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Abstract—The plethora of data warehouse solutions has
created a need comparing these solutions using experimental
benchmarks. Existing benchmarks rely mostly on the relational
data model and do not take into account other models. In this
paper, we propose an extension to a popular benchmark (the Star
Schema Benchmark or SSB) that considers non-relational
NoSQL models. To avoid data post-processing required for using
this data with NoSQL systems, the data is generated in different
formats. To exploit at best horizontal scaling, data can be
produced in a distributed file system, hence removing disk or
partition sizes as limit for the generated dataset. Experimental
work proves improved performance of our new benchmark.

Keywords— big data; NoSQL; HBase; MongoDB; decision
support systems; OLAP; Data Warehouses

1. INTRODUCTION

Different benchmarks have been proposed for comparing
database systems [4]. They provide data and database usage
scenarios allowing system comparison with fair and equivalent
conditions. However, existing solutions favor relational
databases and single machine setups. Today, we live the advent
of big data solutions; distributed cloud systems and NoSQL
stores [13] are becoming popular. In this context, we need
benchmark solutions compatible with the more diverse set of
information systems including these distributed NoSQL
systems.

We focus on decision support systems where benchmarks
such as TPC-DS [12], TPC-H or SSB [11] exist; but none are
designed to be used with either distributed information systems
or NoSQL information systems. All generate data in CSV-like
formats easily loaded into relational databases. Their data
generation processes are quite sophisticated and interesting.
However, it takes quite some time when large datasets are
needed (Terabytes and more). Comparing systems with huge
amounts of data is crucial for modern information systems. The
more data we generate the closer we get to single machine
memory limits. New big data solutions offer horizontal scaling
to avoid these single machine constraints. Instead of storing
data in a single machine, data can be distributed among several
machines. When the data stored reaches the storage capacity
limit, new machines can be easily added. This is cheaper than
improving the single machine hardware. This convenient
solution is not supported by existing benchmarks. They
generate data on a single machine and we cannot generate
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enough data to reasonably distribute on multiple machines
because we are limited at this data generation process.

In this context, we propose an extension to the Star Schema
Benchmark (SSB) [11] that supports distributed and NoSQL
systems. SSB is a popular benchmark for decision support
systems. We extend this system to support distributed data
generation over the Hadoop distributed file system, HDFS [9].
Data can be generated in either a normalized or a denormalized
fashion. The normalized data model produced is suitable for
relational databases whereas the denormalized data model suits
better NoSQL solutions which suffer from cross-table joins.
Data can be generated in different formats (not just CSV-like).
This is for assisting NoSQL solutions which load data faster
from some specific formats; e.g. MongoDB [2] that supports
JSON files.

Our contributions can be summarized as follows:

e We enable data generation for different types of
database systems including NoSQL and relational
databases,

e  We enable distributed and parallel data generation,
e  We improve existing scaling factor issues,

e  We compare our extended benchmark with the original
version.

The rest of the paper is organized as follows. The next
section summarizes existing benchmarks, while in section III
we focus on the Star Schema Benchmark. In section IV, we
propose SSB+ an extended and improved version of SSB. In
section V, we show experiments using the new benchmark,
including comparison to its predecessor. Finally, we conclude
and list possible future improvements.

II. RELATED WORK: BENCHMARKS

There is considerable work on information system
benchmarks. Technology evolution and the explosion of stored
information [7] demand a continuous evolution of benchmarks.

We interest here at decision support benchmark, we detail
TPC-D derived benchmarks which focus on decision support
systems (DSS).

DSS Benchmarks: The benchmark edited by Transaction
Processing Performance Council (TPC) [16] is by far the most



used for evaluating DSS performance. The TPC-D benchmark
was the first benchmark designed explicitly for DSSs. Later,
TPC-H and TPC-R were derived from it. The first was
specialized in ad-hoc querying, the second on reporting. TPC-
H is succeeded by TPC-DS, where the data model is richer,
normalized and it supports a total of 99 queries classified into 4
categories: interactive OLAP 0 queries, ad-hoc decision
support queries, extraction queries and reporting queries. The
data model is a constellation schema composed of 7 fact tables
and 17 shared dimensions axis. In 2009, another Star Schema
Benchmark was proposed. It is an extension of TPC-H
benchmark. Unlike TPC-DS, SSB introduces some
denormalization on data for the sake of simplicity. It
implements a pure star schema composed of a fact table and 4
dimensions tables. Here, we meet one of the few efforts to
adapt a star schema oriented benchmark to NoSQL. Namely,
the CNSSB benchmark is proposed to support column-oriented
data models [4] however it support only column-oriented
model and not it not considerate several logical schemas.

TPC benchmarks remain the main reference for DSSs.
However, they are based on the relational system and cannot be
easily implemented in NoSQL databases.

In this paper, we propose a new benchmark, extension of
SSB. This solution supports both the NoSQL column-oriented
and the document-oriented models. This effort is
complementary to the Big Bench effort. The benchmark
completes it providing a simpler but fair framework to play
with NoSQL and SQL-like technologies.

IITI. STAR SCHEMA BENCHMARK

The Star Schema Benchmark (SSB) [11] is one of the most
used benchmarks for decision support systems. It models a
product retailer where we store product orders, a catalog of
products, customers and suppliers. As its name suggests, SSB
follows the multidimensional model widely used in data
warehousing [8] [15]. It has 4 dimension tables and one fact
table. In Fig. 1, we show its logical schema with LineOrder
(Fact table), Customer, Part, Date, Supplier (Dimensions
tables) corresponding to product sales, Customer details,
product parts, sales dates and supplier information. The
dimension tables have hierarchically organized attributes such
as City, Region and Nation.

The benchmark is composed of two software components:
e DBGen: data generation at different scale factors
¢ QGen: query generation depending on generated data

Data is generated at different scales including 2GB, 10GB,
100GB, 1TB, etc. in CSV-like files; one per table. It is clear
that data format is meant for relational tables. NoSQL
approaches cannot directly take advantage of this data.
Denormalized data is required and not all NoSQL approaches
support CSV-like formats. There are also some scaling factor
issues [4]. It is known that the generated data sizes do not
precisely correspond to the declared ratios; e.g. 580 GB are
really generated when 1TB of data was expected.

Data generation with SSB follows the schema in Fig. 1. If
we need to load data in NoSQL we need to follow a much
more complex process shown in Fig. 1. First, the data
generator produces one raw file per table in CSV-like format.
Data needs to be denormalized; i.e. we need to process data
from all files to obtain one file involving database-like joins
merging data from the different files. This is a complex task.
Depending on the data store and data model, we also might
need to transform data into another format. For instance,
MongoDB will need JSon-like files if we have a data model
with nested fields. We can see that the generation data
demands considerable post-processing, although this has
important limitations.
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Fig. 1: Populating a relational DB versus NoSQL stores with SSB
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For comparing we highlight the following properties:

e Generated data corresponds to a normalized star
schema with 5 tables.

e Flat files generated are in one format (.tbl ~ CSV-like).

e Data is generated on a single machine i.e. no
distribution and parallelization.

e  There are some known scaling factors.

IV. EXTENDED BENCHMARK SSB+

SSB+ is the name for our improved and generalized version
of SSB. This new benchmark considers more data models; it
supports NoSQL systems and it improves some issues.

It includes three software components:

e DBGen: an extended version of the data generator

e QGen: a query generator

e DBLoad: a system-dependent tool for data migration

DBGen is used for generating data. It includes most of the
main improvements on the benchmark. DBLoad is a tool that
helps in distributing the data generated. It is system-dependent
i.e. it has scripts for migrating data on known information
systems such as HBase [6] and MongoDB. It is not meant to be
exhaustive, but it can be helpful for the research community
and it can be enriched gradually with new systems. However,



DBGen is meant to be system-independent. Queries generated
are in SQL. We do not generate queries on Mongo or HBase-
specific languages. SQL is a declarative and standardized
language and it is often possible to transform automatically
SQL queries in other system-specific languages/code.

To populate a NoSQL store or a RDBMS we follow the
process illustrated in Fig. 2. The SSB+ benchmark includes an
extended data generator, which simplifies data generation.

This is different from SSB. The process is generalized and
simplified. The main properties of data generation are:

e Data can be generated in normalized fashion (5 raw
files, one per table) and denormalized fashion (1 file
with all data, denormalized).

e [t can generate data on a single machine file system or
on a distributed file system (namely Hadoop DFS).

e NoSQL models are supported.

e [t supports three data formats as output: CSV, XML
and JSon.

e  The scaling process is improved to fix bugs.

The new benchmark can now support NoSQL and
relational databases. It can generate data in a Distributed File
System DFS (such as HDFS). HDFS is the most used platform
for this purpose and it can also parallelize the data generation
process across multiple machines. This is a clear improvement
and simplification of the process. With the preceding SSB
version we were limited to the memory space available one
machine. Now, we can generate data in parallel across multiple
machines; i.e. we can scale the process horizontally. The
generated data can support different systems including NoSQL
and relational databases.

We will give further details on the extended benchmark.

[Data Generation
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Fig. 2 The process schema for populating DB with the new benchmark.

Normalized versus denormalized data. The data schema
supported by SSB is given in the Fig. 3. We extend it to
generate denormalized data which are supported by NoSQL
systems. The schema is in Fig. 3. In the normalized version,
data will be generated into five files, one per table:
LINEORDER (Fact table), PART, SUPPLIER, CUSTOMER
and DATE (Dimension tables). In the other case, data will be
generated in one file called global. Denormalization is standard
in data warehousing [8]. The denormalization process requires
deleting the reference keys and adding data from the referenced
tables. This results in longer lines composed of 49 attributes:
11 of which are measure attributes from the fact table and the
others come from the dimension tables.

Formats: The user can specify the format of the output
files: CSV, JSon, or XML. The model oriented columns are

compatible with tabular files (CSV). Therefore, it is necessary
to generate data in storage format used for the model to
optimize the loading phase in the database. Thus, SSB can
generate 3 different formats, JSon format, XML format and
CSV format. To minimize the loading time in some databases
we also generate directly in complex formats (XML, JSon);
e.g. MongoDB takes more time to load CSV than JSon.

Parallelization: The data generation process is extended to
work on distributed file systems, called Hadoop DFS (HDFS).

Models: Data generation supports two NoSQL models in
addition to the relational models. They will be described later
in a dedicated section.
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Fig.3 The schema for generating normalized data

A. Scaling improvement in SSB+

SSB generates data at different scales using the scaling
factor sf. This idea behind is for generating 10GB of data, a
scale factor sf=/0 is required. In the normalized dataset, we
have 5 tables. Data is generated proportionally to sf e.g. we
generate 30000 xsf lines for the customer table. The scale factor
impacts the number of generated lines (see Table 1). Only for
the table PARTS, we do not scale linearly but logarithmically:
200000 (1+log(sf)) lines.

The generated data does not respect the expectation. It
generates between 0.56 and 0.58 the expected amount of data
in terms of memory usage i.e. it generates 56GB when we
expect 100GB for sf=100.

This problem is not easy to solve when we want a generic
benchmark. The file size will be bigger if data is denormalized
(around 4 times bigger). Though, the scale intuition behind the
scale factor is lost.

There are two solutions to the observed problem:

e Change coefficients to have /GB of normalized data on
sf=1. In this case we need to multiply linear factors by
approximately 1.69.



e Change coefficients to generate 10’ lines for sf=/ on
the fact table.

We opted for the second solution which also gets the
approximately 1GB on sf=1. It obtains around 0.98GB.

TABLE L IMPACT OF THE SCALE FACTOR ON THE AMOUNT OF
GENERATED DATA FOR SSB
Table Lines Memory in Avg.memoryper
Bytes (sf=10) line (Byte)
Customer 300000 %sf 29360128 97,87
Part i 52222% 69206016 86,51
Lineorder 6x106%sf 6227702579 103,82
Supplier 20000 %sf 1782579 89,13
Date 2556 xsf 233472 91,34
Total 6322560 6328284774 -

B. Supported logical models in SSB+

The extended version of SSB, SSB+ supports natively the
relational database models. In addition, it also supports
different NoSQL models [2]. In particular, we detail two
models one per NoSQL store type: column-oriented and
document-oriented. In the first case, denormalized data is
mapped in column families. In the second case, we also
illustrate the nested structure of document-oriented models.

1) Column-oriented model

A column-oriented database is a set of tables that are
defined row by row (but whose physical storage is organized
by groups of columns, column families, hence a “vertical
partitioning” of the data). In these systems, each table is a
logical mapping of rows and their column families.

In order to establish the data model, we process in two
stages: 1) We formalize the column-oriented model; 2) we
define an adapted model.

Definition: a table 7 = {Ri,..., Rn} is a set of Ri rows. A
row Ri = (Keyi, (CFi1, ..., CFim)) is composed of a row key
Keyiand a set of column families CFj.

Definition: a column family CFi; = {(Cji, {vii1}), ..., (Cip,
{viip})} consists of a set of columns, each associated with an
atomic value. Every value can be “historised” due to a
timestamp. In this paper, this principle useful for version
management [14] will not be used.

Model: The logical model will store data into one table
named 7™, We will group data in five column families
CFDate CFSupplier CFCustamer CFPart CF‘Lineorder. Each column
family contains a set of columns, corresponding either to a
dimension attribute or to a measure of the fact.

2) Document-oriented model
As in the previous model, we process in the two steps. We
first formalize the model and then we propose mapping rules.

Definitions: The document-oriented model considers each
record as a document, which means a set of records containing
“attribute/value” pairs; these values are either atomic or
complex (embedded in sub-records). Each sub-record can be
seen as a document.

In the document-oriented model, each key is associated
with a value structured as a document. Documents are grouped
into collections. A document is a hierarchy of elements which
may be either atomic values or documents. In the NoSQL
approach, the schema of documents is not established in
advance hence the "schema less" property of these databases.

Formally, a NoSQL document-oriented database can be
defined as a collection C” = {Dy,..., D,} composed of a set of
documents D,.

Each D; document is defined as a set of pairs {(Att,-l s V,-I),
o (Att™, V™)) where Att/ is an attribute (which is similar to a
key) and V7 is a value that can be of two forms:

e  The value is either atomic,

e  The value is itself composed by a nested document that
is defined as a new set of pairs (attribute, value).

We distinguish simple attributes whose values are atomic
from compound attributes whose values are documents called
nested documents.

Model: The logical model will store data in documents
composed of sub-documents. In our case, a document D is
composed of 5 nested sub-documents, A7“"““"*" containing the
measures and A", AP, A3 a4 417 containing
respectively the attributes of each associated dimension. Each
of the nodes (LineOrder, Customer, Date, Supplier and Part)
will nest its respective attributes within. This model is natural
and is interesting for testing nesting, an important feature of
document stores.

C. Distributed data generation

We have modified DBGEN to use Hadoop. Data is
generated using the MapReduce paradigm in a distributed file
system (see Fig. 4). The MapReduce function involves only the
Map stage, because we do not need a reduce stage which
would do the opposite of distributing data. When a user starts
data generation at the Namenode, the latter assigns to
Datanodes the mapping tasks. Data is generated in parallel
across all available nodes. SSB+ uses both layers Hadoop:

e Hadoop HDFS for data storage: all mapped outputs are
stored in local disks.

e Hadoop MapReduce: to distribute

generating data on Datanodes.

processing
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Fig. 4 Distributed data generation process.



D. Queries

We keep the same queries as in the SSB benchmark, but we
extend the query generation process with queries adapted for
the denormalized version of data. In this case, cross-table joins
are no longer needed. We have re-written queries to comply
with the denormalized data. The query generator ggen works
the same as before, but it generates two sets of queries.

Existing queries have 1, 2, 3 or 4 dimensional restrictions
and have different levels of selectivity (filter factor). We do not
see any reason for designing new queries at this stage.

E. DBGen command

The new data generation has been enriched. We summarize
here the main features. The parameter T allows choosing the
files to be generated. We include here the generation of
denormalized data generation. Below, we list the possible
values for this parameter:

e c: generate Customer data only (1 file),

e p: generate Part data only (1 file),

e s: generate Supplier data only (1 file),

o I: generate Lineorder data only (1 file),

e d: generate Date data only (1 file),

e a:generate data for all tables (5 files),

e g: generate the denormalized data (1 file).

We introduce a new parameter F, which indicates file
format (XML, JSon or CSV). It can take the following values:

e j: generates data in a JSON file,
e x: generates data in a XML file,
e c: generates data in a CSV file.

At this stage JSon and XML files are compatible only with
document-oriented model we have described earlier. The CSV
file format is compatible with column-oriented models,
relational models and also other models we do not list.

F. DBLoad: Data loading tool

SSB has only one sql-like script for uploading data in the
relational database. In the new SSB+ benchmark, DBLoad has
the role of ETL (Extracting, Transforming and Loading) and
restricted to the loading function. DBLoad has three uploading
configurations and each correspond to a specific model.

e The first configuration is for loading the global JSon
file generated into a denormalized model in MongoDB.

e The second configuration is for loading the global XML
file generated into a denormalized model in MongoDB.

e The third configuration is for loading the global CSV
file in a denormalized model either in HBase or
MongoDB.

In the appendix, we show for illustrative purposes the
instructions for loading data in HBase according to column-
oriented model described previously.

V. EXPERIMENTS

In this section, we detail experimental results on the new
benchmark SSB+. We also compare our results to the previous
SSB benchmark. More specifically we present the following
experimental results:

e We analyze and compare data generation with respect
to memory usage,

e We analyze and compare data generation with respect
to execution time,

e We compare loading times in two NoSQL systems
namely MongoDB and HBase.

The results concern three types of configurations:

e Data generation with SSB (normalized data, csv),

e Data generation with SSB+ (normalized data, csv),

e Data generation with SSB+ (denormalized data, csv).

For the different configurations, we vary the scale factor to
enable comparison at different scale levels.

Hardware: We use a cluster composed of three nodes
(machines). Each node has a 4-core CPU at 3.4Ghz (i5-4670),
8GB RAM, 2TB SATA disk (7200RPM), 1Gb/s network. Each
node acts as a worker (datanode) and one node acts also as
dispatcher (namenode).

Software: Every machine runs a CentOS operating system.
Hadoop (v.2.4) is used as a distributed storage system for
allocating data among cluster nodes. We test data loading on
two NoSQL database stores: HBase (v.0.98) and MongoDB
(v.2.6). These represent respectively column-oriented storage
and document-oriented storage.

Zookeeper manages data partitioning in region servers for
HBase while in MongoDB partitioning is enabled through
Sharding.

Experiment 1: Memory usage. First, we compare SSB
and SSB+ when generating normalized data. The results are
summarized in Table 2 and Table 3. As mentioned before, we
can see that SSB does not generate the expected data size. It
generates between 0.56 and 0.58 times the amount of the
expected data size i.e. it generates 0.56GB per sf=1 instead of
1GB. For a scale factor equals to 100, we obtain a size file of
59Gb. We have a ratio between scale factor and size data
generated of about 0.58.

SBB+ takes into account this issue. We observe that it is
much closer to the expected amount of normalized data. For
instance, it generates 97 GB of data for a sf=100. For sf=1000
we obtained 976 GB. The ratio is greater than 0,96. To
summarize, SSB+ DBGEN improves scaling which used to
generate almost half the expected amount of data.

Table 2 shows memory usage on different configurations
including denormalized data generation. When it comes to
denormalized data, the generated data takes more space due to
added redundancy. Still, the scaling factor has a simple
interpretation. We generate roughly 10’ lines per scale factor.



TABLE I MEMORY USAGE BY CONFIGURATION

Configuration sf=1 sf=10 sf=100 sf=1000
SSB, normalized 987M 5.6G 59G 589G
SSB+, normalized 978M 9,7G 97G 976G
SSB+, denormalized 39M 39G 390G 3900G

Experiment2: Execution times on different configurations.
In Table 3, we show the time needed to generate data at
different scale factors for different configurations.

TABLE III. EXECUTION TIME BY CONFIGURATION
Configuration sf=1 sf=10 st=100 sf=1000
SSB, normalized 11.42 90.8s 1383s 16715s
SSB+, normalized 21.05s 217s 2135s 2864s
SSB+, denormalized 20.82s 208.2s 2072s 20820s

We observe in Fig. 5 that the time required to generate data
with the generator SSB DBGEN is less important than the
SSB+ DBGEN. This can be explained by the fact that the scale
factor of SSB+ generates considerably more data.

Time (sec)
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24000 A
20000 A

16000
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1 10 100 200 500 1000

Scale factor (sf)
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Fig. 5 Time required for generating data.

VI. CONCLUSION

This paper presents an extended version of an existing
benchmark for decision support namely the Star Schema
Benchmark. This work shows how we can transform an
existing benchmark into an improved version that generalizes
to NoSQL systems. Data can be generated in different formats
(csv, JSon, XML) and in different modes: denormalized data
and normalized data. Thus, this new benchmark is no longer
designed only for relational databases. It can generate data for
multiple uses including different NoSQL systems. The data
generation process can optionally use Hadoop for data
distributions. So doing, we are no longer limited to one
machine storage limits. Data can be generated in parallel across
multiple machines. The new benchmark extends data
generation and query generation. It also includes a system-
dependent script for data loading which we foresee to enrich in
future. Our experimental results prove the advantages of the
new benchmark with respect to the previous benchmark. It
resolves existing scaling issues. It loads faster and it is capable
to load data in a distributed environment through Hadoop. For
illustrative purposes, we use our data loader for populating a
database on HBase and MongoDB with benchmark data.

As future work, we are currently considering placing the
benchmark elements available online. In near future, we will

consider widening SSB+ by considering the generation of
unstructured data. Similarly, thoughts and ideas from this work
can be used to help ongoing work in the construction of the
BigBench benchmark. We also want to investigate on new
NoSQL logical models that can be used for DSS.
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