] in
(13) instead of Ks,q[µ] in (10).
It may appear surprising to note µ̃ instead of µ. These slightly different notations
come from the fact that the functional Ks,q[µ] tries to find an optimal solution Z of

∂2
tZ −∆Z + qZ ' 0 in (0, T )× Ω, and ∂nZ ' µ in (0, T )× Γ0,

This manuscript is for review purposes only.



6 L. BAUDOUIN, M. DE BUHAN, AND S. ERVEDOZA

while the functional Js,q[µ̃] tries to find an optimal solution Z̃ of

∂2
t Z̃ −∆Z̃ + qZ̃ ' 0 in (0, T )× Ω, ∂nZ̃ ' µ̃ in (0, T )× Γ0, and Z̃ ' 0 in O.

Therefore, as Z̃ is sought after such that it is small in O, it is natural to introduce a149

smooth cut-off function η ∈ C2(R) such that 0 ≤ η ≤ 1 and150

(14) η(τ) = 0, if τ ≤ 0, and η(τ) = 1, if τ ≥ d2
0 := d(x0,Ω)2,151

(recall that d2
0 > 0 according to Assumption 3) see Figure 2. Next, the idea is that if

µ̃ = η(ϕ)µ, in (0, T )× Γ0.

and if Z denotes the minimizer of the functional Ks,q[µ] in (10), then the minimizer152

Z̃ of Js,q[µ̃] in (13) should be close to η(ϕ)Z in (0, T )× Ω and in particular at t = 0153

this should yield, due to the choice of η in (14), ∂tZ̃(0) ' ∂tZ(0) in Ω.

0.2 0.4 0.6 0.8 1

0.5

1

0

ϕ
=

0

ϕ
=

0.
04

ϕ
=

0.
4

ϕ
=

0.
9

x0

T

0 ϕd20

1

η

0

ϕ
=

0

ϕ
=
d
2
0

x0

T

η ◦ ϕ = 0

η ◦ ϕ = 1

1Ω

Fig. 2: Isovalues of the function ϕ (x0 = −0.2, β = 1). Definition and application of
the cut-off function η.

154
155

We are then led to propose a revised version of our reconstruction algorithm,156

detailed in Algorithm 2 given below.157

Of course, if one compares Algorithm 2 with Algorithm 1, the major difference158

is in Step 2 in which one minimizes the functional Js,qk [µ̃] in (13) instead of the159

functional Ks,qk [µ] in (10). And as we have said above, the two functionals should160

have minimizers that are close at t = 0. In fact, similarly as Theorem 1, we will obtain161

the following result:162

Theorem 2. Under assumptions (3)-(4)-(5)-(6)-(7)-(8), there exist positive con-163

stants C and s0 such that for all s ≥ s0, Algorithm 2 is well-defined and the iterates164

qk constructed by Algorithm 2 satisfy, for all k ∈ N,165

(17)

∫
Ω

|qk+1 −Q|2e2sϕ(0) dx ≤
C ‖W [Q]‖2H1(0,T ;L∞(Ω))

s1/2α2

∫
Ω

|qk −Q|2e2sϕ(0) dx.166

In particular, for s large enough, the sequence qk strongly converges towards Q as167

k →∞ in L2(Ω).168

The proof of Theorem 2 is given in Section 2 and closely follows the one of Theorem 1169

in [BdBE13]. The main difference is that the starting point of our analysis, instead170

This manuscript is for review purposes only.
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Algorithm 2

Initialization: q0 = 0 (or any guess q0 ∈ L∞≤m(Ω)).
Iteration: From k to k + 1
• Step 1 - Given qk, we set µ̃k = η(ϕ)∂t

(
∂nw[qk]− ∂nW [Q]

)
on (0, T ) × Γ0, where

w[qk] denotes the solution of

(15)

 ∂2
tw −∆w + qkw = f, in (0, T )× Ω,
w = f∂ , on (0, T )× ∂Ω,
w(0) = w0, ∂tw(0) = w1, in Ω,

corresponding to (1) with the potential qk and ∂nW [Q] is the measurement in (2).
• Step 2 - We minimize the functional Js,qk [µ̃k] defined in (13), for some s > 0
that will be chosen independently of k, on the trajectories z ∈ C0([−T, T ];H1

0 (Ω)) ∩
C1([−T, T ];L2(Ω)) such that ∂2

t z−∆z+ qkz ∈ L2((0, T )×Ω), ∂nz ∈ L2((0, T )×Γ0)

and z(0, ·) = 0 in Ω. Let Z̃k be the unique minimizer of the functional Js,qk [µ̃k].
• Step 3 - Set

(16) q̃k+1 = qk +
∂tZ̃

k(0)

w0
, in Ω,

where w0 is the initial condition in (15) (or (1)).
• Step 4 - Finally, set

qk+1 = Tm(q̃k+1), with Tm(q) =

{
q, if |q| ≤ m,
sign(q)m, if |q| ≥ m,

where m is the a priori bound in (7).

of being the Carleman estimate in [Im02], is the Carleman estimate in [LRS86].171

The main improvement with respect to Algorithm 1 is the fact that the functional172

Js,q[µ̃] in (13) contains weight functions with only one exponential, making the prob-173

lem less difficult to implement. However, it is still numerically challenging to use174

such functionals, especially as the convergence of Algorithm 2 gets better for large175

parameter s. We propose below two ideas to make it numerically tractable.176

1.3. Preconditioning, processing and discretizing the cost functional.177

When considering the functional Js,q[µ̃] in (13), one easily sees that exponentials178

factors can be removed if considering the unknown zesϕ instead of z. Such transfor-179

mation corresponds to a preconditioning of the functional Js,q[µ̃]. Indeed, that way,180

exponential factors do not appear anymore when computing the gradient of the cost181

functional Js,q[µ̃]. Nevertheless, there are still exponentials factors appearing in the182

measurements. We therefore also develop a progressive algorithm in the resolution of183

the minimization process. The idea is to consider intervals in which the weight func-184

tion ϕ does not significantly change, allowing to preserve numerical accuracy despite185

the possible large values of s. Details will be given in Section 3.186

187

When implementing the above strategy numerically, one has to discretize the188

wave equation under consideration, and to adapt the functional Js,q[µ̃] to the discrete189

setting. As it is well-known [Tre82, Zua05], most of the numerical schemes exhibit190

some pathologies at high-frequency, namely discrete rays propagating at velocity 0 or191
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8 L. BAUDOUIN, M. DE BUHAN, AND S. ERVEDOZA

blow up of observability estimates. Therefore, we need to take some care to adapt the192

functional Js,q[µ̃] to the discrete setting. In particular, following ideas well-developed193

in the context of the observability of discrete waves (see [Zua05]), we will introduce a194

naive discrete version of Js,q[µ̃] and penalize the high-frequencies.195

To simplify the presentation of these penalized frequency functionals, we will introduce196

it in full details on a space semi-discrete and time continuous 1d wave equations, where197

the space semi-discretization is done using the finite-difference method on a uniform198

mesh. In this case, our approach, even at the discrete level, can be made completely199

rigorous by adapting the arguments in the continuous setting and the discrete Carle-200

man estimates obtained in [BE11] (recently extended to a multi-dimensional setting201

in [BEO15]). We refer to Section 4 for extensive details.202

203

Section 5 then presents numerical results illustrating our method on several ex-204

amples. In particular, we will illustrate the good convergence of the algorithm when205

the parameter s is large. We shall also discuss the cases in which the measurement206

is blurred by some noise and the case in which the initial datum w0 is not positive207

everywhere.208

209

Outline. Section 2 is devoted to the proof of the convergence of Algorithm 2. In210

Section 3 we explain how the minimization process of the functional Js,q in (13) can211

be strongly simplified. Section 4 then makes precise the new difficulties arising when212

discretizing the functional Js,q, and Section 5 presents several numerical experiments.213

2. Study of Algorithm 2.214

2.1. Main ingredients. The goal of this section is to prove Theorem 2. As215

mentioned in the introduction, the proof will closely follows the one of Theorem 1216

in [BdBE13]. The main difference is that, instead of using the Carleman estimate217

developed in [Im02, Baufr], we will base our proof on the following one:218

Theorem 3. Assume the multiplier conditions (3)-(4) and β ∈ (0, 1) as in (8).219

Define the weight function ϕ as in (9). Then there exist s0 > 0 and a positive constant220

M such that for all s ≥ s0:221

222

(18) s

∫ T

−T

∫
Ω

e2sϕ
(
|∂tz|2 + |∇z|2 + s2|z|2

)
dxdt ≤M

∫ T

−T

∫
Ω

e2sϕ|∂2
t z −∆z|2 dxdt223

+Ms

∫ T

−T

∫
Γ0

e2sϕ |∂nz|2 dσdt+Ms3

∫∫
(|t|,x)∈O

e2sϕ|z|2 dxdt,224

225

for all z ∈ C0([−T, T ];H1
0 (Ω))∩C1([−T, T ];L2(Ω)) with ∂2

t z−∆z ∈ L2((−T, T )×Ω),226

where the set O satisfies (12).227

Furthermore, if z(0, ·) = 0 in Ω, one can add to the left hand-side of (18), the following228

term:229

(19) s1/2

∫
Ω

e2sϕ(0)|∂tz(0)|2 dx.230

The Carleman estimate of Theorem 3 is quite classical and can be found in the liter-231

ature in several places, among which [LRS86, Isa06, Zha00, FYZ07, Bel08]. For the232

convenience of the reader, we briefly sketch the proof in Section 2.2. However, the233

proof of the fact that the term (19) can be added in the left hand side of (18) when234

z(0, ·) = 0 in Ω is not explicitly written in the aforementioned references, although235
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this is one of the important point of the proof of the stability result in [IY01a, IY01b].236

Nevertheless, the idea can be adapted easily from [BdBE13], as we will detail below.237

238

Before giving the details of the proof of Theorem 2, let us first briefly explain the239

main idea of the design of Algorithm 2, which turns out to be very similar to the one240

of Algorithm 1. Indeed, both Algorithms 1 and 2 are constructed from the fact that241

if W [Q] is the solution of equation (1) and w[qk] solves (15), then242

(20) zk = ∂t
(
w[qk]−W [Q]

)
243

satisfies244

(21)

 ∂2
t z
k −∆zk + qkzk = gk, in (0, T )× Ω,

zk = 0, on (0, T )× ∂Ω,
zk(0) = 0, ∂tz

k(0) = zk1 , in Ω,
245

where gk = (Q− qk)∂tW [Q], zk1 = (Q− qk)w0, and we have µk = ∂nz
k on (0, T )×Γ0.246

In system (21), the source gk and the initial data zk1 are both unknown, and247

we are actually interested in finding a good approximation of zk1 , which encodes the248

information on Q− qk. In order to do so, we will try to fit “at best” the flux ∂nz with249

µk on the boundary, approximating the unknown source term gk by 0.250

This strategy works as we can prove that the source term gk brings less informa-251

tion than µk does, and this is where the choice of the Carleman parameter s will play252

a crucial role. This is actually the milestone of the construction of Algorithm 1 and253

its convergence result [BdBE13]. Here, when considering the functional Js,q[η(ϕ)µ]254

defined in (13), we rather try to approximate z̃k = η(ϕ)zk, which enjoys the following255

properties:256

• ∂tz̃k(0, ·) = η(ϕ(0))∂tz
k(0, ·) = (Q−qk)w0 encodes the information on Q−qk;257

• z̃k = η(ϕ)zk vanishes in domain O defined by (12) and on the boundary in258

time t = T ;259

• ∂nz̃k = µ̃k in (0, T )× Γ0.260

These ideas are actually behind the proofs of the inverse problem stability by com-261

pactness uniqueness arguments as in [PY96, PY97, Yam99] or by Carleman estimates262

given in [IY01a, IY01b, IY03, Baufr].263

2.2. Sketch of the proof of the Carleman estimate. Since a lot of different264

references, several of them mentioned right above, present detailed proof of Carleman265

estimates for the wave equation, we only give here the main calculations yielding the266

result presented in Theorem 3.267

Proof. Set y(t, x) = z(t, x)esϕ(t,x) for all (t, x) ∈ (−T, T ) × Ω, and introduce the268

conjugate operator Ls defined by Lsy = esϕ(∂2
t − ∆)(e−sϕy). Easy computations269

give270

271

(22) Lsy = ∂2
t y −∆y + s2(|∂tϕ|2 − |∇ϕ|2)y︸ ︷︷ ︸

=P1y

− 2s∂ty∂tϕ+ 2s∇y · ∇ϕ+ αsy︸ ︷︷ ︸
=P2y

272

− s(∂2
t ϕ−∆ϕ)y − αsy︸ ︷︷ ︸

=Ry

273

274
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where we have set α = 2d− 2, d being the space dimension. Based on the estimate275

2

∫ T

−T

∫
Ω

P1yP2y dxdt ≤
∫ T

−T

∫
Ω

(
|P1y|2 + |P2y|2

)
dxdt+ 2

∫ T

−T

∫
Ω

P1yP2y dxdt276

≤ 2

∫ T

−T

∫
Ω

|Lsy|2 dxdt+ 2

∫ T

−T

∫
Ω

|Ry|2 dxdt,(23)277

the main part of the proof consists in the computation and bound from below of the
cross-term

I =

∫ T

−T

∫
Ω

P1y P2y dxdt.

Tedious computations and integrations by parts yield278

I = s

∫ T

−T

∫
Ω

|∂ty|2(∂2
t ϕ+ ∆ϕ− α) dxdt+ s

∫ T

−T

∫
Ω

|∇y|2 (∂2
t ϕ−∆ϕ+ α+ 4) dxdt279

+ s3

∫ T

−T

∫
Ω

|y|2
[
∂t
(
∂tϕ(|∂tϕ|2 − |∇ϕ|2)

)
+ α(|∂tϕ|2 − |∇ϕ|2)280

−∇ ·
(
∇ϕ(|∂tϕ|2 − |∇ϕ|2)

)]
dxdt281

− s

[∫
Ω

(
|∂ty|2 + |∇y|2

)
∂tϕdx

]T
−T

+ 2s

[∫
Ω

∂ty (∇y · ∇ϕ) dx

]T
−T

282

− s3

[∫
Ω

y2(|∂tϕ|2 − |∇ϕ|2)∂tϕ dx

]T
−T

+ αs

[∫
Ω

∂ty y dx

]T
−T

283

− s

∫ T

−T

∫
∂Ω

|∂ny|2∂nϕdσdt.284

Let us now briefly explain how each term can be estimated.285

286

• We focus on the terms in s|∂ty|2 and s|∇y|2 in order to insure that they are287

strictly positive. Taking α = 2d− 2, this means288

∂2
t ϕ+ ∆ϕ− α = −2β + 2d− α = 2(1− β) and289

∂2
t ϕ−∆ϕ+ α+ 4 = −2β − 2d+ α+ 4 = 2(1− β),290

that are positive thanks to the assumption β ∈ (0, 1).291

292

• The terms in s3|y|2 can be rewritten as follows (since ∇2ϕ = 2Id):293

∂t
(
∂tϕ(|∂tϕ|2 − |∇ϕ|2)

)
+ α(|∂tϕ|2 − |∇ϕ|2)−∇ ·

(
∇ϕ(|∂tϕ|2 − |∇ϕ|2)

)
294

= (∂2
t ϕ−∆ϕ+ α)(|∂tϕ|2 − |∇ϕ|2) + 2|∂tϕ|2∂2

t ϕ+ 2∇2ϕ · ∇ϕ · ∇ϕ295

= (−6β − 2d+ α)(|∂tϕ|2 − |∇ϕ|2) + 4(1− β)|∇ϕ|2296

= −(2 + 6β)(|∂tϕ|2 − |∇ϕ|2) + 4(1− β)|∇ϕ|2.297298

This quantity is bounded from below by a strictly positive constant in the region of
(−T, T )× Ω in which

|∂tϕ(t, x)|2 − |∇ϕ(t, x)|2 ≤ 0⇐⇒ βt ≤ |x− x0|,
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i.e. the complementary of the set
{

(t, x) ∈ (−T, T ) × Ω with (|t|, x) ∈ O
}

where O299

satisfies (12).300

301

• We now estimate the boundary terms in time1 appearing at time t = T and302

t = −T . We focus on the terms at time T , as the ones at time −T can be handled303

similarly. Let us first collect them:304

305

IT := 2sβT

∫
Ω

(
|∂ty(T )|2 + |∇y(T )|2

)
dx+ 8s3βT

∫
Ω

|y(T )|2(β2T 2 − |x− x0|2) dx306

+ 4s

∫
Ω

∂ty(T )
(
∇y(T ) · (x− x0) +

α

4
y(T )

)
dx.307

308

The first and second terms are obviously positive (under Condition (8) for the second309

one), so we only need to check that they are sufficiently positive to absorb the last310

term, whose sign is unknown. We remark that311 ∫
Ω

∣∣∣∇y(T ) · (x− x0) +
α

4
y(T )

∣∣∣2 dx312

=

∫
Ω

|∇y(T ) · (x− x0)|2 dx+
α

4

∫
Ω

(x− x0) · ∇
(
|y(T )|2

)
dx+

α2

16

∫
Ω

|y(T )|2 dx313

=

∫
Ω

|∇y(T ) · (x− x0)|2 dx+

(
α2

16
− αd

4

)∫
Ω

|y(T )|2 dx314

≤ sup
Ω

{
|x− x0|2

}∫
Ω

|∇y(T )|2 dx,315

since α = 2d − 2 gives α2 − 4αd = −4(d − 1)(d + 1) ≤ 0. This inequality allows to316

deduce, by Cauchy-Schwarz inequality, that317

318

4s

∫
Ω

∂ty(T )
(
∇y(T ) · (x− x0) +

α

4
y(T )

)
dx319

≤ 2s sup
Ω
{|x− x0|}

(∫
Ω

(
|∂ty(T )|2 + |∇y(T )|2

)
dx

)
.320

321

Using again Condition (8), we easily obtain IT ≥ 0.322

323

Gathering these informations, and using the geometric condition (3) on Γ0, it324

yields that there exists a constant M > 0 independent of s such that325

326 ∫ T

−T

∫
Ω

P1yP2y dxdt ≥Ms

∫ T

−T

∫
Ω

(
|∂ty|2 + |∇y|2 + s2|y|2

)
dxdt327

−Ms

∫ T

−T

∫
Γ0

|∂ny|2 dσdt−Ms3

∫∫
(|t|,x)∈O

|y|2 dxdt.328

329

1The authors acknowledge Xiaoyu Fu for having pointed out to us the fact that these boundary
terms have positive signs.
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From (23), we easily derive330

331

s

∫ T

−T

∫
Ω

(
|∂ty|2 + |∇y|2 + s2|y|2

)
dxdt+

∫ T

−T

∫
Ω

(
|P1y|2 + |P2y|2

)
dxdt332

≤M
∫ T

−T

∫
Ω

|Lsy|2 dxdt+Ms2

∫ T

−T

∫
Ω

|y|2 dxdt333

+ Ms

∫ T

−T

∫
Γ0

|∂ny|2 dσdt+Ms3

∫∫
(|t|,x)∈O

|y|2 dxdt.334

335

We take now s0 large enough in order to make sure that the term in s2|y|2 of the right336

hand side is absorbed by the dominant term in s3|y|2 of the left hand side as soon as337

s ≥ s0 and we obtain338

339

(24) s

∫ T

−T

∫
Ω

(
|∂ty|2 + |∇y|2 + s2|y|2

)
dxdt+

∫ T

−T

∫
Ω

(
|P1y|2 + |P2y|2

)
dxdt340

≤M
∫ T

−T

∫
Ω

|Lsy|2 dxdt+Ms

∫ T

−T

∫
Γ0

|∂ny|2 dσdt+Ms3

∫∫
(|t|,x)∈O

|y|2 dxdt341

342

We then deduce (18) by substituting y = zesϕ.343

344

Furthermore, under the additional condition z(0, ·) = 0 in Ω, we get y(0, ·) = 0345

in Ω. We then choose ρ : t 7→ ρ(t) a smooth function such that ρ(0) = 1 and ρ346

vanishes close to t = −T . We multiply P1y by ρ∂ty and integrate over (−T, 0) × Ω,347

to get348 ∫ 0

−T

∫
Ω

P1y ρ∂ty dxdt =

∫ 0

−T

∫
Ω

(
∂2
t y −∆y + s2((∂tϕ)2 − |∇ϕ|2)y

)
ρ∂ty dxdt349

=
1

2

∫ 0

−T

∫
Ω

ρ∂t
(
|∂ty|2 + |∇y|2

)
dxdt+

s2

2

∫ 0

−T

∫
Ω

ρ(|∂tϕ|2 − |∇ϕ|2)∂t(y
2) dxdt350

=
1

2

∫
Ω

|∂ty(0)|2 dx− 1

2

∫ 0

−T

∫
Ω

∂tρ
(
|∂ty|2 + |∇y|2

)
+ s2∂t

(
ρ(|∂tϕ|2 − |∇ϕ|2)

)
y2dxdt351

≥ 1

2

∫
Ω

|∂ty(0)|2 dx−M
∫ 0

−T

∫
Ω

(
|∂ty|2 + |∇y|2 + s2|y|2

)
dxdt.352

By Cauchy-Schwarz inequality, this implies

s1/2

∫
Ω

|∂ty(0)|2 dx ≤
∫ T

−T

∫
Ω

|P1y|2 dxdt+Ms

∫ T

−T

∫
Ω

(
|∂ty|2 + |∇y|2 + s2|y|2

)
dxdt.

Using (24) and y = zesϕ, we easily deduce the estimate of term (19) and conclude the353

proof of Theorem 3.354

From this proof of Theorem 3, we can directly exhibit (see (24)) the following “con-355

jugate” Carleman estimate, of practical interest later on:356

Corollary 4. Assume the multiplier condition (3)-(4) and β ∈ (0, 1) as in (8).357

Define the weight function ϕ as in (9). Then there exist constants M > 0 and s0 > 0358
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such that for all s ≥ s0,359

360

(25) s

∫ T

−T

∫
Ω

(
|∂ty|2 + |∇y|2 + s2|y|2

)
dxdt+

∫ T

−T

∫
Ω

(
|P1y|2 + |P2y|2

)
dxdt361

≤M
∫ T

−T

∫
Ω

|Lsy|2 dxdt+Ms

∫ T

−T

∫
Γ0

|∂ny|2 dσdt+Ms3

∫∫
(|t|,x)∈O

|y|2 dxdt362

363

for all y ∈ C0([−T, T ];H1
0 (Ω)) ∩ C1([−T, T ];L2(Ω)), with Lsy ∈ L2((−T, T ) × Ω),364

where Ls, P1 and P2 are defined in (22).365

Furthermore, if y(0, ·) = 0 in Ω, one can add the term s1/2

∫
Ω

|∂ty(0)|2 dx to the left366

hand-side of (25).367

2.3. Proof of the convergence theorem.368

Proof of Theorem 2. Let us first begin by showing that Algorithm 2 is well-369

defined. We introduce370
371

Tq =
{
z ∈ C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)),372

with ∂2
t z −∆z + qz ∈ L2((0, T )× Ω) and z(0, ·) = 0 in Ω

}
,373

374

endowed with the norm375
376

‖z‖2obs,s,q =

∫ T

0

∫
Ω

e2sϕ|∂2
t z −∆z + qz|2 dxdt+ s

∫ T

0

∫
Γ0

e2sϕ|∂nz|2 dσdt377

+ s3

∫∫
O
e2sϕ|z|2 dxdt.378

379

The proof that this quantity is a norm on Tq stems from the Carleman estimate of380

Theorem 3 applied to ze(t, x) = z(t, x) for t ∈ [0, T ] and ze(t, x) = −z(−t, x) for381

t ∈ [−T, 0], x ∈ Ω. Indeed, (18) applied to ze yields for all s ≥ s0,382

s3

∫ T

0

∫
Ω

e2sϕ|z|2 dxdt ≤ 2M

∫ T

0

∫
Ω

e2sϕ|∂2
t z −∆z + qz|2 dxdt383

+ 2M ‖q‖2L∞(Ω)

∫ T

0

∫
Ω

e2sϕ|z|2 dxdt384

+ Ms

∫ T

0

∫
Γ0

e2sϕ |∂nz|2 dσdt+Ms3

∫∫
O
e2sϕ|z|2 dxdt,385

so that ‖ · ‖obs,s,q is a norm on Tq provided s is large enough, and then for all s > 0 as386

the weight functions are bounded on [0, T ]×Ω. This immediately implies that Js,q[µ̃]387

defined in (13) is coercive and strictly convex on the set Tq, so that it admits a unique388

minimizer and as a consequence, Algorithm 2 is well-defined.389

Moreover, this shows that the class Tq, which was a priori dependent of q, is in390

fact independent of q (for q ∈ L∞(Ω)) and is simply given by391

392

T =
{
z ∈ C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)),393

with ∂2
t z −∆z ∈ L2((0, T )× Ω) and z(0, ·) = 0 in Ω

}
.394

395
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In order to show estimate (17), instead of considering only functionals of the396

form Js,q[µ̃], we introduce slightly more general functionals Js,q[µ̃, g] given for s > 0,397

q ∈ L∞(Ω), µ̃ ∈ L2((0, T )× Γ0), g ∈ L2((0, T )× Ω) and for all z ∈ T , by:398

399

(26) Js,q[µ̃, g](z) =
1

2

∫ T

0

∫
Ω

e2sϕ|∂2
t z −∆z + qz − g|2 dxdt400

+
s

2

∫ T

0

∫
Γ0

e2sϕ|∂nz − µ̃|2 dσdt+
s3

2

∫∫
O
e2sϕ|z|2 dxdt.401

402

With the same argument as above, the functional Js,q[µ̃, g] is coercive in the norm403

‖·‖obs,s,q and strictly convex, so that it admits a unique minimizer for each µ̃ ∈404

L2((0, T )× Γ0) and g ∈ L2((0, T )× Ω).405

We then observe that z̃k := η(ϕ)zk, where zk satisfies (20) (recall the definitions406

of η in (14) and ϕ in (9), pictured in Figure 2), is the minimizer of Js,qk [µ̃k, g̃k] with407

(27) g̃k = η(ϕ)(Q− qk)∂tW [Q] + [∂2
t −∆, η(ϕ)]zk,408

since it solves:409

(28)

 ∂2
t z̃
k −∆z̃k + qkz̃k = g̃k, in (0, T )× Ω,

z̃k = 0, on (0, T )× ∂Ω,
z̃k(0) = 0, ∂tz̃

k(0) = η(ϕ(0, ·))zk1 , in Ω,
410

and ∂nz̃
k = µ̃k = η(ϕ)∂t

(
∂nw[qk]− ∂nW [Q]

)
on (0, T )× Γ0.411

We shall then compare Z̃k and z̃k, the minimizers of the functionals Js,qk [µ̃k, 0]412

and Js,qk [µ̃k, g̃k] respectively, especially at the time t = 0 corresponding to the set in413

which the information on (Q− qk) is encoded. The result is stated as follows:414

Proposition 5. Assume the geometric and time conditions (3)-(4) on Γ0 and T ,415

that β is chosen as in (8), and let µ ∈ L2((0, T ) × Γ0) and ga, gb ∈ L2((0, T ) × Ω).416

Assume also that q belongs to L∞≤m(Ω) for m > 0.417

Let Zj be the unique minimizer of the functional Js,q[µ, g
j ] on T for j ∈ {a, b}. Then418

there exist positive constants s0(m) and M = M(m) such that for s ≥ s0(m) we have:419

(29) s1/2

∫
Ω

e2sϕ(0)|∂tZa(0)− ∂tZb(0)|2 dx ≤M
∫ T

0

∫
Ω

e2sϕ|ga − gb|2 dxdt.420

where ϕ and s0(m) are chosen so that Theorem 3 holds.421

We postpone the proof of Proposition 5 to the end of the section and first show how422

it can be used for the proof of Theorem 2.423

424

Recall now that ∂tz̃
k(0, ·) = (Q − qk)w0. Setting q̃k+1 as in (16), we get from425

Proposition 5 applied to Za = Z̃k and Zb = z̃k that426

(30) s1/2

∫
Ω

e2sϕ(0)|q̃k+1 −Q|2 |w0|2dx ≤M
∫ T

0

∫
Ω

e2sϕ|g̃k|2 dxdt.427

The next step is to get an estimates of g̃k defined by (27). Using the fact that428
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η(ϕ), ∂2

t −∆
]
zk has support in a region where ϕ ≤ d2

0 := d(x0,Ω)2, we obtain429 ∫ T

0

∫
Ω

e2sϕ|g̃k|2 dxdt ≤M
∫ T

0

∫
Ω

e2sϕ|η(ϕ)(Q− qk)∂tW [Q]|2 dxdt430

+ M

∫ T

0

∫
Ω

e2sϕ|
[
η(ϕ), ∂2

t −∆
]
zk|2 dxdt431

≤M ‖W [Q]‖2H1(0,T ;L∞(Ω))

∫
Ω

e2sϕ(0)|qk −Q|2 dx432

+ Me2sd20

∫ T

0

∫
Ω

(
|∇zk|2 + |∂tzk|2 + |zk|2

)
dxdt.433

Usual a priori energy estimates for zk solution of equation (21) also yields434

435

(31) ‖zk‖L∞(0,T ;H1
0 (Ω)) + ‖∂tzk‖L∞(0,T ;L2(Ω)) ≤M

(
‖zk1‖L2(Ω) + ‖gk‖L1(0,T ;L2(Ω))

)
436

≤M‖Q− qk‖L2(Ω)

(
‖w0‖L∞(Ω) + ‖∂tW [Q]‖L1(0,T ;L∞(Ω))

)
≤M ‖W [Q]‖H1(0,T ;L∞(Ω)) ‖Q− q

k‖L2(Ω),
437

438

so that combining the above estimates, we get439
440

s1/2

∫
Ω

e2sϕ(0)|q̃k+1 −Q|2 |w0|2dx ≤M ‖W [Q]‖2H1(0,T ;L∞(Ω))

∫
Ω

e2sϕ(0)|qk −Q|2 dx441

+M ‖W [Q]‖2H1(0,T ;L∞(Ω)) e
2sd20‖Q− qk‖2L2(Ω).442

443

Using ϕ(0, x) ≥ d2
0 for all x in Ω and Assumption (6), we deduce444

(32) s1/2α2

∫
Ω

e2sϕ(0)|q̃k+1−Q|2dx ≤M ‖W [Q]‖2H1(0,T ;L∞(Ω))

∫
Ω

e2sϕ(0)|qk−Q|2 dx.445

Now, using the a priori assumption (7), i.e. Q ∈ L∞≤m(Ω), we easily check that this446

estimate cannot deteriorate in step 4 of Algorithm 2, which is there only to ensure447

that the sequence qk stays in L∞≤m(Ω) for all k ∈ N. This completes the proof of448

Theorem 2.449

It only remains to prove the former proposition.450

Proof of Proposition 5. Let us write the Euler Lagrange equations satisfied by451

Zj , for j ∈ {a, b}. For all z ∈ T , we have452

453

(33)

∫ T

0

∫
Ω

e2sϕ(∂2
tZ

j −∆Zj + qZj − gj)(∂2
t z −∆z + qz) dxdt454

+ s

∫ T

0

∫
Γ0

e2sϕ(∂nZ
j − µ)∂nz dσdt+ s3

∫∫
O
e2sϕZjz dxdt = 0.455

456

Applying (33) for j = a and j = b to z = Z = Za − Zb and subtracting the two457

identities, we obtain:458
459 ∫ T

0

∫
Ω

e2sϕ|∂2
tZ−∆Z+qZ|2 dxdt+s

∫ T

0

∫
Γ0

e2sϕ|∂nZ|2 dσdt+s3

∫∫
O
e2sϕ|Z|2 dxdt460

=

∫ T

0

∫
Ω

e2sϕ(ga − gb)(∂2
tZ −∆Z + qZ) dxdt.461

462
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16 L. BAUDOUIN, M. DE BUHAN, AND S. ERVEDOZA

This implies463

464

(34)
1

2

∫ T

0

∫
Ω

e2sϕ|∂2
tZ −∆Z + qZ|2 dxdt+ s

∫ T

0

∫
Γ0

e2sϕ|∂nZ|2 dσdt465

+ s3

∫∫
O
e2sϕ|Z|2 dxdt ≤ 1

2

∫ T

0

∫
Ω

e2sϕ|ga − gb|2 dxdt.466
467

Since the left hand side of (34) is precisely the right hand side of the Carleman468

estimate (18), applying Theorem 3 to Z, we immediately deduce (29).469

3. Technical issues on the minimization of the cost functional. The goal470

of this section is to give several details about the actual construction of an efficient471

numerical algorithm based on Algorithm 2. The main step in Algorithm 2 is to472

minimize the functional Js,q[µ̃], that we recall here for convenience,473

Js,q[µ̃](z) =
1

2

∫ T

0

∫
Ω

e2sϕ|∂2
t z −∆z + qz|2 dxdt+

s

2

∫ T

0

∫
Γ0

e2sϕ|∂nz − µ̃|2 dσdt474

+
s3

2

∫∫
O
e2sϕ|z|2 dxdt,475

and which is minimized on the set476

477

(35) T =
{
z ∈ C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)),478

with ∂2
t z −∆z ∈ L2((0, T )× Ω) and z(0) = 0 in Ω

}
.479

480

Due to the presence of large exponential factors in the functional, the minimization481

of Js,q[µ̃] is not a straightforward task from the numerical point of view, even if, as482

we emphasized earlier, the minimization of Js,q[µ̃] is much less stiffer than the one of483

Ks,q[µ] defined in (10) [BdBE13]. We therefore propose the two following ideas:484

• Work on the conjugate variable y = zesϕ. This change of unknown acts as a485

preconditioner. Details are given in Section 3.1.486

• A progressive algorithm to minimize the functional Js,q[µ̃] in subdomains in487

which the variations of the exponential factors are small, see Section 3.2.488

3.1. Conjugate variable. For z in T , we set y = zesϕ, so that y satisfies the
following equation:

∂2
t y −∆y + qy − 2s∂tϕ∂ty + 2s∇ϕ · ∇y
−s(∂2

t ϕ−∆ϕ)y + s2(|∂tϕ|2 − |∇ϕ|2)y = esϕ(∂2
t −∆ + q)z, in (0, T )× Ω,

y = 0, on (0, T )× ∂Ω,
y(0) = 0, ∂ty(0) = z1e

sϕ(0), in Ω,

where ∂tϕ = −2βt, ∇ϕ = 2(x − x0), ∂2
t ϕ = −2β and ∆ϕ = 2d. We set Ls,q defined489

by Ls,q = esϕ(∂2
t −∆ + q)e−sϕ:490

Ls,qy = ∂2
t y −∆y + qy − 2s∂tϕ∂ty + 2s∇ϕ · ∇y − s(∂2

t ϕ−∆ϕ)y491

+s2(|∂tϕ|2 − |∇ϕ|2)y492

= ∂2
t y −∆y + qy + 4sβt∂ty + 4s(x− x0) · ∇y + 2s(β + d)y493

+4s2(β2t2 − |x− x0|2)y.(36)494
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RECOVERY OF A POTENTIAL IN THE WAVE EQUATION. 17

Thus, minimizing Js,q[µ̃] in (13) on the set T is equivalent to minimize the functional

J̃s,q[µ̃] defined by

J̃s,q[µ̃](y) =
1

2

∫ T

0

∫
Ω

|Ls,qy|2 dxdt+
s

2

∫ T

0

∫
Γ0

|∂ny − µ̃esϕ|2 dσdt+
s3

2

∫∫
O
y2 dxdt

on the same set T . The minimization process for J̃s,q[µ̃] is then equivalent to the495

resolution of the following variational formulation:496

Find Y ∈ T such that for all y ∈ T ,497
498

(37)

∫ T

0

∫
Ω

Ls,qYLs,qy dxdt+ s

∫ T

0

∫
Γ0

∂nY ∂ny dσdt+ s3

∫∫
O
Y y dxdt499

= s

∫ T

0

∫
Γ0

esϕµ̃∂ny dσdt.500

501

From the Carleman estimate (25) applied to y extended for negative times t by502

y(t) = −y(−t), the left-hand side of (37) defines a coercive quadratic form, while503

the exponentials now appear only in the right hand side of (37). Therefore, no expo-504

nential factor appears anymore in the computation of the gradient of the functional505

J̃s,q[µ̃]. Our next goal is to deal with the exponential factor still in front of µ̃.506

3.2. Progressive process. The idea to tackle the exponential factor in the507

right hand side of (37) is to develop a progressive process to compute the minimizer508

of J̃s,q[µ̃] as the aggregation of several problems localized in subdomains in which the509

exponential factors are all of the same order.510

In this objective, from the smooth cut-off function η equal to 1 for τ ≥ d2
0 defined511

in (14), we introduce N cut-off functions {ηj}1≤j≤N (these ones are not necessarily512

smooth) such that513

(38) ∀τ ∈ R,
N∑
j=1

ηj(τ) = η(τ),514

as illustrated in Figure 3.

0 τd2
0

1
η3 η2 η1

η

Fig. 3: Example of cut-off functions ηj for 1 ≤ j ≤ 3.

515

Therefore, the target flux µ̃ = η(ϕ)µ can be decomposed as follows:516

(39) µ̃ = η(ϕ)µ =

N∑
j=1

µ̃j ,517
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18 L. BAUDOUIN, M. DE BUHAN, AND S. ERVEDOZA

where µ̃j(t, x) = ηj(ϕ(t, x))µ(t, x),∀(t, x) ∈ (0, T )× Γ0,∀j ∈ {1, · · · , N}.

As the variational formulation in (37) is linear in µ̃, one immediately gets that, if

for each j ∈ {1, · · · , N}, we denote by Yj the minimizer of J̃s,q[µ̃j ] on T , then the

minimizer Y of J̃s,q[µ̃] is simply given by

Y =

N∑
j=1

Yj .

The interest of this approach is that the target flux µ̃j involves exponential terms in518

ϕ on the support of ηj(ϕ(t, x)). This becomes particularly interesting if we impose519

that for each j ∈ {1, · · · , N},520

(40) Supp ηj ⊂ [aj , bj ] with bj − aj ≤ C,521

for some constant C > 0. Indeed, in that case, we get

sup
Supp ηj(ϕ)

esϕ

inf
Supp ηj(ϕ)

esϕ
≤ esC ,

so that if C ' 1/s, all the exponentials are of the same order when computing µ̃j .522

Consequently, under the conditions (38)–(39)–(40), for all j ∈ {1, · · · , N}, the mini-523

mization of J̃s,q[µ̃j ] over T is easier numerically than the direct minimization of J̃s,q[µ̃]524

over T . Besides, this approach can be used, at least theoretically, to parallelize the525

minimization of J̃s,q[µ̃] over the set T .526

527

Let us present one possible way to construct the functions ηj in practice, precisely
the ones we used in our numerical experiments (where we chose to use C∞ functions,
even if it is not necessary). We set

d2
0 = inf

Ω
|x− x0|2 and L2

0 = sup
Ω
|x− x0|2.

Let us then choose an integer N ∈ N∗ and set ε0 = d2
0/N . Next, define the cut-off

function η as follows:

f(t) = exp

(
−1

t(ε0 − t)

)
, and η(τ) =


0, if τ ≤ 0,

1−
∫ ε0
τ
f(t)dt∫ ε0

0
f(t)dt

, if 0 < τ < ε0,

1, if τ ≥ ε0.

Thus we introduce the cut-off functions ηj defined by the formula528

η0(τ) = η(τ − L2
0), and for j ∈ {1, · · · , N},529

ηj(τ) = η

(
τ − L2

0

N − j
N

)
− η

(
τ − L2

0

N − (j − 1)

N

)
.530

We then easily verify (38), Supp η0 ⊂
]
L2

0,+∞
[
, and that

∀j ∈ {1, · · · , N}, Supp ηj ⊂
]
L2

0

(
1− j

N

)
, L2

0

(
1− j − 1

N

)
+
d2

0

N

[
.
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In particular, we have η0(ϕ(t, x)) = 0 for all (t, x) ∈ (−T, T ) × Ω as ϕ(t, x) ≤ L2
0 for

all (t, x) ∈ (−T, T )× Ω, so that we can omit η0(ϕ) in our approach.
By construction, the support of each ηj for j ∈ {1, · · · , N} is included in an interval
of size (L2

0 + d2
0)/N . We can then try to optimize the number N of intervals in the

progressive algorithm so that on each interval the weight function exp(sϕ) varies of
less than 5 order of magnitude, for instance by taking N as a function of s as follows:

N =
⌊s(L2

0 + d2
0)

10

⌋
+ 1,

where b·c denotes the integer part.531

4. Discrete setting for the algorithm. In this section, we present the tech-532

nical solutions we have developed to implement numerically the algorithm. In or-533

der to simplify the presentation, from now on we focus on the one-dimensional case534

Ω = (0, L) and Γ0 = {x = L}. We consider a semi-discrete in space and time-535

continuous approximation of our system, with a space discretization based on a finite-536

difference approximation method on a uniform mesh. In this restrictive setting, all our537

assertions can be fully proved rigorously by adapting the arguments in [BE11, BEO15].538

Though this might seem very restrictive, we believe that our approach can be gener-539

alized to fully discrete models and in higher dimensions for quasi-uniform meshes.540

To begin with, we introduce some notations for this 1-d space semi-discrete frame-541

work. The appropriate discrete Carleman estimate will follow. We will finally briefly542

present how we approximate the functional Js,q[µ̃] in (13).543

4.1. Notations. In our framework, the space variable x ∈ [0, L] is taking values544

on a discrete mesh [0, L]h indexed by the number of points N ∈ N. To be more precise,545

forN ∈ N, we set h = L/(N+1), xj = jh for j ∈ {0, · · · , N+1}, and [0, L]h = {xj , j ∈546

{0, · · · , N + 1}}. For convenience, we will also note (0, L)h, respectively [0, L)h, the547

set of of discrete points {xj , j ∈ {1, · · · , N}}, respectively {xj , j ∈ {0, · · · , N}}.548

Below, we will use the subscript h for discrete functions fh defined on a mesh of the549

form [0, L]h for some N , i.e. fh = (fj)j∈{0,··· ,N+1}. Analogously with the continuous550

case, we write:551

(41)

∫
(0,L)h

fh = h

N∑
j=1

fj ,

∫
[0,L)h

fh = h

N∑
j=0

fj .552

We also make use of the following notation for the discrete operators:553

(∂hvh)j =
vj+1 − vj−1

2h
; (∂+

h vh)j = (∂−h vh)j+1 =
vj+1 − vj

h
;554

(∆hvh)j =
vj+1 − 2vj + vj−1

h2
.555

By analogy with the definition of Ls,q in (36), we finally introduce, for s > 0 and qh556

a discrete potential, the conjugate operator Ls,qh,h defined by557

(42) Ls,qh,hyh = esϕ(∂2
t −∆h + qh)(e−sϕyh),558

for yh functions of t ∈ (−T, T ) and x ∈ {xj , j ∈ {1, · · · , N}}.559

Before going further, let us emphasize that the discrete operator Ls,qh,h is different560

from the operator L̃s,qh,h obtained by a naive discretization of Ls,q in (36) as follows:561

L̃s,qh,hyh = ∂2
t yh −∆hyh + qhyh + 4sβt∂tyh + 4s(x− x0)∂hyh562

+2s(β + 1)yh + 4s2(β2t2 − |x− x0|2)yh,(43)563
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20 L. BAUDOUIN, M. DE BUHAN, AND S. ERVEDOZA

for any function yh defined on (−T, T )× {xj , j ∈ {1, · · · , N}}.564

4.2. A discrete Carleman estimate for the discrete wave operator. In565

this section, we provide the counterpart of Corollary 4 at the discrete level.566

Theorem 6. Assume the multiplier condition (3)-(4) and β ∈ (0, 1) as in (8).567

Let L > 0, take x0 < 0, and define the weight function ϕ as in (9). Then there exist568

s0 > 0, N0 > 0, ε0 > 0 and a positive constant M such that for all s ∈ [s0, ε0/h] and569

for all N ≥ N0,570

571

(44) s

∫ T

−T

∫
[0,L)h

(
|∂tyh|2 + |∂+

h yh|
2 + s2|y|2

)
dt572

≤M
∫ T

−T

∫
(0,L)h

|Ls,0,hyh|2 dt+Ms

∫ T

−T

∣∣∂−h yN+1(t)
∣∣2 dt573

+Ms3

∫ T

−T

∫
(0,Lh)

1(|t|,xj)∈O|yh|
2 dt+Msh2

∫ T

−T

∫
[0,L)h

|∂t∂+
h yh|

2 dt,574

575

for all yh such that yj ∈ H2(−T, T ) for all j ∈ {1, · · · , N}, where O is defined in576

(12).577

Furthermore, if yh(0) = 0 in (0, L)h, the term s1/2

∫
(0,L)h

|∂tyh(0)|2 can be added to578

the left hand-side of (44).579

The proof of Theorem 6 is left to the reader as it follows step by step the proof of580

Theorem 3 using discrete rules of integration by parts, which can be found in [BE11,581

Lemma 2.6]. It is actually particularly simple as the coefficients of Ls,0,h depend only582

on time or only on space variables.583

584

Let us now briefly comment Theorem 6. First, compared with Corollary 4, we585

see that the right-hand side of (44) contains one more term than (25), namely586

(45) Msh2

∫ T

−T

∫
[0,L)h

|∂t∂+
h yh|

2 dt.587

This is a high-frequency term. Indeed, as h∂+
h is of the order of h|ξ| for frequencies588

ξ, this term can be absorbed for large s by the left hand-side of (44) for frequencies589

ξ = o(1/h). However, for frequencies of the order of the mesh-size h, this term cannot590

be absorbed anymore by the left hand-side of (44). This is not surprising in view591

of the lack of uniform observability for discrete waves, see [Zua05], and the various592

comments done in [BE11] on the discrete Carleman estimates for the wave equation593

with weight functions exp(sψ) = exp(s exp(λ(ϕ+ C0))).594

Let us also point out that as in [BE11], the parameter s in Theorem 6 cannot be made595

arbitrarily large as in Theorem 3, but is limited to some ε0/h. Roughly speaking, this596

condition comes from the following fact:597

(46) ‖exp(sϕ)∂h(exp(−sϕ)) + s∂xφ‖L∞((0,T )×Ω)) ≤ Csh,598

so that the coefficients of Ls,0,h in (42) and L̃s,0,h in (43) are close only for sh small599

enough.600

We end up this section with a warning. If we were considering the operator L̃s,0,h601

in (43) instead of Ls,0,h in (42), the restriction on the size of the parameter s could602
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be removed as the errors done in the conjugation process, for instance in (46), are603

inexistent. However, when conjugating back the discrete operator L̃s,0,h, one would604

not obtain the discretization of the wave operator ∂tt − ∆h, and this would yield605

inaccuracies in our numerical experiments.606

4.3. Semi-discretization scheme and algorithm. We now explain the dis-607

cretization in space of the variational problem (37).608

First, we have to discretize the set T in (35). We thus introduce the set Th defined609

as follows:610

611

(47) Th = {zh ∈ H2(0, T ;RN+2) with z0,h(t) = zN+1,h(t) = 0 for all t ∈ (0, T )612

and zj,h(0) = 0 for all j ∈ {1, · · · , N}}.613614

Following Theorem 6, it is natural to discretize the variational problem (37) as follows:615

Find Yh ∈ Th such that for all yh ∈ Th,616

617

(48)

∫ T

0

∫
(0,L)h

(Ls,qh,hYh)(Ls,qh,hyh) dt+ s

∫ T

0

YNh,h
h

yNh,h
h

dt618

+ s3

∫ T

−T

∫
(0,Lh)

1(|t|,xj)∈OYhyh dt619

+ sh2

∫ T

0

∫
[0,L)h

(∂t∂
+
h Yh)(∂t∂

+
h yh) dt = s

∫ T

0

esϕµ̃

(
−yNh,h
h

)
dt.620

621

Actually we will use this variational formulation (48) in the numerical experiments.
Compared with (37), we have added here the term

sh2

∫ T

0

∫
[0,L)h

(∂t∂
+
h Yh)(∂t∂

+
h yh),

which is of course the counterpart of the term (45) and aims at penalizing the spurious622

high-frequency waves which may appear in the discretization process. This term is623

indeed really helpful when considering noisy data, as we will illustrate in the numerical624

experiments in Section 5. But this term also guarantees that the variational problem625

in (48) is coercive uniformly with respect to the discretization parameter h > 0, as it626

can be deduced immediately from Theorem 6. In particular, it allows us to prove the627

convergence of the algorithm given afterwards.628

In order to state it precisely, by analogy with (26), for h > 0, a discrete potential629

qh, a parameter s > 0, and µ̃ ∈ L2(0, T ), g̃h ∈ L2(0, T ;RN ), ν̃h ∈ L2(0, T ;RN ), we630

introduce the discrete functional631

632

(49) Js,qh,h[µ̃, g̃h, ν̃h](zh) =633

1

2

∫ T

0

∫
(0,L)h

e2sϕ|∂2
t zh −∆hzh + qhzh − g̃h|2 dt+

s

2

∫ T

0

e2sϕ

∣∣∣∣−zN,hh
− µ̃(t)

∣∣∣∣2 dt634

+
s3

2

∫ T

−T

∫
(0,L)h

1(|t|,xj)∈Oe
2sϕ|zh|2 dt+

sh2

2

∫ T

0

∫
[0,L)h

e2sϕ|∂t∂+
h zh − ν̃h|

2 dt.635

636

defined on the set Th. Of course, one easily checks that the solution Yh ∈ Th of the637

variational formulation in (48) corresponds to the minimizer Zh of Js,qh,h[µ̃, 0, 0] over638
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Th through the formula Yh = esϕZh.639

640

For any mesh-size h > 0, we define the discrete functions w0,h, w1,h approximating641

the initial data w0, w1, and the discrete functions fh and f∂,h approximating the source642

terms f and f∂ . We construct Algorithm 3 as follows.643

Algorithm 3

Initialization: q0
h = 0.

Iteration: From k to k + 1
• Step 1 - Given qkh, we set

µ̃kh(t) = η(ϕ(t, L))∂t

(
wkN+1,h(t)− wkN,h(t)

h
− ∂nW [Q](t, L)

)
, on (0, T ),

where wkh denotes the solution of

(50)

 ∂2
twh −∆hwh + qkhwh = fh, in (0, T )× (0, L)h,
w0,h(t) = f∂(t, 0), wN+1,h(t) = f∂(t, L), on (0, T ),
wh(0) = w0,h, ∂twh(0) = w1,h, in (0, L)h,

corresponding to (15) with the potential qk and ∂nW [Q] is the measurement in (2).
And then set

(51) ν̃kh = ∂t∂
+
h

(
η(ϕ)∂twh[qkh]

)
in (0, T )× (0, L)h.

• Step 2 - We minimize the functional Js,qkh,h[µ̃kh, 0, ν̃
k
h ] defined in (49), for some s > 0

that will be chosen independently of k, on the trajectories zh ∈ Th. Let Z̃kh be the
unique minimizer of the functional Js,qkh,h[µ̃kh, 0, ν̃

k
h ].

• Step 3 - Set

q̃k+1
h = qkh +

∂tZ̃
k
h(0)

w0,h
, in (0, L)h.

• Step 4 - Finally, set

qk+1
h = Tm(q̃k+1

h ), with Tm(q) =

{
q, if |q| ≤ m,
sign(q)m, if |q| ≥ m.,

where m is the a priori bound in (7).

One can then state a convergence result provided several assumptions are satis-644

fied, basically corresponding to (5)–(6)–(7) and the consistency of our approximation645

schemes. Namely we assume:646

647

(i) Assumptions (5)–(6)–(7) and (8) are satisfied.648

649

(ii) There exists α > 0 independent of h such that for all h > 0,650

(52) inf
(0,L)h

|w0,h| ≥ α.651

(iii) There exists a sequence of discrete potential (Qh)h>0, each Qh being652
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defined on (0, Lh) such that:653

1. For each h > 0, Qh is bounded uniformly on (0, L)h by m:654

(53) sup
(0,L)h

|Qh| ≤ m.655

2. The piecewise constant extensions of Qh strongly converge in L2(0, L) to Q656

when h→ 0.657

3. For each h > 0, introducing Wh[Qh] the solution of658

(54)

 ∂2
tWh −∆hWh +QhWh = fh, in (0, T )× (0, L)h,
W0,h(t) = f∂,h(t, 0), WN+1,h(t) = f∂,h(t, L), on (0, T ),
Wh(0) = w0,h, ∂tWh(0) = w1,h, in (0, L)h,

659

we get660

(55) sup
h>0

∫ T

0

∣∣∣∣∣ sup
(0,L)h

|∂tWh[Qh]|

∣∣∣∣∣
2

dt <∞,661

and the following consistency assumptions:662

(56)

lim
h→0

(∫ T

0

η(ϕ(t, L))2

∣∣∣∣∂tWN+1,h[Qh]− ∂tWN,h[Qh]

h
− ∂t∂nW [Q](t, L)

∣∣∣∣2 dt
)

= 0,

lim
h→0

(∫ T

0

∫
[0,L)h

|h∂+
h ∂t(η(ϕ)∂tWh[Qh])|2 dt

)
= 0.

663

These are natural assumptions regarding the inverse problem at hand. They have been664

widely discussed in [BE11, Section 4] and [BEO15, Section 4]. These two works give665

sufficient conditions for the existence of a sequence of discrete potential Qh satisfying666

(53)–(55)–(56). They also proved that, under some further suitable assumptions on667

the convergence of fh, f∂,h, w0,h, w1,h, a sequence Qh satisfying (53) and (56)(1,2)668

necessarily converges to the potential Q in L2(0, L) (after having been extended as669

piecewise constant functions in a natural way).670

We get the following result:671

Theorem 7. Under assumptions (i)-(ii)-(iii) above, Algorithm 3 is well-posed672

for all h > 0 small enough. Specifically, the discrete sequence qkh satisfies for some673

constants C0, C1 > 0 independent of s > 0 and h > 0,674

675

(57)

∫
(0,Lh)

e2sϕ|qk+1
h −Qh|2 ≤

C0√
s

∫
(0,Lh)

e2sϕ|qkh −Qh|2676

+ C1s
1/2

∫ T

0

∫
[0,L)h

e2sϕ|h∂+
h ∂t(η(ϕ)∂tWh[Qh])|2dt677

+ C1s
1/2

∫ T

0

e2sϕ

∣∣∣∣∂tWN+1,h[Qh]− ∂tWN,h[Qh]

h
− ∂t∂nW [Q](t, L)

∣∣∣∣2 dt.678
679
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In particular, for s ≥ 4C2
0 , we get, for all k ∈ N,680

681

(58)

∫
(0,Lh)

e2sϕ|qkh −Qh|2 ≤
1

2k

∫
(0,Lh)

e2sϕ|Qh|2682

+ 2C1s
1/2

∫ T

0

∫
[0,L)h

e2sϕ|h∂+
h ∂t(η(ϕ)∂tWh[Qh])|2dt683

+ 2C1s
1/2

∫ T

0

e2sϕ

∣∣∣∣∂tWN+1,h[Qh]− ∂tWN,h[Qh]

h
− ∂t∂nW [Q](t, L)

∣∣∣∣2 dt,684
685

so that as k → ∞, qkh enters a neighborhood of Qh, whose size depends on h and s686

and goes to zero as h→ 0 according to (56).687

Proof. We focus on the proof of (57). As in the continuous case, it mainly consists

in showing that Z̃kh is close to z̃kh = η(ϕ)zkh, where

zkh = ∂t
(
wh[qkh]−Wh[Qh]

)
.

The main idea is to remark that zkh satisfies
∂2
t z
k
h −∆hz

k
h + qkhz

k
h = gkh, in (0, T )× (0, L)h,

zk0,h = zkN+1,h = 0, on (0, T ),

zkh(0) = 0, ∂tz
k
h(0) = zk1,h, in (0, L)h,

with
gkh = (Qh − qkh)∂tWh[Qh], zk1,h = (Qh − qkh)w0,h.

In particular, z̃kh satisfies:688

(59)


∂2
t z̃
k
h −∆hz̃

k
h + qkhz̃

k
h = g̃kh, in (0, T )× (0, L)h,

z̃k0,h = z̃kN+1,h = 0, on (0, T ),

z̃kh(0) = 0, ∂tz̃
k
h(0) = zk1,h, in (0, L)h,

689

with
g̃kh = η(ϕ)(Qh − qkh)∂tWh[Qh] + [∂2

t −∆h, η(ϕ)]zkh.

Moreover, one has the following boundary data690

(60)
−z̃kN,h(t)

h
= µ̃kh(t)− δh(t) on (0, T ),691

where

δh(t) = η(ϕ(t, L))∂t

(
WN+1,h[Qh](t)−WN,h[Qh](t)

h
− ∂nW [Q](t, L)

)
.

Therefore, z̃kh is the minimizer of the functional Js,qkh,h[µ̃kh − δh, g̃kh, ν̃kh − ν̂h] where ν̂h692

is given by693

(61) ν̂h = ∂+
h ∂t (η(ϕ)∂tWh[Qh]) , in (0, T )× (0, L)h.694

But by construction, Z̃kh is the minimizer of Js,qkh,h[µ̃kh, 0, ν̃
k
h ]. We thus only need to695

compare minimizers corresponding to the other coefficients (δh, g̃kh and ν̂h). As in696
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the proof of Proposition 5, using Euler-Lagrange formulation and using the Carleman697

estimate (44), one easily gets:698

699

(62) s1/2

∫
(0,L)h

e2sϕ(0)|∂tZkh(0)− ∂tz̃kh(0)|2 ≤ Cs
∫ T

0

e2sϕ(t,L)|δh|2 dt700

+ C

∫ T

0

∫
(0,L)h

e2sϕ|g̃kh|2 dt+ Csh2

∫ T

0

∫
(0,L)h

e2sϕ|ν̂h|2 dt.701

702

Following now the proof of Theorem 2 we can show that703 ∫ T

0

∫
(0,L)h

e2sϕ|g̃kh|2 dt ≤ C
∫

(0,L)h

e2sϕ|qkh −Qh|2 dt,704

while, by construction,705

s1/2

∫
(0,L)h

e2sϕ(0)|∂tZkh(0)− ∂tz̃kh(0)|2 ≥ s1/2α2

∫
(0,L)h

e2sϕ(0)|q̃k+1
h −Qh|2706

≥ s1/2α2

∫
(0,L)h

e2sϕ(0)|qk+1
h −Qh|2.707

We then put together the two last estimates in (62). Recalling that δh and νh are708

respectively given by (60) and (61), we immediately obtain (57).709

The proof of estimate (58) easily follows from (57). Indeed, by recurrence, one710

can easily show that, if s ≥ 4C2
0 , for all k ∈ N,711

712 ∫
(0,Lh)

e2sϕ|qkh −Qh|2 ≤
1

2k

∫
(0,Lh)

e2sϕ|Qh|2713

+

k−1∑
j=0

1

2j

C1s
1/2

∫ T

0

∫
[0,L)h

e2sϕ|h∂+
h ∂t(η(ϕ)∂tWh[Qh])|2dt714

+

k−1∑
j=0

1

2j

C1s
1/2

∫ T

0

e2sϕ

∣∣∣∣∂tWN+1,h[Qh]− ∂tWN,h[Qh]

h
− ∂t∂nW [Q](t, L)

∣∣∣∣2 dt,715

716

which is slightly stronger than (58) and concludes the proof of Theorem 7.717

Note that we presented the above theoretical results by restricting ourselves to the718

1d case for the time continuous and space semi-discrete approximation of the inverse719

problem. Though, this analysis can very likely be carried on in much more general set-720

tings, for instance higher dimensions or fully discrete approximations. Of course, the721

key missing point is then the counterpart of the Carleman estimate in Theorem 3. De-722

spite important recent efforts for developing this powerful tool in the discrete setting,723

see in particular [KS91, BHLR10a, BHLR10b, BHLR11, EdG11, BLR14] for discrete724

elliptic and parabolic equations, and [BE11, BEO15] for discrete wave equations, the725

validity of discrete Carleman estimates in the discrete settings remains mainly limited726

to smooth deformations of cartesian grids for the finite-difference method.727

We would like also to emphasize that Theorem 7 is not a proper convergence theorem,728

as it only says that the sequence of discrete potentials qkh will enter a neighborhood729
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of Qh as k →∞. The size of this neighborhood, given by730

731

2C1s
1/2

∫ T

0

∫
[0,L)h

e2sϕ|h∂+
h ∂t(η(ϕ)∂tWh[Qh])|2dt732

+ 2C1s
1/2

∫ T

0

e2sϕ

∣∣∣∣∂tWN+1,h[Qh]− ∂tWN,h[Qh]

h
− ∂t∂nW [Q](t, L)

∣∣∣∣2 dt,733
734

see (58), is in fact very much related to the consistency error. It is nonetheless735

interesting to point out that choosing s large to improve the speed of convergence of736

the algorithm also increases the size of this neighborhood. One should keep in mind737

that remark, which also applies in the presence of noise.738

Important remark 1. The choice made in (51) does not seem natural because739

it is not based on the difference between wh[qkh] and Wh[Qh], the latter being unknown.740

It is also important to mention that for some reasons that we still do not fully un-741

derstand the numerical results given by Algorithm 3 with this choice show numerical742

instabilities. Instead, we propose to replace Algorithm 3 by743

Algorithm 4

Everything as in Algorithm 3 except:
Iteration:
• Step 2: We minimize the functional Js,qkh,h[µ̃kh, 0, 0] defined in (49), for some s ≥ 0

that will be chosen independently of k, on the trajectories zh ∈ Th. Let Zkh be the
unique minimizer of the functional Js,qkh,h[µ̃kh, 0, 0].

With this choice, we do not know how to prove a convergence result of the algo-744

rithm similar to Theorem 7.745

However, this choice coincides more with the insights we have on the algorithm as746

z̃kh in (59) is the minimizer of Js,qkh,h[µ̃kh − δh, 0, ν̃kh − ν̂h], and if convergence occurs,747

ν̃kh − ν̂h should be small and converge to zero.748

The numerical results presented in Section 5 will all be performed using Algorithm 4.749

As we will see, this will lead to good numerical results, in agreement with the above750

insights.751

4.4. Full discretization. When implementing Algorithm 3 numerically, one752

should of course consider fully discrete wave equations. We will not give all the details753

of this discretization process, but simply state how we implement the minimization754

process of the functional Js,qh,h.755

First, we shall of course consider a fully discrete version Js,qkh,h,τ of the functional756

Js,qh,h in (49), in which we have implemented a time-discretization of Js,qh,h of time-757

step τ . This implies in particular that:758

• The minimization space Th has to be replaced by the set of time discrete func-759

tions zh,τ ∈ RNt × RN+2, with Nt = dT/τe and the corresponding boundary760

conditions.761

• The time continuous integral in (49) shall be replaced by discrete sums762

τ
∑
t∈[0,T ]∩τZ.763

• The wave operator should be replaced by a time-discrete version of the space764

semi-discrete wave operator ∂tt−∆h + qh. We simply choose to approximate765

∂tt by the usual 3-points difference operator ∆τ (similar to ∆h but applied766
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in time now). Similarly, the operator ∂t in the last term of (49) will be767

replaced by the operator ∂+
τ which is the approximation of ∂t computed with768

the subsequent time-step.769

• The solution wh of (50) has to be computed on a fully discrete version of770

(50). We choose to discretize using an explicit Euler method.771

• There is no need to add a new penalization term for high-frequency spurious772

terms as we will impose a Courant-Friedrichs-Lax (CFL) type condition τ ≤773

h, so that the last term in (49) already penalizes the spurious high-frequency774

solutions.775

Of course, the strategies that have been presented in Section 3 to make the nu-776

merical implementation of the minimization of Js,q more efficient can be successfully777

applied to the functional Js,qkh,h,τ as well. Namely, in the implementation of Algo-778

rithm 4, we will always work on the conjugated functional, i.e. the one given in the779

conjugated variable y = esϕz, and we will always decompose the domain using the780

progressive argument presented in Section 3.2.781

We also point out that the minimization of the quadratic functional Js,qh,h,τ782

obtained that way can be recast using a variational formulation similar to (37), which783

presents the advantage to underline the fact that we are actually solving a sparse784

linear system. We therefore use a Compressed Sparse Row (CSR) tool as sparse785

matrix storage format and solve the linear system thanks to an LU factorization.786

The iterative process on the potential is supposed to reach convergence when the787

following stop criterion is satisfied788

789

(63)

∫
(0,L)h

|qk+1
h − qkh|2∫

(0,L)h

|q1
h − q0

h|2
≤ ε0 or790

1∫
[0,T )τ

|∂nW [Q](t, L)|2

∫
[0,T )τ

∣∣(∂−h wkh)N+1(t)− ∂nW [Q](t, L)
∣∣2 ≤ ε1.791

792

for given choices of the parameters ε0 > 0 and ε1 > 0, in which the integrals have to793

be interpreted in the discrete sense.794

5. Numerical results. This section is devoted to the presentation of some nu-795

merical examples to illustrate the properties of the reconstruction algorithm and its796

efficiency. All simulations are executed with the software Scilab. The source codes797

are available on request.798

5.1. Synthetic noisy data. In this article, we work with synthetic data. To799

discretize the wave equations with potential (1), we use a finite differences scheme800

in space and a θ-scheme in time. The space and time steps are denoted by h and τ801

respectively. We set L = (Nx + 1)h and T = Ntτ , and we define, for 0 ≤ j ≤ Nx + 1802

and 0 ≤ n ≤ Nt, W
n
j a numerical approximation of the solution W (tn, xj) with803
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tn = nτ and xj = jh. It is solution of the following system:804

(64)



Wn+1
j − 2Wn

j +Wn−1
j

τ2
− θ

2
(∆hWh)n+1

j − (1− θ)(∆hWh)nj

− θ

2
(∆hWh)n−1

j +Q(xj)W
n
j = f(tn, xj),

W 1
j = w0(xj) + τw1(xj) +

τ2

2
((∆hw0)(xj)− q(xj)w0(xj) + f(0, xj)) ,

W 0
j = w0(xj) 1 ≤ j ≤ Nx,

Wn
0 = f∂(tn, 0) and Wn

Nx+1 = f∂(tn, L), 1 ≤ n ≤ Nt.

805

Then, we compute Mτ the counterpart of the continuous measurement M given in
(2) as follows:

Mτ (tn) =
Wn
Nx+1 −Wn

Nx

h
, 0 ≤ n ≤ Nt.

On the computed data, we may add a Gaussian noise:806

(65) Mτ (tn)←− (1 + αN (0, 0.5))Mτ (tn), 0 ≤ n ≤ Nt807

where N (0, 0.5) satisfies a centered normal law with deviation 0.5 and α is the level808

of noise. Note that the model of noise, that we chose, is a multiplicative noise. It809

allows to model the experimental error in the measurements.810

One of the main drawbacks of the method presented in Algorithm 4 is that we811

have to derive in time the observation flux. On Figure 4, we plot the flux M with812

respect to time (on the left hand side) and of its time derivative (on the right hand813

side). For each of the graphs, the red line is the exact value and the black line the814

generated noisy data. It shows that even a small perturbation on the observations815

gives rise to a large perturbation on its derivative. In order to partially remedy to816

this problem, we regularize the data thanks to a convolution process with a Gaussian:817

(66) M (t)←− 1√
2π

∫ ∞
0

M (t− r) exp

(
−r

2

4

)
dr.818

The number of iterations in this regularization process must be chosen in accordance819

to the a priori knowledge of the noise level. On Figure 4, the new regularized data820

that we use as an entry for the algorithm is plotted in blue.821

In order to avoid the inverse crime, we use neither the same schemes nor the822

same meshes for the direct and the inverse problems. Hence, we solve (1) thanks to823

an implicit scheme (θ = 1) with τ = 0.00033 and h = 0.00025 and we use an explicit824

scheme (θ = 0) for equation (15) in Algorithm 4, with τ = 0.01 and h =
τ

CFL
. Table825

1 gathers the numerical values used for all the following examples, unless specified826

otherwise where appropriate. In all the figures, the exact potential that we want to827

recover is plotted by a red line, the numerical potential recovered by the algorithm is828

represented by black crosses.

L f f∂ w0 w1 x0 β T s m CFL
1 0 2 2 + sin(πx) 0 −0.3 0.99 1.3 100 3 0.9 or 1

Table 1: Numerical values for the variables.

829
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(a) Flux M (t) (b) Time derivative of the flux ∂tM (t)

Fig. 4: The measurement M in the presence of 2% noise.

5.2. Simulations from data without noise. In this subsection, we present830

the results obtained for CFL = 1. For that very special choice, the explicit scheme831

used to discretized (1) is of order 2. We observe that in this case, the additional832

regularization term (45) in the functional does not seem to be necessary and s can be833

chosen as large as wanted independently of the value of h to achieve convergence. The834

successive results at each iteration of Algorithm 4 in the case of the reconstruction of835

the potential Q(x) = sin(2πx) are presented in Figure 5. One can observe that in less836

than 3 iterations, the convergence criteria (63) for ε0 = 10−5 is met.837

(a) q0 (b) q1 (c) q2 (d) q3

Fig. 5: Illustration of the convergence of the algorithm for CFL = 1 and s = 100.

Using the same target potential, Figure 6 illustrate the progressive process on the
first iteration of Algorithm 4. From an initial data q0

0 = 0, we represent successively

q0
j = q0

j−1 +
∂tY

0
j (0)

esϕ(0)w0
, 1 ≤ j ≤ 5,

where Y 0
j is the minimizer of J̃s,q0 [µ̃0

j ].838

In Figure 7, several results of reconstruction of potentials obtained using Algo-839

rithm 4 in the absence of noise are given.840

We recall that in our approach, it is mandatory to know the a priori bound m841

such that Q ∈ L∞≤m(R). On Figure 8, we illustrate the behavior of the algorithm in842

the case where an error is made on that bound. One can observe that the recovery of843

the potential is correct only in the zones where the potential Q is effectively bounded844

by m. In this situation, the convergence of the process doesn’t occur. In practice, if845
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(a) q00 = q0 (b) q01 (c) q02

(d) q03 (e) q04 (f) q05 = q1

Fig. 6: Illustration of the progressive process for Q(x) = sin(2πx) for s = 100.

(a) Q = −x (b) Q heaviside (c) Q = sin( x
1−x

)

Fig. 7: Different examples of reconstruction for CFL = 1 and s = 100.

the retrieved potential meets the value of m in several points, it is recommended to846

repeat the reconstruction process after choosing a greater value of m.847
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(a) (b)

Fig. 8: Reconstruction of exact potentials with the wrong choice of the a priori bound
m = 0.5, for CFL = 1 and s = 100.

5.3. Simulations with several levels of noise. If we slightly modify the sta-848

bility condition and take a CFL condition strictly smaller that 1, the explicit numer-849

ical scheme used to solve (15) leads to a non negligible approximation error, acting as850

a noise. The presence of the additional regularization term (45) in the functional is851

therefore necessary. In that case, if the mesh size h (through τ) is given, it is not pos-852

sible to take s as large as desired. Nevertheless, even for smaller values of s, Algorithm853

4 gives good results, that can be improved by refining the mesh. In Figure 9, several854

results of reconstruction of potentials obtained for α = 0, CFL = 0.9 and s = 10855

are presented. Figure 10 shows the results for Q(x) = sin(πx) with different level of

(a) Q = sin(2πx) (b) Q heaviside (c) Q = sin( x
1−x

)

Fig. 9: Different examples of reconstruction for CFL = 0.9 and s = 10.

856
noise in the measurements (α = 1%, 5% and 10%). Here, we used the appropriate857

discretized functional constructed to deal with the discretization process.858

Eventually, Figure 11 shows on the left hand side, an example of result obtained859

when the functional is discretized without taking into account the additional terms860

(45) requisite for its uniform coercivity with respect to the mesh size. Since the first861

iteration, severe oscillations occur and they amplify with the iterative process. On862

the right hand side, we illustrate the necessity of choosing a discretization space step863

small enough with respect to the value of the parameter s. Indeed, if the mesh size is864

too coarse, numerical instabilities appear.865

5.4. Simulations for initial datum not satisfying (6). So far, we presented866

numerical simulations in which the positivity assumption (6) on w0 was satisfied. In867

this section, we would like to briefly present what can be done in the case in which it868
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(a) α = 1% (b) α = 5% (c) α = 10%

Fig. 10: Recovery of the potential Q(x) = sin(πx) in presence of noise in the data.
The level of noise is denoted by α. Here, CFL = 0.9 and s = 10.

(a) Result for CFL = 0.9, s =
4 and no regularization term.

(b) Result for h = 0.011 and
s = 17, that is sh = 0.187.

Fig. 11: Illustration of the need of the additional regularization term (45) in the
functional (left). Illustration of the needed condition (46) between s and the space
step h (right).

is not satisfied. In that case, Step 3 of Algorithm 4 can be replaced by :869

(67)

q̃k+1
h (xj) =

 qkh(xj) +
∂tZ̃

k
h(0, xj)

w0(xj)
, for j ∈ {1, · · · , N} such that |w0(xj)| ≥ α,

0, elsewhere,

870

where α > 0 is the constant appearing in (6). As an example, let us consider

w0(x) = −a+ x, a ∈ (0, L),

which cancels at x = a in a single isolated point. If we take α = 10−2, we obtain the871

results given in Figure 12. Actually, the reconstruction is satisfactory outside a small872

neighborhood around x = a.873

Note that here, we made the choice to set 0 for the potential in the set {x ∈874

(0, L), |w0(x)| ≤ α}. Of course, other choices are possible. Among them, one could875

for instance simply do a linear interpolation between the values at the boundary of876

the set {x ∈ (0, L), |w0(x)| > α}. Though, as illustrated in Figure 12, it seems that877

Algorithm 4 converges anyway in the set {x ∈ (0, L), |w0(x)| > α}. One can therefore878

perform any kind of interpolation process to complete the values of the potentials in879

the set {x ∈ (0, L), |w0(x)| > α} after the convergence has been achieved.880
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(a) Q = sin(2πx) and a = 0.5. (b) Q = sin(2πx) and a = 0.2. (c) Q heaviside and a = 0.5.

Fig. 12: Reconstructions for w0(x) = −a+x not satisfying (6), CFL = 1 and s = 100.

5.5. Simulations in two dimensions. We also performed some reconstruc-881

tions in two dimensions where Ω = [0, 1]2, x0 = (−0.3,−0.3), Γ0 = {x = 1}∪{y = 1},882

w0(x1, x2) = 2 + sin(πx1) sin(πx2), w1 = 0, f = 0, f∂ = 2, β = 0.99, m = 2 and883

CFL = 0.5 ≤
√

2
2 . Figure 13 presents the results obtained for three different poten-884

tials. We took s = 3 and could not take it larger. Indeed, decreasing the space step885

h to ensure that sh remains small (condition (46)) leads to large systems (37) that886

exhaust the computational memory of Scilab pretty fast. The preliminary results of887

Figure 13 are obtained in an ideal framework where both direct and inverse problems888

are solved with the same numerical scheme on the same mesh and there is no noise.889

All theses simplifications will be removed in a forthcoming work where we wish to890

develop a convergent algorithm to reconstruct a non homogeneous wave speed from891

the information given by the flux M.892
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Appliquées (9) 103 (2015), no. 6, 1475–1522..908

[BK15] L. Beilina and M. V. Klibanov, Globally strongly convex cost functional for a coefficient909
inverse problem, Nonlinear Analysis: Real World Applications 22 (2015), no. 0, 272910
– 288.911

[BLR92] C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation,912
control and stabilization of waves from the boundary, SIAM J. Control and Optim.913
30 (1992), no. 5, 1024–1065.914

[BHLR11] F. Boyer, F. Hubert and J. Le Rousseau Uniform controllability properties for915
space/time-discretized parabolic equations, Numer. Math. 118 (2011), no. 4, 601-916
661.917

[BHLR10a] F. Boyer, F. Hubert and J. Le Rousseau Discrete Carleman estimates for elliptic oper-918

This manuscript is for review purposes only.



34 L. BAUDOUIN, M. DE BUHAN, AND S. ERVEDOZA

(a) Exact potentials. (b) Potentials recovered numerically.

Fig. 13: Different examples of reconstruction in the 2d case.

ators in arbitrary dimension and applications, SIAM J. Control Optim. 48 (2010),919
no. 8, 5357-5397.920

[BHLR10b] F. Boyer, F. Hubert and J. Le Rousseau Discrete Carleman estimates for elliptic oper-921
ators and uniform controllability of semi-discretized parabolic equations, J. Math.922
Pures Appl. 9 (2010), no. 3, 240-276.923

[BLR14] F. Boyer, and J. Le Rousseau Carleman estimates for semi-discrete parabolic operators924
and application to the controllability of semi-linear semi-discrete parabolic equa-925
tions, Ann. Inst. H. Poincar Anal. Non Linaire 31 (2014), no. 5, 1035-1078.926
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