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Abstract

The number of satellites and sensors devoted to earth observation has be-1

come increasingly elevated, delivering extensive data, especially images. At2

the same time, the access to such data and the tools needed to process3

them has considerably improved. In the presence of such data flow, we need4

automatic image interpretation methods, especially when it comes to the5

monitoring and prediction of environmental and societal changes in highly6

dynamic socio-environmental contexts. This could be accomplished via arti-7

ficial intelligence.8
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The concept described here relies on the induction of classification rules that9

explicitly take into account structural knowledge, using Aleph, an Induc-10

tive Logic Programming (ILP) system, combined with a multi-class clas-11

sification procedure. This methodology was used to monitor changes in12

land cover/use of the French Guiana coastline. One hundred and fifty-eight13

classification rules were induced from 3 diachronic land cover/use maps in-14

cluding 38 classes. These rules were expressed in first order logic language,15

which makes them easily understandable by non-experts. A ten-fold cross-16

validation gave significant average values of 84.62%, 99.57% and 77.22% for17

classification accuracy, specificity and sensitivity, respectively. Our method-18

ology could be beneficial to automatically classify new objects and to facili-19

tate object-based classification procedures.20

Keywords: Supervised classification, Machine learning, Inductive Logic

Programming (ILP), Geographic Information System, Land cover map.

1. Introduction21

The availability of remotely sensed Earth observation data, taken from22

aircrafts (including drones) and satellites, is constantly increasing. This ob-23

viously comes from the increasing number of Earth observation satellites24

and sensors. In fact, a recent report (Zaiche and Smith, 2011) estimates25

that the number of satellite launches will be 50% higher during the next26

ten years, when compared to the last decade. In particular, 200 govern-27

mental Earth observation satellites will be launched during that period. At28

the same time, as an increasing number of countries and/or organizations29

distribute remotely sensed data for free, the evolution in data distribution30
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and use policies contributes to the use of huge volumes of data. Thus, data31

processing and interpretation have become a serious challenge for engineers32

and researchers. Therefore, classical procedures cannot continue to be used,33

and new approaches are needed to automatically update the land cover/use34

maps that provide essential information to decision makers.35

In this context, several studies have formally represented and introduced ex-36

pert knowledge for automatic image classification and interpretation. For37

instance, Suzuki et al. (2001) built a system for satellite image classification38

based on expert knowledge. More recently, Forestier et al. (2012) built a39

knowledge-base of urban objects, allowing the interpretation of high spatial40

resolution images in order to assist urban planner with mapping tasks. Re-41

cent studies devoted to expert knowledge formalization for automatic image42

interpretation have been directed towards ontologies. Hudelot et al. (2008)43

proposed an ontology of spatial relations to guide medical image interpre-44

tation, which is then enriched by fuzzy representations of concepts. Within45

the remote sensing framework, both Durand et al. (2007) and Andres et al.46

(2012) propose ontology-based automatic procedures for image processing.47

A complementary approach to expert knowledge formalization is knowledge48

extraction from data. Such approach is utilized by all existing supervised49

image classification procedures, which first require a learning phase with de-50

limitation and labeling (allocation to a class) of regions in the image. How-51

ever, most methods consider only pixel information within such regions to52

separate and characterize the different classes. Structural aspects, i.e., infor-53

mation arrangement in space, are essentially taken into account by computing54

textural indexes within the same regions. To our knowledge, there is no op-55
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erative tool that provides general and efficient classification rules exploiting56

structural knowledge at a higher semantic level, particularly at the object57

level within the object-oriented image analysis (Blaschke, 2010), when such58

knowledge is more robust and expressive than at the pixel level.59

Automatically learning such structural knowledge within the supervised frame-60

work, however, requires the delimitation and labeling of many more regions61

than with pixel-based approaches, and would consequently entails important62

expert efforts. One solution would be to take advantage of existing maps63

resulting from different types of expertise already acquired (e.g., expertise in64

remote sensing, image processing, environment, ecology, etc.).65

Thus far, very few studies have proposed to learn structural knowledge from66

maps.67

Malerba et al. (2003) implemented INductive GEographic iNformation Sys-68

tem (INGENS) to assist with topographic map interpretation. INGENS con-69

sists of a prototypical extended Geographic Information System (GIS) with70

inductive learning capabilities. GIS classical functionalities are used to ex-71

tract relevant concepts and features from spatial database, and the integrated72

inductive system allows finding rules to automatically recognize complex ge-73

ographical contexts that are defined by the presence of specific geographical74

objects and their spatial arrangement in predefined spatial windows (cells).75

It is devoted to support map interpretation and geographical information re-76

trieval by enriching geographical queries, but not to automatic classification77

in the context of large datasets. In fact, such automatic procedures require78

a quantitative evaluation that has not been performed with INGENS.79

Vaz et al. (2007) use an Inductive Logic system called APRIL (Fonseca et al.,80
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2006) to learn classification rules from both a detailed map provided by81

botanists and CORINE Land Cover (CLC) maps of the same zone. Such82

rules are intended to automatically disaggregate CLC map information that83

is considered too generic within the application framework. Here again, the84

precision of the system is not provided.85

Inductive learning of structural features from maps has been applied to the86

prediction of particular events that partially depend on landscape charac-87

teristics. Vaz et al. (2010) propose a system that predicts wildfires from88

information on past fires and from compositional and structural features of89

the land use. However, the performance of the predictions, estimated by a90

10-fold cross validation, does not seem to allow operational use.91

Finally, Chelghoum et al. (2006) automatically transformed spatial relation92

information stored in multi-tables into first-order logic, and used S-TILDE93

(Spatial Top-down Induction Logical DEcision tree) to induce classification94

rules. They applied their method for spatial prediction of shellfish contamina-95

tion in the Thau lagoon. Their work considered only the binary classification96

problem.97

In such applicative and scientific contexts, we report here a method for98

structural and symbolic knowledge extraction from land use/cover maps and99

complementary geographic information layers, combined with a multi-class100

classification approach. Our work does not deal with the delimitation of re-101

gions (or segments) from images, but with the labeling of previously defined102

image regions. Methods intended to image region delimitation, including103

segmentation methods, are therefore beyond the scope of this study. In this104

study we chose the Inductive Logic Programming framework (ILP) (Mug-105
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gleton, 1991) for the learning task, and a multi-class classification procedure106

developed by Abudawood and Flach (2011) within the ILP framework, i.e.,107

the Multi-class Rule Set Intersection (MRSI). This methodology was tested108

to update land cover/use maps of the French Guiana coastline, and the re-109

sulting classification system was thoroughly evaluated from qualitative and110

quantitative points of view through a ten-fold cross-validation.111

Our paper is organized as follows: the general methodology is explained,112

by presenting the ILP approach, the geographic information extraction and113

coding, the multi-class classification technique and the evaluation procedures.114

Then, the application to land/use maps updating is described, by detailing115

the exploited dataset and the adaptation of the general methodology. The116

next section presents the results by qualifying the induced rules and provid-117

ing prediction quantitative scores. We then discuss our results and a general118

conclusion is given about the proposed approach.119

2. Materials and Methods120

2.1. Inductive Logic Programming121

Inductive Logic Programming (ILP) (Muggleton, 1991) is a search field122

that combines machine learning and logic programming. It is a technique for123

learning a general theory H from a background knowledge B and examples124

E within a framework provided by clausal logic.125

ILP can model complex problems and has been used in several fields such126

as chemistry (Blockeel et al., 2004), biology, physics, medicine (Luu et al.,127

2012; Fromont et al., 2005), ecology and bio-informatics (Santos et al., 2012;128

Lavrac and Dzeroski, 1994; Srinivasan et al., 1996). It has, also, been applied129
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to chess (Goodacre, 1996) and to test the quality of river water (Cordier,130

2005). Very few studies have applied this method to geographical data, as131

already discussed in the introduction (Malerba et al., 2003; Vaz et al., 2007,132

2010; Chelghoum et al., 2006).133

ILP is defined as follows (Lavrac and Dzeroski, 1994):134

Given:135

• A description language L.136

• Background knowledge B, expressed under Horn clauses (a subset of137

general first order logic formula, expressed using L, describing the ex-138

isting knowledge and constraints on the target concept, i.e., in our case,139

the allocation to a given land cover/use class;140

• A set of examples E, divided into two subsets, E+ and E−, which141

represent the sets of positive and negative examples, respectively;142

Find a "theory" H , i.e., a set of formula using the description language143

L that covers positive examples E+, but does not cover (or in a controlled144

way) the negative examples E−.145

We chose the ILP engine Aleph (Srinivasan, 2007). It is an open source146

ILP system, written in Prolog, using top-down search and based on inverse147

entailment (Muggleton, 1995).148

2.2. Geographic information extraction and coding149

Each patch of land use/cover map is referred to as object and defines150

the elementary geographical entity to which the reasoning will be applied.151

Objects are used to define the examples for the learning and test phases.152
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Objects are described using predicates characterizing their intrinsic (class,153

area, fractal dimension, compactness, perimeter) and relational features (ad-154

jacency, inclusion, relative positions in latitudinal and longitudinal direc-155

tions) (cf. Table 1). The choice of such predicates is essentially based on a156

priori knowledge of the authors on the discriminating features of the spatial157

objects constituting land cover/use maps.158

Inductive Logic Programming being adapted to symbolic information, dis-159

cretization of the numeric variables is performed, and the information recoded160

as follows: for any numeric variable V , the 10th, 20th, ..., 90th percentiles of161

the empirical distribution of V , denoted pk (k ∈ [1, 9]), are computed. Then,162

for every pk, two predicates were defined to indicate if an observed value X163

for V is lower or higher than pk. For instance, the observed numeric value164

X, corresponding to the area of the object O, is recoded, for pk, as follows:165

area_symb(O, Ik):- area_num(O,X), X ≤ pk.

or area_symb(O, Sk):- area_num(O,X), X > pk.

with Ik and Sk as the intervals [− inf , pk] and ]pk,+ inf], respectively.166

Eventually, the latitude and longitude values were used to characterize the167

relative positions of the object pairs (cf. Table 1).168
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Table 1: Predicates used for object characterization. Asterisk indicates that the predicate

is not used in the rule premises.

Predicates Description

object(O) Declaration of the object O

class(O,class_label)
The object O belongs to the
class class_label

adjacent(O1,O2) O1 and O2 are two adjacent objects

included(O1,O2) O2 is included in O1

contains(O,E)

O contains the entity E
(e.g. E ∈ {River ,Road , Building, ...})

area_num(O,X)* X is the area (m2), the compactness
value, the fractal dimension
and the perimeter (m) of the object O,
respectively, with (X ∈ ℜ)

compactness_num(O,X)*

fract_dim_num(O,X)*

perimeter_num(O,X)*

area_symb(O,Iareak or Sarea
k )

Recoding of the numeric
variables according to the
percentiles (see text for details)

compactness_symb(O,Icomp
k or Scomp

k )

fract_dim_symb(O,Idfk or Sdf
k )

perimeter_symb(O,Iperk or Sper
k )

lat(O,X)* X is the latitude and
longitude of O, respectively,
(X ∈ ℜ)long(O,X)*

north(O1,O2):-
lat(O1,A),lat(O2,B),A>B.

O1 is located north,
south, east and
west of O2, respectively.

south(O1,O2):-
lat(O1,A),lat(O2,B),A≤B.

east(O1,O2):-
long(O1,A),long(O2,B),A>B.
west(O1,O2):-
long(O1,A),long(O2,B),A≤B.
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2.3. Rule induction: one-vs-rest approach169

Once the information is extracted and coded according to the above170

method, the classification rules are induced by the inductive system Aleph.171

When applying ILP within the multi-class framework, i.e., in the case of more172

than two classes (each object belonging to only one class), the one-vs-rest173

approach is a commonly used approach (Abudawood and Flach, 2011). Such174

method consists in generating as many classifiers as classes, by defining the175

positive and negative example sets for each class c as follows:176







E+ = {O/classe(O, c)}

E− = {O/classe(O, c)}

and by running Aleph with such example sets, for each class c.177

2.4. Multi-class framework178

Considering the previously described one-vs-rest approach results in in-179

ducing as many classifiers as classes. Considering the classifiers indepen-180

dently of one another, one or several classes can be predicted when a new181

object is to be classified. Abudawood and Flach (2011) proposed several182

solutions to handle multi-class problems for ILP. Among them, the Multi-183

class Rule Set Intersection (MRSI) method gave the highest accuracies and184

Areas Under the ROC Curve (AUC) when taking multi-class data sets into185

account (Abudawood and Flach, 2011). The principle of the MRSI method186

is: i) the theories induced for each class are gathered in an unique rule set;187

ii) for each rule i, the set of covered examples by the rule, Ci, is stored; iii) a188

default rule is formed that concludes to the majority class of the uncovered189

examples; iv) for an unseen object O, the intersection of the sets of examples190
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covered by the fired rules is computed (I = ∩Ci|ri is fired) and, finally; v)191

the predicted class ĉ is the majority class in the set I, i.e., the more probable192

class given to the new object O, with an empirical probability p(c|O).193

2.5. Prediction evaluation194

Overall accuracy, sensitivity, specificity and Kappa index are computed195

based on a 10-fold stratified cross-validation procedure.196

For each class Ci (i ∈ [1, n]), the set of positive examples Ei is randomly197

divided in ten subsets Ei,f (f ∈ [1, 10]). If a class j is associated with p198

positive examples, with p < 10, then Ei,f>p = ∅. Then the f th learning set199

for the ith class is defined as follows:200







E+
i,f = ∪l=1,...,10; l 6=fEi,l

E−
i,f = ∪j=1,...,n; j 6=i{∪l=1,...,10 l 6=fEj,l}

In the multi-class classification framework, one test set Tf has to be de-201

fined for each fold f . Such test set is consequently defined as follows:202

Tf = ∪i=1,...,nEi,f

Overall accuracy, sensitivity, specificity and Kappa index values are com-203

puted for each test set, then averaged. The formulas of these measures are204

given hereafter.205

The multi-class classification procedure previously described permits to com-206

pute the multi-class contingency table (see Table 2) for each test set, and to207

obtain the overall accuracy as follows (Abudawood and Flach, 2011):208

Overall Accuracy =

n
∑

i=1

TP (i)

E
(1)

11



where n is the number of classes, TP (i) the number of true positives for209

the class i, and E the total number of test examples.210

Table 2: Contingency table with notations (TP: True Positive; TN: True Negative; FP:

False Positive; FN: False Negative) for the class i only. (Adapted from Abudawood and

Flach (2011))

Predicted

C1 ... Ci−1 Ci Ci+1 ... Cn Total

Actual

C1 TN
(i)
1 ... ... FP

(i)
1 ... ... ... E1

... ... ... ... ... ... ... ... ...

... ... ... TN
(i)
i−1 FP

(i)
i−1 ... ... ... Ei−1

Ci FN
(i)
1 ... FN

(i)
i−1 TP (i) FN

(i)
i+1 ... FN

(i)
n Ei

... ... ... ... FP
(i)
i+1 TN

(i)
i+1 ... ... Ei+1

... ... ... ... ... ... ... ... ...

Cn ... ... ... FP
(i)
n ... ... TN

(i)
n En

Total Ê1 ... Êi−1 Êi Êi+1 ... Ên E

For each class i, the sensitivity, i.e. the ability of the classifier to success-211

fully classified positive examples, is computed as:212

Sensitivity(i) =
TP (i)

TP (i) +
∑n

j=1,j 6=i FN
(i)
j

=
TP (i)

Ei

(2)

where FN
(i)
j is the number of false negatives for the class i wrongly as-213

sociated to the class j.214

The specificity, i.e. the ability of the classifier to successfully classified215

negative examples, is computed as:216

12



Specificity(i) =

∑n

j=1,j 6=i TN
(i)
j

∑n

j=1,j 6=i TN
(i)
j +

∑n

j=1,j 6=i FP
(i)
j

(3)

where TN
(i)
j is the number of true negatives for the class i successfully217

attributed to the class j and FP
(i)
j the number of false positives for the class218

i that actually belong to the class j.219

220

Finally, the Kappa index is computed for each test set. Cohen’s Kappa221

(Cohen, 1960) provides a statistical measure of inter-agreement for quali-222

tative items. In the framework of classification, it measures the degree of223

agreement between predicted and actual classes. Kappa index is defined as224

follows:225

kappa =
P (A)− P (H)

1− P (H)
(4)

With P (A) corresponding to the observed proportion of agreement be-226

tween two classifications, and P (H) the estimated proportion of agreement227

expected by chance.228

3. Application to the update of the land cover/use maps of the229

French Guiana coastline230

The concepts and methods previously defined were applied to an actual231

geographic situation. The French Guiana territory is subject to intense an-232

thropogenic and natural dynamics (Anthony et al., 2010): cyclic coastal233

erosion and accretion, notably due to the transport of sediments from the234

Amazon River by oceanic currents; and expansion of urban, peri-urban, agri-235
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cultural areas. In this context, it is essential to develop automated methods236

for monitoring the land cover/use of the French Guiana territory. In partic-237

ular, the large amount of available aerial photographs and satellite images is238

a critical source of materials that should be better exploited. If the delim-239

itation of the geographical objects of interest does not require a high level240

of expertise and can be performed by operators, allocating these objects to241

land cover/use classes appears far more complex and subjective. In fact, de-242

spite efforts made to formalize and standardize the classification procedures,243

such allocating task requires a deep knowledge of the different types of land244

cover/use, both in the imaging and applicative domains. Consequently, the245

learning and classification methods previously presented were applied to au-246

tomatically perform the labeling task and update the land cover/use maps247

of the French Guiana coastline.248

3.1. Dataset249

We took advantage of a series of three land cover/use maps of the French250

Guiana coastline for 2001, 2005 and 2008. The classification nomenclature is251

based on the CORINE Land Cover (CLC) European nomenclature, which is252

adapted to the Amazonian context by the addition of 15 classes, 9 of them253

corresponding to different types of forests, and consists of three nested levels254

where the most detailed (level III) is composed of 39 classes.255

The maps were produced by the French National Office of Forests (Of-256

fice National des Forêts; ONF) by photo-interpretation of the BD-Ortho R©
257

aerial photographs of the French National Geographic Institute (Institut Géo-258

graphique National: IGN) for 2001 and 2005. Air photographs had a 50-cm259

spatial resolution. The land cover/use map for 2008 was updated using 2.5-260

14



meter spatial resolution satellite images acquired by the SPOT 5 satellite261

and obtained through the SEAS-Guyane 1 project.262

1https://www.seas-guyane.org
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Figure 1: Land cover/use map and complementary geographic information layers (inset)

used in this article (geographic coordinate system: WGS84 / UTM zone 22N). Sources:

French National Office of Forests (Office National des Forêts; ONF); French National

Geographic Institute (Institut Géographique National: IGN); French Ministry in charge

of the environment; Regional Direction of the Environment (DIREN) of French Guiana

; French National Agency for Water and Aquatic Environments (ONEMA). See text for

details.
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Two complementary geographic information layers were used (see Figure263

1): the road network, provided by the BD-Carto R© database of the IGN, and264

the river network provided by the BD-Carthage R© database of the French265

Ministry in charge of the Environment and of the IGN, produced in 2009266

for French Guiana by the Regional Direction of the Environment (DIREN)267

of French Guiana and the French National Agency for Water and Aquatic268

Environments (ONEMA).269

3.2. Data pre-processing: definition of the map objects270

Firstly, we completed the initial land cover/use classification by adding271

three more classes: Ocean, River and Unknown. The first two classes con-272

tribute significantly to the structure of the environment in the French Guiana273

territory, and the Unknown class explicitly takes into account the fact that274

information was not available for some areas in 2001 and/or 2005. However,275

we did not induce any rules to predict membership to these three classes.276

Finally, the class Paddy field was not considered as it was under-represented277

in the maps (only 2 positive examples). Thus 38 land cover/use classes were278

considered (see Tables 3, 4 and 5 for the class list).279

In this study, we follow the land cover/use class of the objects in time. We do280

not explicitly follow the object delimitations, which is a much more complex281

task. In fact, by taking into account the information provided by three orig-282

inal maps, object boundaries can change in time: an object can be splitted283

into two or more objects belonging to different classes (see for instance object284

s13 in figure 2), creating new object(s); an object can result from the merg-285

ing of several objects, making one or several objects disappear. We handled286

such situations by generating objects with invariant boundaries in time and287

17



related to an unique class for each year. Practically, we produced a synthetic288

map by concatenating the information contained in the three original maps,289

by means of the "union" GIS operator, as schematically shown in Figure 2.290

The elementary geographical entities of the resulting map are referred to as291

objects thereafter, and contribute to define the examples in the ILP process.292

2001

2005

2008

Synthetic
map

Union

s11

s12
s13

s21

s22

s23
s24

s31

s32

s33
s34

s1

s2

s3
s4

s5

Synthetic map attribute table

Object
Class
(2001)

Class
(2005)

Class
(2008)

s1 blue blue brown

s2 brown light green light green

s3 orange dark green dark green

s4 orange orange orange

s5 orange orange light green

Figure 2: Illustrative example explaining the definition of a synthetic map that combines

the information from the three initial maps.

3.3. Information coding293

Target predicates (i.e., concepts to be learned) were defined as the land294

cover/use classes to which the objects of the synthetic map belonged in 2008,295

considered as the reference year y0.296

Given the diachronic characteristics of the data, 3 predicates were defined to297

indicate the class of an object as a function of the time: class_y0(O,class_name),298

class_y−3(O,class_name) and class_y−6(O,class_name), indicating the299

land cover/use class of the object O for the years y0, y−3 and y−6, respec-300
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tively, i.e, for 2008, 2005 and 2001. It is worth noting that from a relative301

point of view, the year 2001, seven years prior 2008, is assumed to actually302

correspond to the sixth year before the reference year y0. In fact, we can303

assume marginal changes between 2001 and 2002. However, this assumption304

has also a practical justification as it permits to consider the updating of the305

land cover/use information every three years based on the maps established306

three and six years before.307

Given the complementary information layers used in our test, the predicate308

contain(O,X) referred to rivers and roads (X ∈ {river, road}) (see Table309

1).310

All object features were extracted using the free and open source GRASS311

Geographic Information System (GRASS Development Team, 1999-2012).312

3.4. Rule induction: Aleph parametrization313

In Aleph, the accuracy of the candidate clauses was set to 0.7, considered314

as a good compromise between precision and generalization requirements.315

Such accuracy is defined as p/(p+n), where p and n are the numbers of pos-316

itive and negative examples, respectively, which are covered by the clause.317

Consequently, it differs from the overall accuracy defined in section 2.5, which318

evaluates the global prediction accuracy of the classification system, based319

on the whole induced rule set.320

The maximum premise length was set to 5 literals, such number of conditions321

in a conjunction being practically considered as the limit for easy compre-322

hension (Michalski, 1983).323
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4. Results324

4.1. Set of induced rules325

The induction process returned 158 classification rules for the 38 land326

cover/use classes. However, the distribution among land cover/use classes is327

not homogeneous (see Tables 3 to 5). For instance, we obtained 23 rules for328

the class Forest of the old coastal plain whilst we had just one rule for the329

Riparian swamp class. Rules cover from 2 to 692 positive examples while the330

number of covered negative examples varied from 0 to 99.331

Three examples of induced rules are shown below, with the number of positive332

(Pos cover) and negative (Neg cover) examples covered by the rule, and the333

total number of positive examples for the considered target predicate (Total334

pos. ex.) in brackets.335

(1) (Pos cover = 472; Neg cover = 88; Total pos. ex. = 552)336

class_y0(A, Multidisciplinary habitat) :- area_symb(A, ≤165567),337

adjacent(A, B), class_y−3(B, Multidisciplinary habitat).338

(2) (Pos cover = 2 Neg cover = 0 Total pos. ex. = 40)339

class_y0(A,Industrial or commercial area) :- adjacent(A, B),340

class_y−6(B, Construction sites), area_symb(A, ≤10831).341

(3) (Pos cover = 3 Neg cover = 0 Total pos. ex. = 166)342

class_y0(A, Discontinuous urban area) :- class_y−6(A, Construction343

sites), area_symb(A, ≤76202), area_symb(A, >10831).344

Rule (1) covers 472 positive examples for a total of 552 objects actually345

belonging to the class of interest (85.5%) and 88 negative examples. It in-346

dicates that an object will belong to the Multidisciplinary habitat class if347
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its area is less than or equal to 165 567 m2 and is adjacent to an object348

belonging to the same class three years before. Rule (2) indicates that an349

object will belong to the Industrial or commercial area class if its area is350

less than or equal to 10 831 m2 and is adjacent to an object belonging to351

the class Construction sites 6 years before. Rule (3) indicates that an object352

will belong to the Discontinuous urban area class if its area, in m2, belongs353

to the interval ]10831, 76202] and if it belonged to the class Construction354

sites 6 years before. By considering such rules for the characterization of the355

territory dynamics, the first rule illustrates the extension dynamics of the356

natural areas whereas the second and the third rules describe the extension357

dynamics of the anthropogenic areas.358

4.2. Prediction evaluation359

Tables 3 to 5 report the sensitivity results for each land cover/use class in360

the one-vs-rest framework by considering each classifier independently, and361

correspond to sensitivity values that fall in the intervals ]0%, 50%], ]50%, 80%]362

and ]80%, 100%], respectively. Among the 38 land cover/use classes, only 5363

classes (13.1%) were associated with sensitivity values under 50%. Twelve364

classes (31.6%) had sensitivity values between 50% and 80%, and 21 classes365

(55.3%) had the highest sensitivity values (greater than 80%).366

All classifiers were 100% specific, except for one related to the class Forest367

and shrubs in mutation, which had a specificity of 83.1%.368
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Table 3: Averaged sensitivities obtained with 10-fold cross validation, for land cover/use

classes associated with "low" sensitivity values (lower than 50%), total number of positive

examples and number of induced rules for each class, by taking into account the whole

dataset as learning set. (The nomenclature is based on the CORINE Land Cover (CLC)

European Nomenclature with three nested levels. We applied our method to the most

detailed level (level III). The nomenclature levels I and II are indicated for facilitate

results interpretation only.)
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Forest and
semi-natural
area

Open space with
some/no
vegetation

beach, mud
bank, dune 5.0 15 1

Forest

Moist evergreen
forest of the main-
land coastal plain

Low forest
on
white sand 41.7 24 1

Artificial
Territories

Mine, garbage
dump or
construction sites

Garbage dump 25.0 15 1

Construction sites 30.1 97 6

Agricultural
Territories

Heterogeneous
agricultural areas

Territories occupied
mainly by agriculture
with presence
of vegetation 41.1 112 3
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Table 4: Averaged sensitivities obtained with 10-fold cross validation, for land cover/use

classes associated with "medium" sensitivity values (between 50% and 80%), total number

of positive examples and number of induced rules for each class, by taking into account

the whole dataset as learning set.
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Road network 56.9 84 3
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Mine, garbage
dump or construction sites Material extraction 63.5 137 5

Artificial green space 75.0 8 1

Agricultural
Territories

Prairies Prairies 67.9 243 3

Arable land
Arable land out
of irrigation 70.0 12 1

Forest and
semi-natural
area

Degraded natural
environment Degraded forest 60.3 483 11

Forest

Moist evergreen
forest of the
mainland coastal
plain

Coastal
forest
on rocks 70.0 14 3
Forest of
the old
coastal
plain 79.9 543 23

Moist evergreen
forest on hills
and plateaus
with ferralitic soil High forest 76.4 194 10

Degraded natural
environment

Degraded marshy
or flooded forest 80.0 18 1
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Table 5: Averaged sensitivities obtained with 10-fold cross validation, for land cover/use

classes associated with "high" sensitivity values (greater than 80%), total number of posi-

tive examples and number of induced rules for each class, by taking into account the whole

dataset as learning set.
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Artificial
Territories

Urbanized areas Continuous urban area 93.0 42 3

Discontinuous urban area 87.9 166 5

Isolated building 95.3 1191 8

Multidisciplinary habitat 94.4 552 2

Industrial zone Airport 100.0 12 1

Agricultural
Territories

Permanent
cultivation Fruit orchards 87.1 259 1

Heterogeneous
agricultural areas

Fragmented/complex
cropping systems

(slash & burn) 81.9 814 6

Forest and
semi-natural
area

Forest Forest plantation 81.7 21 1
Moist evergreen forest
of the mainland
coastal plains

Forest on
sandy cord 82.0 49 3

Moist evergreen forest
on hills and plateaus
with ferralitic soil Low forest 98.0 58 1

Marshy or flooded forest 91.7 288 5

Mangrove 93.0 259 16
Shrubby
environment Dry savannah 93.9 164 1

Flooded savannah 92.0 98 3
Open space with
some/no vegetation

Bare rocks,
Rock savannah 100.0 6 1

Degraded natural
environment

Forest and shrubs
in mutation 100.0 602 18

Wet areas

Lower wet areas
Interior marshes and
wooded swamps 92.6 163 4

Riparian swamp 100.0 38 1

Marin Wetland Tidal marsh 88.9 9 1

Water surface
Continental water Pisciculture and other basins 85.0 18 1

Natural water surface 100.0 4 1
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Table 6 summarizes the results for overall accuracy and Kappa Index.369

Overall accuracy values varied from 82.4% to 87.3% with an average of 84.6%.370

Kappa Index varied from 0.69 to 0.77 with an average value of 0.70.371

Table 6: Kappa and overall accuracy values.

Test set 1 2 3 4 5 6 7 8 9 10

Kappa
0.69 0.67 0.74 0.71 0.75 0.68 0.69 0.73 0.60 0.77

0.70 (average)

Overall
accuracy
(%)

83.0 87.3 84.3 85.0 84.3 85.1 84.1 83.1 87.2 82.4

84.6 (average)

4.3. Map of prediction errors372

By regrouping the results for the 10 test sets, it was possible to construct373

a prediction map for the year of interest (2008 in this case). Figure 3 is the374

spatial representation of such prediction errors, highlighting that the errors375

are not homogeneously distributed in space, two error clusters being present376

at the extreme west and at the center of the territory.377
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Figure 3: Map of prediction errors (geographic coordinate system: WGS84 / UTM zone

22N). Map at the top represents French Guiana coastline; Map in the inset zooms in on

the "Cayenne Island".

5. Discussion378

From a qualitative point of view, induced rules are consistent with the379

observed environmental features and dynamics of the study area. Moreover,380

they are provided in an expressive formalism, and are easily understandable381

and interpretable by non-experts, as they can be expressed in natural lan-382

guage. However, some rules covered very few (2 or 3) positive examples,383

whereas the total number of positive examples for the associated classes was384
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large (see rule (3) in paragraph 4.1 for example). Such rules were conse-385

quently very specific and did not represent a significant knowledge within386

the application domain.387

The predicates south, north, east and west did not appear in the rules, show-388

ing that such predicates were not pertinent for object discrimination, and389

that characterization of the objects should make better use of expert knowl-390

edge. In particular, domain ontologies could guide the learning process by391

identifying the predicates and the learning constraints to use.392

Whereas the maximum premise length was set to 5, induced rules comprised393

at most 4 literals. For some classes, this can be explained by the fact that the394

upper bound on the nodes to be explored when searching for an acceptable395

clause (i.e., 5000, the default value) was reached and that Aleph stopped396

before having scanned all the search space.397

When considering the sensitivity values, we noticed that classes associated398

with very high sensitivity (Table 5) underwent no or slow changes with time,399

as the knowledge of the land cover type at one time in the past defined for400

a large part the land cover type at present and in the future. It is the case401

for very anthropogenic land use classes such as Airport and Isolated build-402

ings or for very stable natural land cover types that cannot be exploited by403

humans due to natural and/or legal constraints, such as Bare rocks, Rock sa-404

vannah, Riparian swamp, or Natural water bodies. Instead, classes associated405

with low sensitivity values (Table 3) seemed to correspond to continually and406

rapidly shifting land cover/use types. It is more specifically the case for the407

following classes: Beach, mud bank or dune, which is a class associated with408

a highly dynamic environment (Anthony et al., 2010); Construction sites and409
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Territories occupied mainly by agriculture with presence of vegetation, which410

is a complex class including traditional itinerant slash and burn activities411

that consist in cultivating an area and then letting the natural vegetation412

to regenerate. This seems to indicate that the information provided by the413

land cover/use maps is insufficient in terms of anteriority and/or time resolu-414

tion for these classes. However, prediction performances could be improved.415

In fact, background knowledge can be enriched by adding predicates, pos-416

sibly evaluated from complementary geographic information layers (digital417

elevation model, soil map, etc.). As already mentioned, the choice of these418

complementary object features can be guided by expert knowledge, notably419

through domain ontologies. Better performances could also be obtained by420

implementing different learning and classification strategies: in our case, a421

priori known classes at year y0 could be exploited to learn more efficient422

rules. These classes should be the most stable in time and the easiest to423

identify (e.g. River, Continuous urban area, Airport, etc.). An iterative424

learning-classification strategy could also be implemented, by: i) first learn-425

ing and classifying classes associated with high-performance predictions (e.g.426

Forest and shrubs in mutation, see Table 5); ii) then using the prediction427

to enrich the background knowledge of other classes; iii) learning-classifying428

these classes; iv) repeating the procedure until all classes are predicted. How-429

ever, the number of strategies is such that we must rely on objective criteria430

and/or intensive simulations to determine the most appropriate one.431

Nevertheless, our method gave good results globally. In fact, in addition to432

the excellent sensitivity and specificity values returned by the procedure, the433

Kappa Index and overall accuracy values were high. According to the Kappa434
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interpretation table by (Landis and Koch, 1977), these values denote "strong435

agreement" between predicted and actual classes.436

The spatial representation of the prediction errors highlighted that the errors437

are not homogeneously distributed in space. Except for the errors already438

discussed and associated with highly dynamic environmental processes, es-439

sentially distributed along the ocean (e.g., Beach, mud bank or dune), two440

error clusters were identified at the extreme west and at the center of the441

territory. Understanding such errors will require further investigation, but442

they may be explained by the presence of errors in the initial maps. Con-443

sequently, we suggest that the present work can also be a tool to guide the444

validation of the existing maps.445

Inductive Logic Programming is devoted to symbolic data. The management446

of numeric information by ILP constitutes a specific research field, which is447

beyond the scope of this paper. However, several simple solutions exist in448

order to code the numeric data into symbolic ones. In fact, the domain of449

values of a numeric variables can be categorized by means of crisp or fuzzy450

modalities. We propose here to code the numeric information by means of451

inequalities taking into account quantiles of the numeric variable empirical452

distribution. This enables Aleph to manage numeric information in a manner453

comparable to the Confidence-based Concept Discovery (C2D) ILP system454

(Kavurucu et al., 2011). This solution seems to offer a good compromise be-455

tween information loss and generalization capacity, by allowing the system to456

automatically discover significant value intervals (see rule (3) in the Results457

section).458

Finally, the method proposed here does not consider the image processing459
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step devoted to the delimitation of the regions of the image that define the ob-460

jects. It only considers the labeling (or classification) of the regions. This im-461

plies: that the partitioning of the image into regions is performed beforehand,462

by means of any methods including fully manual ones (photo-interpretation)463

or automatic image segmentation algorithms; that the new objects, which la-464

bels have to be predicted, have been delimited by the method that produced465

the objects used for the learning task of the classification rules.466

6. Conclusion467

This article describes an approach inducing classification rules to au-468

tomatically label regions of remote sensing images in order to design land469

cover/use maps. Automatic extraction of structural knowledge using Induc-470

tive Logic Programming was implemented and new examples were classified471

to a unique class by means of the Multi-class Rule Set Intersection method.472

The proposed methodology was then applied to update the land cover/use473

of the French Guiana coastline and evaluated thoroughly.474

We show that the induced rules provide knowledge on structural aspects.475

The quantitative evaluation of our method demonstrated promising results,476

allowing to offer automatic updating of the land cover/use information in477

the study region and significant support to the operators in charge of such478

updating. In particular, our approach could provide valuable assistance to479

operators using object-based image analysis. In fact, such image analysis ap-480

proach allows integrating high level symbolic knowledge concerning spatial481

relations in the classification process. However, to our knowledge, it does482

not offer any support to the operators in order to define efficient and general483
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rules that take into account such knowledge.484

Our future work should include guiding the learning process by specifying485

background knowledge through domain ontologies (related to remote sensing,486

images, environment, etc.). In return, the induced rules would contribute to487

enrich the ontologies.488
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