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Abstract

A binary CSP instance satisfying the broken-
triangle property (BTP) can be solved in polyno-
mial time. Unfortunately, in practice, few instances
satisfy the BTP. We show that a local version of the
BTP allows the merging of domain values in bi-
nary CSPs, thus providing a novel polynomial-time
reduction operation. Experimental trials on bench-
mark instances demonstrate a significant decrease
in instance size for certain classes of problems. We
show that BTP-merging can be generalised to in-
stances with constraints of arbitrary arity. A direc-
tional version of the general-arity BTP then allows
us to extend the BTP tractable class previously de-
fined only for binary CSP.

1 Introduction
At first sight one could assume that the discipline of con-
straint programming has come of age. On the one hand, effi-
cient solvers are regularly used to solve real-world problems
in diverse application domains while, on the other hand, a rich
theory has been developed concerning, among other things,
global constraints, tractable classes, reduction operations and
symmetry. The research reported in this paper is part of a
long-term project to bridge the gap between theory and prac-
tice.

Most research on tractable classes has been based on
classes defined by placing restrictions either on the types of
constraints or on the constraint hyper-graph whose vertices
are the variables and whose hyper-edges are the constraint
scopes. Another way of defining classes of binary CSP in-
stances consists in imposing conditions on the microstructure,
a graph whose vertices are the possible variable-value assign-
ments with an edge linking each pair of compatible assign-
ments [Jégou, 1993; Salamon and Jeavons, 2008]. If each
vertex of the microstructure, corresponding to a variable-
value assignment hx, ai, is labelled by the variable x, then
this so-called coloured microstructure retains all informa-
tion from the original instance. The broken-triangle property

⇤supported by ANR Project ANR-10-BLAN-0210. Martin
Cooper was also supported by EPSRC grant EP/L021226/1.

(BTP) is a simple local condition on the coloured microstruc-
ture which defines a tractable class of binary CSP [Cooper
et al., 2010]. Inspired by the BTP, investigation of other
forbidden patterns in the coloured microstructure has led to
the discovery of new tractable classes [Cohen et al., 2012;
Cooper and Escamocher, 2015; Cooper and Živný, 2012;
El Mouelhi et al., 2015] as well as new reduction operations
based on variable elimination [Cohen et al., 2015].

For simplicity of presentation we use two different repre-
sentations of constraint satisfaction problems. In the binary
case, our notation is fairly standard, whereas in the general-
arity case we use a notation close to the representation of SAT
instances. This is for presentation only, though, and our algo-
rithms do not need instances to be represented in this manner.
Definition 1 A binary CSP instance I consists of

• a set X of n variables,

• a domain D(x) of values for each variable x 2 X ,

• a relation R
xy

✓ D(x)⇥D(y), for each pair of distinct

variables x, y 2 X , which consists of the set of compat-

ible pairs of values (a, b) for variables (x, y).

A partial solution to I on Y = {y1, . . . , yr} ✓ X is a set

{hy1, a1i, . . . , hyr, ari} such that 8i, j 2 [1, r], (a
i

, a
j

) 2
R

yiyj . A solution to I is a partial solution on X .

For simplicity of presentation, Definition 1 assumes that
there is exactly one constraint relation for each pair of vari-
ables. An instance I is arc consistent if for each pair of dis-
tinct variables x, y 2 X , for each value a 2 D(x), there is a
value b 2 D(y) such that (a, b) 2 R

xy

.
In our representation of general-arity CSP instances, we

require the notion of tuple which is simply a set of variable-
value assignments. For example, in the binary case, the tuple
{hx, ai, hy, bi} is compatible if (a, b) 2 R

xy

and incompati-

ble otherwise.
Definition 2 A (general-arity) CSP instance I consists of

• a set X of n variables,

• a domain D(x) of values for each variable x 2 X ,

• a set NoGoods(I) consisting of incompatible tuples.

A partial solution to I on Y = {y1, . . . , yr} ✓ X is a tuple

t = {hy1, a1i, . . . , hyr, ari} such that no subset of t belongs

to NoGoods(I). A solution is a partial solution on X .
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Figure 1: A broken triangle on two values a, b for a given
variable x.

2 Value merging in binary CSP
In this section we consider a method, based on the BTP, for
reducing domain size while preserving satisfiability. Instead
of eliminating a value, as in classic reduction operations such
as arc consistency or neighbourhood substitution, we merge
two values. We show that the absence of broken triangles on
two values for a variable x in a binary CSP instance allows us
to merge these two values in the domain of x while preserv-
ing satisfiability. This rule generalises the notion of virtual
interchangeability [Likitvivatanavong and Yap, 2013] as well
as neighbourhood substitution [Freuder, 1991].

It is known that if for a given variable x in an arc-consistent
binary CSP instance I , the set of (in)compatibilities (known
as a broken-triangle) shown in Figure 1 occurs for no two
values a, b 2 D(x) and no two assignments to two other
variables, then the variable x can be eliminated from I with-
out changing the satisfiability of I [Cooper et al., 2010;
Cohen et al., 2015]. In figures, each bullet represents a
variable-value assignment, assignments to the same variable
are grouped together within the same oval and compatible
(incompatible) pairs of assignments are linked by solid (bro-
ken) lines. Even when this variable-elimination rule cannot
be applied, it may be the case that for a given pair of values
a, b 2 D(x), no broken triangle occurs. We will show that
if this is the case, then we can perform a domain-reduction
operation which consists in merging the values a and b.
Definition 3 Merging values a, b 2 D(x) in a binary CSP

consists in replacing a, b in D(x) by a new value c which

is compatible with all variable-value assignments compati-

ble with at least one of the assignments hx, ai or hx, bi. A

value-merging condition is a polytime-computable property

P (x, a, b) of assignments hx, ai, hx, bi in a binary CSP in-

stance I such that when P (x, a, b) holds, the instance I 0 ob-

tained from I by merging a, b 2 D(x) is satisfiable if and

only if I is satisfiable.

We now formally define the value-merging condition based
on the BTP.
Definition 4 A broken triangle on the pair of variable-value

assignments a, b 2 D(x) consists of a pair of assignments

d 2 D(y), e 2 D(z) to distinct variables y, z 2 X \{x} such

that (a, d) /2 R
xy

, (b, d) 2 R
xy

, (a, e) 2 R
xz

, (b, e) /2 R
xz

and (d, e) 2 R
yz

. The pair of values a, b 2 D(x) is BT-free
if there is no broken triangle on a, b.

Proposition 5 In a binary CSP instance, being BT-free is a

value-merging condition. Furthermore, given a solution to
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Figure 2: (a) A broken triangle exists on values a0, b0 at vari-
able z. (b) After BTP-merging of values a and b in D(x), this
broken triangle has disappeared.

the instance resulting from the merging of two values, we can

find a solution to the original instance in linear time.

Proof: Let I be the original instance and I 0 the new instance
in which a,b have been merged into a new value c. Clearly,
if I is satisfiable then so is I 0. It suffices to show that if I 0
has a solution s which assigns c to x, then I has a solution.
Let s

a

, s
b

be identical to s except that s
a

assigns a to x and
s
b

assigns b to x. Suppose that neither s
a

nor s
b

are solu-
tions to I . Then, there are variables y, z 2 X \ {x} such
that ha, s(y)i /2 R

xy

and hb, s(z)i /2 R
xz

. By definition of
the merging of a, b to produce c, and since s is a solution
to I 0 containing hx, ci, we must have (b, s(y)) 2 R

xy

and
(a, s(z)) 2 R

xz

. Finally, (s(y), s(z)) 2 R
yz

since s is a so-
lution to I 0. Hence, hy, s(y)i, hz, s(z)i, hx, ai, hx, bi forms
a broken-triangle, which contradicts our assumption. Hence,
the absence of broken triangles on assignments hx, ai, hx, bi
allows us to merge these assignments while preserving satis-
fiability. Reconstructing a solution to I from a solution s to
I 0 simply requires checking which of s

a

or s
b

is a solution to
I . 2

The BTP-merging operation is not only satisfiability-
preserving but, from Proposition 5, we know that we can also
reconstruct a solution in polynomial time to the original in-
stance I from a solution to an instance Im to which we have
applied a sequence of merging operations until convergence.
Indeed, we have the following stronger result [Cooper et al.,
2014].
Proposition 6 Let I be a binary CSP instance and suppose

that we are given the set of all solutions to the instance Im

obtained after applying a sequence of BTP-merging opera-

tions. All N solutions to I can then be found in O(Nn2d)
time.

The weaker operation of neighbourhood substitution has
the property that two different convergent sequences of elim-
inations by neighbourhood substitution necessarily produce
isomorphic instances Im1 , Im2 [Cooper, 1997]. This is not
the case for BTP-merging. Firstly, and perhaps rather sur-
prisingly, BTP-merging can have as a side-effect to eliminate
broken triangles. This is illustrated in the instance shown in
Figure 2. The instance in Figure 2(a) contains a broken tri-
angle on values a0, b0 for variable z, but after BTP-merging
of values a, b 2 D(x) into a new value c, as shown in Fig-
ure 2(b), there are no broken triangles in the instance. Sec-
ondly, BTP-merging of two values in D(x) can introduce a
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Figure 3: (a) This instance contains no broken triangle. (b)
After BTP-merging of values a and b in D(x), a broken tri-
angle has appeared on values a0, b0 2 D(z).

domain N
inst

N
val

N
del

P
del

BH-4-13 6 7,334 3,201 44%
BH-4-4 10 674 322 48%
BH-4-7 20 2,102 883 42%
ehi-85 98 2,079 891 43%
ehi-90 100 2,205 945 43%
gr-col/school 8 4,473 104 2%
gr-col/sgb/book 26 1,887 534 28%
jobShop 45 6,033 388 6%
marc 1 6400 6,240 98%
os-taillard-4 30 2,932 1,820 62%
os-taillard-5 28 6,383 2,713 43%
rlfapGraphsMod 5 14,189 5,035 35%
rlfapScens 5 12,727 821 6%
rlfapScensMod 9 9,398 1,927 21%
others 1919 1,396 28 0.02%

Table 1: Results of experiments on CSP benchmark problems
(N

inst

= no. instances, N
val

= no. values, N
del

= no.
values deleted, P

del

= percentage deleted).

broken triangle on a variable z 6= x, as illustrated in Figure 3.
The instance in Figure 3(a) contains no broken triangle, but
after the BTP-merging of a, b 2 D(x) into a new value c, a
broken triangle has been created on values a0, b0 2 D(z). In-
deed, it has been shown that finding an optimal sequence of
BTP-merges is NP-hard [Cooper et al., 2015].

3 Experimental trials
To test the utility of BTP-merging we performed extensive
experimental trials on benchmark instances from the Interna-
tional CP Competition1. For each binary CSP instance, we
performed BTP-mergings until convergence with a time-out
of one hour. In total, we obtained results for 2,547 instances
out of 3,811 benchmark instances within a time-out of one
hour.

Table 1 gives a summary of the results of the experimen-
tal trials. We do not include those instances which are en-
tirely solved by BTP-merging (such as all instances from the
benchmark-domains hanoi and domino, or all instances
from the pigeons benchmark-domain with a suffix -ord).
We give details about those benchmark-domains where BTP-

1http://www.cril.univ-artois.fr/CPAI08

merging was most effective. All other benchmark-domains
are grouped together in the last line of the table. The table
shows the number of instances in the benchmark-domain, the
average number of values (i.e. variable-value assignments) in
the instances from this benchmark-domain, the average num-
ber of values deleted (i.e. the number of BTP-merging op-
erations performed) and finally this average represented as a
percentage of the average number of values.

We can see that for certain types of problem, BTP-merging
is very effective, whereas for others (last line of the table)
hardly any merging of values occurred. Runtime compar-
isons indicate that for BTP-merging to be useful in general-
purpose solvers, we need to develop efficient algorithms to
target those instances in which many merges are likely to oc-
cur [Cooper et al., 2016].

4 BTP-merging: arbitrary-arity constraints
In the remainder of the paper, we assume that the constraints
of a general-arity CSP instance I are given in the form de-
scribed in Definition 2, i.e. as a set of incompatible tuples
NoGoods(I), where a tuple is a set of variable-value assign-
ments. For simplicity of presentation, we use the predicate
Good(I, t) which is true iff the tuple t is a partial solution,
i.e. t does not contain any pair of distinct assignments to the
same variable and @t0 ✓ t such that t0 2 NoGoods(I). We
first generalise the notion of broken triangle and merging to
the general-arity case.
Definition 7 A general-arity broken triangle (GABT) on val-

ues a, b 2 D(x) consists of a pair of tuples t, u (containing

no assignments to variable x) satisfying:

1. Good(I, t [ u) ^ Good(I, t [ {hx, ai}) ^ Good(I, u [
{hx, bi})

2. t [ {hx, bi}, u [ {hx, ai} 2 NoGoods(I)

The pair of values a, b 2 D(x) is GABT-free if there is no

broken triangle on a, b.

Deciding whether a pair a, b is GABT-free is polytime for
constraints given in extension (as the set of satisfying assign-
ments) as well as for those given by nogoods (the set of as-
signments violating the constraint).
Definition 8 Merging values a, b 2 D(x) in a general-arity

CSP instance I consists in replacing a, b in D(x) by a new

value c which is compatible with all variable-value assign-

ments compatible with at least one of the assignments hx, ai
or hx, bi, thus producing an instance I 0 with the new set of

nogoods defined as follows: NoGoods(I 0) =

{t 2 NoGoods(I) | hx, ai, hx, bi /2 t}
[ {t [ {hx, ci} | t [ {hx, ai} 2 NoGoods(I) ^

9t0 2 NoGoods(I) s.t. t0 ✓ t [ {hx, bi}}
[ {t [ {hx, ci} | t [ {hx, bi} 2 NoGoods(I) ^

9t0 2 NoGoods(I) s.t. t0 ✓ t [ {hx, ai}}

A value-merging condition is a polytime-computable property

P (x, a, b) of assignments hx, ai, hx, bi in a CSP instance I
such that when P (x, a, b) holds, the instance I 0 is satisfiable

if and only if I is satisfiable.
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This merging operation can be performed in polynomial
time whether constraints are represented positively in exten-
sion or negatively as nogoods. As in the binary case, absence
of general-arity broken triangles allows merging [Cooper et

al., 2014].

Proposition 9 In a general-arity CSP instance I , being

GABT-free is a value-merging condition. Furthermore, given

a solution to the instance resulting from the merging of two

values, we can find a solution to I in linear time.

5 A tractable class of general-arity CSP
In binary CSP, the broken-triangle property defines an inter-
esting tractable class when broken-triangles are forbidden ac-
cording to a given variable ordering. Unfortunately, the orig-
inal definition of BTP was limited to binary CSPs [Cooper et

al., 2010]. Section 4 described a general-arity version of the
broken-triangle property whose absence on two values allows
these values to be merged while preserving satisfiability. An
obvious question is whether GABT-freeness can be adapted
to define a tractable class. We will see that this is possible for
a fixed variable ordering, but not if the ordering is unknown.

Definition 7 defined a general-arity broken triangle
(GABT). What happens if we forbid GABTs according to a
given variable ordering? Absence of GABTs on two values
a, b for the last variable x in the variable ordering allows us
to merge a and b while preserving satisfiability. It is pos-
sible to show that if GABTs are absent on all pairs of val-
ues for x, then we can merge all values in the domain D(x)
of x to produce a singleton domain. This is because merg-
ing a and b, to produce a merged value c, cannot introduce
a GABT on c, d for any other value d 2 D(x). Once the
domain D(x) becomes a singleton {a}, we can clearly elimi-
nate x from the instance, by deleting hx, ai from all nogoods,
without changing its satisfiability. It is at this moment that
GABTs may be introduced on other variables, meaning that
forbidding GABTs according to a variable ordering does not
define a tractable class.

Nevertheless, strengthening the general-arity BTP allows
us to avoid this problem. The resulting directional general-
arity version of BTP (for a known variable ordering) then de-
fines a tractable class which includes the binary BTP tractable
class as a special case.

We suppose given a total ordering < of the variables of
a CSP instance I . We write t<x to represent the subset of
the tuple t consisting of assignments to variables occurring
before x in the order <, and V ars(t) to denote the set of all
variables assigned by t.

Definition 10 A directional general-arity (DGA) broken tri-
angle on assignments a, b to variable x in a CSP instance I
is a pair of tuples t, u (containing no assignments to variable

x) satisfying the following conditions:

1. t<x

and u<x

are non-empty

2. Good(I, t<x [ u<x

) ^ Good(I, t<x [ {hx, ai}) ^
Good(I, u<x [ {hx, bi})

3. 9t0 s.t. V ars(t0) = V ars(t) ^ (t0)<x

= t<x ^
t0 [ {hx, ai} /2 NoGoods(I)

4. 9u0
s.t. V ars(u0

) = V ars(u) ^ (u0
)

<x

= u<x ^
u0 [ {hx, bi} /2 NoGoods(I)

5. t [ {hx, bi}, u [ {hx, ai} 2 NoGoods(I)

I satisfies the directional general-arity broken-triangle prop-
erty (DGABTP) according to the variable ordering < if no

directional general-arity broken triangle occurs on any pair

of values a, b for any variable x.

Any instance I satisfying the DGABTP can be solved in
polynomial time by repeatedly alternating the following two
operations: (i) merge all values in the last remaining variable
(according to the order <); (ii) eliminate this variable when
its domain becomes a singleton. Both operations preserve
satisfiability and neither of them can introduce DGA broken
triangles [Cooper et al., 2014]. Moreover, the DGABTP can
be tested in polynomial time for a given order.

Theorem 11 A CSP instance I satisfying the DGABTP on a

given variable ordering can be solved in polynomial time.

An important question is the tractability of testing the ex-
istence of a variable ordering for which a given instance sat-
isfies the DGABTP. Although this is polynomial-time for bi-
nary CSPs [Cooper et al., 2010], it turns out to be NP-hard
for general-arity CSPs [Cooper et al., 2014].

Theorem 12 Testing the existence of a variable ordering for

which a CSP instance satisfies the DGABTP is NP-complete.

6 Conclusion
This paper described a novel reduction operation for binary
CSP, called BTP-merging, which is strictly stronger than
neighbourhood substitution. Experimental trials have shown
that in several benchmark-domains applying BTP-merging
until convergence can significantly reduce the total number of
variable-value assignments. We gave a general-arity version
of BTP-merging and we then went on to define a general-arity
version of the tractable class defined by the broken-triangle
property for a known variable ordering.
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