
Multiplexing Adaptive with Classic AUTOSAR?

Adaptive Software Control to Increase Resource

Utilization in Mixed-Critical Systems

Angeliki Kritikakou, Thibaut Marty, Claire Pagetti, Christine Rochange,

Michaël Lauer, Matthieu Roy

To cite this version:

Angeliki Kritikakou, Thibaut Marty, Claire Pagetti, Christine Rochange, Michaël Lauer, et
al.. Multiplexing Adaptive with Classic AUTOSAR? Adaptive Software Control to Increase
Resource Utilization in Mixed-Critical Systems. Workshop CARS 2016 - Critical Automotive
applications : Robustness & Safety, Sep 2016, Göteborg, Sweden. 2016, CARS 2016 - Critical
Automotive applications : Robustness & Safety. <http://conf.laas.fr/cars>. <hal-01375576>

HAL Id: hal-01375576

https://hal.archives-ouvertes.fr/hal-01375576

Submitted on 3 Oct 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50530125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01375576

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiplexing Adaptive with Classic AUTOSAR?
Adaptive Software Control to Increase Resource

Utilization in Mixed-Critical Systems

A. Kritikakou, T. Marty
University of Rennes 1

IRISA/INRIA

C. Pagetti
ONERA
Toulouse

C. Rochange
IRIT

University of Toulouse

M. Lauer, M. Roy
LAAS
CNRS

Université de Toulouse

Abstract—Automotive embedded systems need to cope with
antagonist requirements: on the one hand, the users and market
pressure push car manufacturers to integrate more and more
services that go far beyond the control of the car itself. On
the other hand, recent standardization efforts in the safety
domain has led to the development of the ISO 26262 norm that
defines means and requirements to ensure the safe operation
of automotive embedded systems. In particular, it led to the
definition of ASIL (Automotive Safety and Integrity Levels), i.e., it
formally defines several criticality levels. Handling the increased
complexity of new services makes new architectures, such as multi
or many-cores, appealing choices for the car industry. Yet, these
architectures provide a very low level of timing predictability
due to shared resources, which goes in contradiction with timing
guarantees required by ISO 26262.

For highest criticality level tasks, Worst-Case Execution Time
analysis (WCET) is required to guarantee that timing constraints
are respected. The WCET analyzers consider the worst-case
scenario: whenever a critical task accesses a shared resource in
a multi/many-core platform, a WCET analyzer considers that all
cores use the same resource concurrently.

To improve the system performance, we proposed in a earlier
work an approach where a critical task can be run in parallel with
less critical tasks, as long as the real-time constraints are met.
When no further interferences can be tolerated, the proposed run-
time control suspends the low critical tasks until the termination
of the critical task. In an automotive context, the approach can
be translated as a highly critical partition, namely a classic
AUTOSAR one, that runs on one dedicated core, with several
cores running less critical Adaptive AUTOSAR application(s).
We briefly describe the design of our proven-correct approach.
Our strategy is based on a graph grammar to formally model
the critical task as a set of control flow graphs on which a safe
partial WCET analysis is applied and used at run-time to control
the safe execution of the critical task.

Keywords—Dynamic management, Real-time systems, Run-time
monitoring, Multi/Many-core systems, Safety, Resources Utilization.

I. INTRODUCTION

The chip market moved to multi/many-core systems due
to increased system requirements and power dissipation issues
of single-core systems [1]. As these systems offer massive
computing power, a higher integration of applications is per-
formed in the same platform. The integrated applications have
diverse characteristics which create mixed-critical systems [2].
A mixed-critical system consists of applications with different

levels of criticality, as described in the ISO 26262 norm, and
envisioned in the future Adaptive AUTOSAR platform. The
criticality level of an application depends on the potential
consequences on the system in case the application fails to
meet its timing constraints. The Automotive Safety Integrity
Level (ASIL) model [3] defines criticality levels depending on
the risk and the potential loss due to a failure of the system;
the highest level, D, corresponds to the highest criticality level,
and 4 other levels have been defined —C, B, A, and QM ,
where QM corresponds to a level where no particular safety
measure should be taken.

Applications with high criticality level require strict guar-
antees on their correct execution. To ensure these guaran-
tees, real-time task scheduling techniques should use a safe
estimation of the Worst-Case Execution Time (WCET) [4].
Several WCET estimation techniques exist, but static analysis
tools such as AIT or OTAWA, are recommended for high crit-
icality applications. Unfortunately, many/multi-core systems
have a dynamic difficult-to-predict behavior. More precisely,
the concurrent accesses to the shared resources introduce
timing variations, e.g. in the communication network and in
the memory hierarchy with variable delays under concurrent
requests. Therefore, the effects of possible task interferences
have to be upper bounded to guarantee real-time response,
usually by assuming full contention under concurrent requests.
The result is a safe but pessimistic WCET, in the sense that
the cases leading to the worst-case scenarios are unlikely to
occur. This leads to over-allocating resources to high criti-
cality applications and may even be the cause of the system
unschedulability.

A. Motivation

Let us consider n+ 1 independent synchronous partitions
T = {τC, τ1, . . . , τn} where τC is a classic AUTOSAR
partition of high criticality level (ASIL D), period TC and
deadline DC ; τi are partitions of lower criticality level (ASIL
levels A − C or QM) implemented as Adaptive AUTOSAR
partitions. Each partition is executed on a different core.
Hence, the classic AUTOSAR partition runs on a dedicated
core, but may suffer from interference with other partitions.

Two scenarios for the WCET computation of τC are con-
sidered: 1) maximum load (max): all partitions run in parallel,
and 2) isolation (iso): the classic AUTOSAR partition τC runs
alone on the system. In max scenario, we assume that due to

τCCore0

Core1..n

τC

D
C

a)

b)

τCc)

Core0

Core1..n

Core0

Core1..n

τκ
τ2

τ1

T
CSwitch

τκ
τ2

τ1

τκ
τ2

τ1
τκ
τ2

t

Fig. 1. Mixed-critical schedules scenarios

the resource sharing, the WCET of τC is above the deadline,
i.e. WCETmax > DC , as depicted in Fig. 1(a). In this case,
the hard real-time constraints cannot be met. Existing mixed-
critical scheduling approaches, such as [5], [6], [7], assume that
the task set is schedulable at least in the highest criticality level,
and thus are not directly applicable. Then, a safe solution is to
execute τC in isolation. When the classic AUTOSAR partition
terminates and if time slack exists, the Adaptive AUTOSAR
partitions are executed. In this case, no conflict occurs with the
low criticality tasks. Hence, the WCET is significantly lower
and the classic AUTOSAR partition respects its deadline, i.e.
WCETiso ≤ DC , as shown in Fig. 1(b).

Our goal is to increase the task parallelism and to reduce
the over-provisioning of resources by combining the benefits
and discarding the drawbacks of the previous cases. To achieve
that, all AUTOSAR partitions are started and are run in
parallel, as long as it is safe. At run-time, if the interferences
may lead to a deadline miss of τC , the lower criticality
partitions are suspended until the termination of τC . If time
slack exists, the low criticality partitions are resumed. In this
way, the critical classic AUTOSAR is guaranteed to meet its
deadline, whereas the low criticality partitions run in parallel
improving the resources utilization, as shown in Fig. 1(c).

B. Proposed methodology and contributions

This optimistic mixed-critical schedule can be achieved
using an appropriate run-time control mechanism, as proposed
by our methodology. We introduce a set of observation points
to enable the run-time (online) monitoring of the timing
behavior of the critical partition and the control of partition
set scenarios. At each observation point, a safety condition
is applied to check whether it is still safe to continue the
execution of τC in the maximum load scenario. The safety
condition uses the remaining WCET of the critical partition
in isolation scenario, which is run-time computed by our low-
overhead algorithm. If the safety condition evaluates that a risk
exists of overloading the system and, thus, the critical partition
runs too slow, a backup process is applied to guarantee the
real-time response of τC : the low criticality partitions are
suspended and τC runs in isolation. When the critical classic
AUTOSAR partition finishes its execution and if time remains
until the next release of τC , the low criticality Adaptive
AUTOSAR partitions are resumed. We proved the correctness
of the proposed safety condition and the low-overhead run-
time algorithm for computing the remaining WCET.

As the computation of the remaining WCET is time
consuming, it cannot be performed at run-time. Hence, we

proposed a run-time algorithm based on pre-computed data
which reflect the program structure (static analysis). Then,
the run-time computation involves only basic arithmetic and
reflects the actual progress of the critical partition execution.
To achieve this goal, during the design-time (offline) analysis,
the functions that compose the classic AUTOSAR partition
are represented by a set of Extended Control Flow Graphs
(ECFGs) with observation points. We propose a graph gram-
mar to formally describe the set of ECFGs under study and to
prove the correctness of our run-time computation algorithm.
Based on the obtained ECFGs, a safe WCET analysis is
applied for the pre-computation of several partial remaining
WCETs used by the run-time control.

!"#$%&'
()*+''

,)-%(+'
()*+'

!"#$%
&'&()*#+%

!"#$%
!"&'()$*%

+,% +-% +.% +/%

&$&"*0%

,-'.$-+.'/%&'0%
"-'$+-(%1,2"3%

4)4$#,%
14-5$!&+#%6%
7&+0!&+#3%

./"#0'
"#1)%/$.)#'

2+,"0#3./+'$#$4&,",' 5-#3./+'()#6%)4'

Fig. 2. Overall methodology

The proposed methodology consists of the design-time
analysis to pre-compute the required data and the scenario con-
trol applied at run-time, as shown in Fig. 2. A full description
of the ideas sketched in this note are detailed in [8], [9], [10].

II. DESIGN-TIME ANALYSIS

A. Maximum load and isolation

This section presents the design-time analysis of our
approach by describing the instrumentation of the Classic
AUTOSAR partition, the static schedule and the design-time
analyzer for the computation of the timing and structure
information.

The proposed methodology considers two scenarios for the
partitions that are executed on the platform.

Definition 1 (Execution scenarios): The execution scenar-
ios are

1) Isolated execution (iso), where the classic AUTOSAR
partition only is executed on the platform,

2) Maximum load (max), where all partitions are executed
concurrently on the platform.

The proposed methodology initially executes the maximum
load scenario and at each observation point of τC checks
whether the low criticality partitions should be suspended.
Hence, the following statement should be proved: “The switch-
ing from the maximum load scenario to the isolation scenario
guarantees that the classic AUTOSAR partition meets the hard
real-time deadline DC.”

B. Switching to isolation mode

The switching occurs when the following safety condition
holds:

RWCETiso(x) + Wmax + tRT + ET(x) > DC (1)

where RWCETiso(x) is the remaining WCET of τC at an
observation point x in the isolation scenario, Wmax is the
WCET until the next observation point, tRT is the total time
of the proposed run-time control mechanism and ET(x) is the
real execution time of τC until point x. The tRT is the sum
of: 1) tMon (the overhead to monitor the real execution time),
2) tCnt (the WCET of the run-time control), and 3) tSW (the
WCET overhead due to scenario switching).

Theorem 1: If WCETiso ≤ DC , then for any execution
with the proposed run-time control, τC always respects its
deadline.

The proof of this theorem can be found in [9]. Intuitively,
at each observation point, the run-time control computes the
worst-case remaining time for the next observation point: if
there is a risk that the next observation is reached too late
to switch to a safe mode, then the system switches now to
isolated mode, guaranteeing a correct timing behavior.

C. Extended Control Flow Graph Representation

A graph grammar is proposed to model the critical partition
τC considered under study. τC is described by the general
expressions of syntax in Table I, which covers a wide range
of applications. From the binary code of τC [11], we create
a set of control flow graphs (CFGs), where we insert obser-
vation points. The CFGs obtained from the abstract syntax of
Table I and compiled without optimizations are covered by the
proposed grammar.

TABLE I. APPLICATION MODEL SYNTAX

Syntax rules
term ::= <constant> | <variable>
expr ::= <term> | <term> <operator> <term> | <unary-expr>
unary-expr ::= <variable> <unary-operator> | <unary-operator> <variable>
cond-expr ::= <expr> <conditional-operator> <expr>
assignment ::= <unary-expr> <assignment-operator> <expr>
instruction ::= <assignment> | <unary-expr> | <>;
stat ::= <instruction> | <stat>;<stat> | if (<cond-expr>) then <stat1>

else <stat2> | for (expr1; cond-expr; expr2) <stat> | <function-
call> ;

function-call ::= <return-type> functionName(<parameter-list>) <stat> return
<expr-return>;

program ::= <function-call>

Definition 2 (Critical partition τC): A critical partition
τC is a set of functions S = {F0, F1, ..., Fn}, with F0 the
main function. Each function is represented by an Extended
CFG (ECFG).

Definition 3 (Observation point): An observation point is
a check point in an ECFG where the run-time control is
executed. A special observation point named start is defined
before the starting of the execution.

The full description of the graph grammar can be found
in [9], and a brief schematics of the grammar is shown in
Fig. 3 and Fig. 4. A program is a set of functions (Fig. 3), and
every function is described by the grammar of Fig. 4, where

IN

B

OUT

Fi ≡

Fig. 3. Representation of function Fi.

B

(a)

ε

(b)

N

(c)

B

B

(d)

C

B B

B

(e)

B

C B

(f)

Fi

(g)

Fig. 4. Schematic representation of rewritting grammar rules

C is a conditional, N a binary instruction, Fi a function, and
B a non-terminal.

D. Remaining WCET analysis

The remaining WCET of the critical partition heavily
depends on the real execution. Hence, at design-time, we
process the ECFGs and compute partial WCETs using safe
static WCET analysis, but extended and adapted to our
methodology. The WCET is computed by writing an Integer
Linear Programming (ILP) formulation to express the program
execution time as the combination of the individual times of
the grammar components weighted by their execution counts.
This expression is maximized to find the WCET, with a number
of constraints that reflect flow facts, e.g. loop bounds and
unfeasible paths.

Our WCET analysis is based on computing the remain-
ing WCET from one observation point x until the end
of the program, RWCETy(x), where y ∈ {iso,max}. When
the RWCETmax(x) is computed, we consider that interfer-
ences occur from the parallel partitions, whereas when the
RWCETiso(x) is computed no interferences are taken into
account. When point x is the entry of the critical partition,
i.e. start of F0, RWCETy(start) is the total WCETτi,y . When
point x is inside the ECFG, we compute the remaining WCET
by using constraints to prohibit the execution of all the blocks
which do not belong to any path from point x until the end of
the ECFG.

Using the remaining WCET analysis of an observation
point x, we can compute remaining WCETs between an
observation point and its head point.

III. RUN-TIME CONTROL

At each observation point x, the safety condition described
above decides whether switching between scenarios is re-
quired. As the RWCETiso(x) is modified at each observation
point, we propose a low-overhead algorithm to run-time com-
pute this value by efficiently reusing the RWCETiso of the head
points. In [9], we describe and formally prove our algorithm
when the critical partition consists of a finite set of functions,

i.e. S = {F0, . . . , Fn}. We describe below a simplified version
of the general algorithm.

The run-time computation of RWCETiso(x) is depicted in
Alg. 1. An important point in this algorithm is the notion of
level, that corresponds to the nesting level in a loop nest —
indeed, such loop nests, as well as function calls, allow us to
have a very compact representation of remaining worst-case
execution times.

Pre-computed data is stored in the memory as constant
arrays: level for the nesting level, and d and w for the partial
WCETs: d is the WCET from a loop head to an observation
point, and w is the WCET between two consecutive instances
of a given loop. The algorithm maintains two local values
o level (for the previous observed level) and level(x) for
the local level. At run-time, the algorithm stores in array
last point the last observed point and in array R the computed
RWCETiso per level.

ALGORITHM 1: Simplified run-time control algorithm, without
function calls.
Pre-computed data: level, w, d
Input: x
Data: o level = 0, last point[0]=start, RWCETiso[0]=WCETiso
Output: RWCETiso(x) = R[level[x]]
if o level < level[x] then /* condition 1 */

R[level[x]] = R[level[x]− 1]− d[x]
else

if (last point[level[x]] == x) then /* condition 2 */
R[level[x]] = R[level[x]]− w[x]

else
R[level[x]] = R[level[x]− 1]− d[x]

end
end
last point[level[x]]= x
o level=level[x]

The general algorithm [9] shares many ideas with the above
presented one, with the added complexity of function calls, that
can be seen, in some sense, as a dynamic version of (static)
loop nests.

IV. CONCLUSION

In this work, we presented a methodology to run several
partitions of different criticality levels on a single multi or
many-core chip, while guaranteeing the real-time response of
a critical classic AUTOSAR partition. At design-time analysis,
the critical partition is described by a set of ECFGs and
partial WCET analysis is applied to compute the required data
for the run-time part. At run-time, a low-overhead controller
computes the remaining WCET of the critical partition and
decides the switching between maximum load scenario and
isolation scenario.

We advocate that such a scheme permits a better utilization
of system resources, but further work has to carried out to
refine this approach. For now, only two possible scheduling
scenarios are supported: total isolation for the critical classic

AUTOSAR partition, or full parallelism. One cannot assume
that all non-classic AUTOSAR applications can be stopped
at any time without any consequence on the system. Thus,
supported several (statically defined) scheduling strategies, and
switching between different strategies depending on run-time
evaluation of remaining resources seems a necessary extension
to this work in order to be included into real automotive
architectures.

More precisely, our method is applicable to several high
criticality partitions running on one core. In case the criticality
partitions are executed on several cores, the partial RWCETs
in the isolation scenario will be computed by considering that
more cores are concurrently running etc. This will increase the
partial RWCET, but a trade-off exists to explore between the
number of active cores and the pessimism of the remaining
WCETs. A similar approach could be followed in case in
isolation scenario we allow some low criticality partitions to
run on other cores during isolation. When the number of
criticality levels is increased, we could also explore several
cases regarding the parallel execution of partitions during
isolation scenario. In addition, we believe that the combination
of our approach with time and partitioning methods will lead
to further increase in the task parallelization during isolation
scenario. In addition, we are developing a methodology to
decide the position of the observation points over the ECFGs
in order to further reduce the monitoring overhead.

REFERENCES

[1] A. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: Survey of current and emerging trends,” in
DAC, pp. 1–10, 2013.

[2] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in RTSS, pp. 239–243,
2007.

[3] “ISO26262 Road Vehicles - Functional Safety.” http://www.iso.org/iso/
home/news%20index/news%20archive/news.htm?refid=Ref1499.

[4] M. Gatti, “Development and certification of avionics platforms on multi-
core processors,” in Tutorial Mixed-Criticality Systems: Design and
Certification Challenges, ESWeek, 2013.

[5] J. H. Anderson, S. K. Baruah, and B. B. Brandenburg, “Multicore
operating-system support for mixed criticality,” in WMC, April 2009.

[6] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and
J. A. Scoredos, “Mixed-criticality real-time scheduling for multicore
systems.,” in CIT, pp. 1864–1871, 2010.

[7] H. Li and S. Baruah, “Global mixed-criticality scheduling on multipro-
cessors,” in ECRTS, pp. 166–175, 2012.

[8] A. Kritikakou, O. Baldellon, C. Pagetti, C. Rochange, M. Roy, and
F. Vargas, “Monitoring on-line timing information to support mixed-
critical workloads,” in WiP PRTSS, 2013.

[9] A. Kritikakou, O. Baldellon, C. Pagetti, C. Rochange, and M. Roy,
“Run-time control to increase task parallelism in mixed-critical sys-
tems,” in ECRTS, 2014.

[10] A. Kritikakou, C. Rochange, M. Faugère, C. Pagetti, M. Roy, S. Girbal,
and D. G. Pérez, “Distributed run-time wcet controller for concurrent
critical tasks in mixed-critical systems,” in RTNS, pp. 139:139–139:148,
2014.

[11] K. D. Cooper, T. J. Harvey, and T. Waterman, “Building a control-
flow graph from scheduled assembly code,” Tech. Rep. TR02-399, Rice
University, 2002.

http://www.iso.org/iso/home/news%20index/news%20archive/news.htm?refid=Ref1499
http://www.iso.org/iso/home/news%20index/news%20archive/news.htm?refid=Ref1499

	Introduction
	Motivation
	Proposed methodology and contributions

	Design-time analysis
	Maximum load and isolation
	Switching to isolation mode
	Extended Control Flow Graph Representation
	Remaining WCET analysis

	Run-time control
	Conclusion
	References

