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ABSTRACT

This paper presents an unsupervised Bayesian algorithm for hyper-

spectral image unmixing accounting for endmember variability. This

variability is obtained by assuming that each pixel is a linear com-

bination of random endmembers weighted by their corresponding

abundances. An additive noise is also considered in the proposed

model generalizing the normal compositional model. The proposed

model is unsupervised since it estimates the abundances and both the

mean and the covariance matrix of each endmember. A classifica-

tion map indicating the class of each pixel is also obtained based on

the estimated abundances. Simulations conducted on a real dataset

show the potential of the proposed model in terms of unmixing per-

formance for the analysis of hyperspectral images.

Index Terms— Hyperspectral imagery, endmember variability,

image classification, Markov chain Monte-Carlo.

1. INTRODUCTION

Unmixing hyperspectral (HS) images consists of decomposing a

pixel spectrum into a combination of pure constituent spectra, or

endmembers, and a set of corresponding fractions, or abundances.

The mixture model associated with spectral unmixing can be linear

or nonlinear, depending on the hyperspectral image under consider-

ation [1]. Endmember variability (EV) has been identified as one of

the most profound sources of error in abundance estimation [2, 3].

Many algorithms have been proposed to mitigate EV effects. These

algorithms are often classified into bundle approaches (that consider

each physical material as a set or bundle of spectra) or statistical

approaches [2, 3]. The latter assumes random endmembers leading

to statistical models such as the beta compositional model [4] and

the normal compositional model (NCM) [5–7]. This paper consid-

ers a statistical approach based on the generalized NCM (GNCM)

initially introduced in [8, 9]. This model introduces an additional

noise to the NCM accounting for mismodeling effects. The GNCM

considers also a different mean vector and covariance matrix for

each endmember to analyze each component separately. Moreover,

the GNCM accounts for the spatial correlation between adjacent

pixels using Markov random fields (MRFs) as in [10, 11].

In order to estimate the parameters of the GNCM, we investi-

gate a Bayesian approach assuming appropriate prior distributions

for the unknown parameters and hyperparameters in order to satisfy

the known physical constraints. Since the posterior distribution of

this model is quite complicated, we consider a Markov chain Monte-

Carlo (MCMC) method which generates samples according to the
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posterior and computes the standard Bayesian estimators (minimum

mean square error (MMSE) and maximum a posteriori (MAP) esti-

mators) using the generated samples. More precisely, we consider a

Gibbs sampler coupled with a constrained Hamiltonian Monte Carlo

(CHMC) method that has been introduced in [12, Chap. 5] and ap-

plied to the non-linear unmixing of HS images in [13].

The paper is structured as follows. The Bayesian model used

to unmix HS images in presence of EV is introduced in Section 2.

The MCMC approach used to estimate the parameters of this model

was detailed in [8, 9] and is thus not presented here. Section 3 ana-

lyzes the performance of this approach when applied to a real image.

Conclusions and future work are reported in Section 4.

2. A BAYESIAN MODEL EXPLOITING EV

This section first recalls the generalized normal compositional model

(GNCM) introduced in [8,9] to account for EV. Second, it introduces

the associated Bayesian unmixing strategy that captures the EV and

estimates the abundances while considering spatial correlation be-

tween adjacent pixels.

2.1. Mixing model

The endmembers generally vary from one pixel to another of the ob-

served image [3]. In this paper, we describe the GNCM that takes

into account this variability. This model assumes that the nth pixel

spectrum yn (of sizeL×1) is a linear combination ofR varying end-

members srn corrupted by an additive independent and identically

distributed (i.i.d.) noise en as follows

yn =
R∑

r=1

arnsrn + en = Snan + en (1)

where an = [a1n, · · · , aRn]
T

is the (R × 1) abundance vec-

tor of the nth pixel, srn ∼ N
(
mr, diag

(
σ2

r

))
is the rth end-

member associated with the nth pixel, Sn = [s1n, · · · , sRn],

σ2
r =

[
σ2
r1, · · · , σ

2
rL

]T
is the variance vector of the rth end-

member, M = [m1, · · · ,mR] is the (L × R) matrix containing

the endmember means of the image, en ∼ N
(
0L, ψ

2
nIL

)
is an

additive residual Gaussian noise, ψn ∈ R, 0L is an (L × 1) vec-

tor of 0 and IL is the (L × L) identity matrix. The abundance

vector an contains proportions and thus should satisfy the physi-

cal positivity and sum-to-one (PSTO) constraints arn ≥ 0, ∀r ∈
{1, . . . , R} and

∑R

r=1 arn = 1.
There are several motivations for considering the GNCM. First,

model (1) accounts for EV by considering a Gaussian distribution,

whose variances σ2
r change from one spectral band to another, for

each physical component in the image. This allows the GNCM to

capture the spectral variations of each physical element with respect

to each spectral band. Second, model (1) generalizes the LMM



model since the GNCM reduces to the LMM for σ2
r = 0L, ∀r.

Third, model (1) generalizes the NCM since it introduces an addi-

tional residual Gaussian noise e that makes the proposed model more

robust with respect to mismodeling. Note that the GNCM reduces

to the NCM for ψ2
n = 0, ∀n. To summarize, the main motivations

for studying model (1) is that it generalizes the standard LMM and

NCM and allows EV to be taken into account.

2.2. Likelihood

Using the observation model (1), the Gaussian properties of both

the noise sequence en and the endmembers, and exploiting indepen-

dence between the noise samples in different spectral bands, yield

the following likelihood

f(yn|A,M ,Σ,Ψ) ∝

(
L∏

ℓ=1

Λℓn

) 1

2

× exp

{
−
1

2
Λ

T
:n [(yn −Man)⊙ (yn −Man)]

}
(2)

where Λ is an (L × N ) matrix whose elements are given by

Λℓn =
(∑R

r=1 a
2
rnσ

2
rℓ + ψ2

n

)
−1

, A = [a1, · · · ,aN ] is an

(R × N ) abundance matrix, N is the number of pixels, Σ =(
σ2
r,l

)
r=1,...,R,l=1,...,L

is an (R × L) matrix, Ψ = [ψ1, . . . , ψN ] is

an (1×N ) vector and ⊙ denotes the Hadamard (termwise) product.

Note that the elements of Λ depend jointly on the noise variances,

the endmember variances and the pixel abundances contrary to the

LMM.

2.3. Parameter/hyperparameter priors

The likelihood defined in (2) depends on the unknown parameters

M (endmember matrix), A (abundance matrix), Σ (endmember

variances) and Ψ (noise variances). In order to promote spatial cor-

relations between adjacent pixels of the image, we proposed in [8,9]

to introduce (1 × N ) label vectors z indicating the classes of the

image pixels. The abundances were then assigned priors depending

on these labels and on the (R × K) matrix of Dirichlet parameters

C = [c1, · · · , cK ] associated with these K classes. All these prior

distributions are briefly recalled below (see also [8, 9]):

• Label prior: f (z) = 1
G(β)

exp
[
β
∑N

n=1

∑
n′∈ν(n) δ (zn − zn′)

]

where β > 0 is the granularity coefficient, ν(n) denotes the pixel

neighborhood,G(β) is a normalizing (or partition) constant and δ(.)
is the Dirac delta function (see [11] for a similar choice),

• Abundance prior: f (A|z,C) =
∏N

n=1 f (an|zn = k, ck)
where an|zn = k, ck ∼ Dir(ck), for n ∈ Ik, Dir(.) denotes the

Dirichlet distribution, and n ∈ Ik means that yn belongs to the kth

class (which is also equivalent to zn = k),

• Endmember mean prior: f (M) =
∏R

n=1 f (mr), with

mr ∼ N[0,1]L

(
m̃r, ǫ

2
IL

)
, where NI denotes a truncated Gaussian

distribution on I , m̃r is an estimated endmember (resulting from an

endmember extraction algorithm such as VCA [14]) and ǫ2 is a fixed

variance term defining the confidence that we have on this estimated

endmember m̃r ,

• Endmember variance prior: f (Σ) ∝
∏L

ℓ=1

∏R

r=1
1

σ2

rl

1R+

(
σ2
rl

)

• Noise variance prior: f (Ψ|λ) =
∏N

n=1 λ exp
(
−λψ2

n

)
1R+

(
ψ2

n

)

where λ has a large value ensuring sparsity for ψn (λ = 107 in our

simulations).

• Dirichlet parameters: ck was assigned a conjugate prior as

defined in [15] in order to ensure a non-informative prior (flat distri-

bution) (see [8] for more details).

2.4. Posterior distribution

The parameters of the proposed Bayesian model are included in the

vector θ = {θp,θh} where θp = {A,M ,Σ,Ψ} (parameters) and

θh = {C, z} (hyperparameters). The joint posterior distribution of

the unknown parameter/hyperparameter vector θ can be computed

from the following hierarchical structure

f (θp,θh|Y ) ∝ f (Y |θp) f (θp|θh) f (θh) (3)

where f (θp,θh) = f (θp|θh) f (θh) = f (A|C, z) f (M)
f (Σ) f (Ψ) f (C|z) f (z), resulting from prior independence be-

tween the different parameters.

Unfortunately, it is difficult to obtain closed form expressions

for the standard Bayesian estimators associated with (3). These es-

timators are therefore approximated using an MCMC approach that

generates samples asymptotically distributed according to (3). This

is achieved using a hybrid Gibbs sampler that sequentially samples

the following parameters of interest A, M , Σ, z, Ψ and C, accord-

ing to their conditional distributions [16]. Due to the large number

of parameters to be sampled and to the complexity of the conditional

distributions, we use a CHMC algorithm with good mixing prop-

erties [12]. The parameters are finally estimated using the MMSE

estimator for {A,M ,Σ,Ψ,C} and the MAP estimator for the la-

bels z. The reader is invited to consult [8] for more details.

3. SIMULATION RESULTS ON REAL DATA

The main contribution of this paper is a performance evaluation of

the mixing model (1) and its estimation algorithm (referred to as Us-

GNCM) when applied to a real HS data set, which is the objective of

this section. The considered real image was acquired in 2010 by the

Hyspex HS scanner over Villelongue, France. The dataset contains

L = 160 spectral bands, 100× 100 pixels and R = 4 components:

tree, grass, soil and shadow (see Fig. 1 (a)). Our algorithm is com-

pared with: (i) VCA+FCLS: [14,17], (ii) UsLMM [18] and (iii) AEB

[19] (used with 10% image subset and the VCA algorithm).

3.1. Endmember and variability estimation

The UsGNCM algorithm estimates both the mean and variance of

each physical element in the scene which provides an EV measure

in the considered image. Fig. 2 shows the estimated endmember

distributions as blue level areas for each endmember. These distribu-

tions are in good agreement with the estimates obtained with VCA,

AEB and UsLMM algorithms except for the shadow endmember.

Indeed, both AEB and VCA provide a different shadow endmember

because they extract the endmembers from the image pixels while

UsLMM and UsGNCM estimate both the abundances and endmem-

bers resulting in a better shadow estimate (of lower amplitude). Note

finally that the variation is more pronounced for high spectral bands

(l > 80) which is in agreement with the results presented in [13].

3.2. Abundance Estimation and Image Classification

The fraction maps estimated by the different methods are shown in

Fig. 3. Note that a white (black) pixel indicates a large (small)

proportion of the corresponding materials. These maps lead to the

following conclusions

• UsLMM and UsGNCM present similar abundance estimates

with a smoother behavior for the second algorithm (because

considering spatial correlations)



(a) Madonna image. (b) Classification map.

(c) Noise variances.

Fig. 1. (a) Real Madonna image, (b) the estimated classification map

using UsGNCM and (c) noise variances.

Fig. 2. The R = 4 endmembers estimated by VCA (red lines),

UsLMM (black lines), AEB (green lines), UsGNCM (blue lines)

and the estimated endmember distribution (blue level areas) for the

Madonna image.

• The abundance maps of VCA-FLCS, AEB are higher than

those of statistical methods (UsLMM and UsGNCM) espe-

cially for the “shadow” and “tree” classes. Indeed, VCA-

FCLS and AEB assume the presence of pure pixels in the

image which is not true for the shadow (the shadow pixels

in the image are tree-shadowed pixels which should not be

considered as pure pixels)

• AEB is sensitive to the similarity between tree and grass spec-

tra leading to inaccurate grass maps.

In addition to unmixing, UsGNCM also provides a spatial segmenta-

tion of the considered scene as shown in Fig. 1(b). This classification

map clearly highlights the area of each physical element in the scene.

Indeed, we have 5 classes that represent tree, soil, shadow and two

kinds of grass. Table 1 finally reports the estimated Dirichlet param-

eters and the number of pixels for each spatial class when consid-

ering the Madonna image. These parameters suggest a highly non

uniform distribution over the simplex which can explain the good

performance of the proposed approach.

Table 1. Estimated Dirichlet parameters for the Madonna image.
Dirichlet parameters number of

ĉ1k ĉ2k ĉ3k ĉ4k pixels
k = 1 1.47 4.59 10.98 4.39 2144
k = 2 13.26 14.05 15.96 14.22 1064
k = 3 0.76 7.97 3.75 1.36 1502
k = 4 37.71 76.11 84.06 99.97 2483
k = 5 23.04 57.70 89.82 99.93 2807

3.3. Noise variances

The proposed algorithm also provides a measure of the noise vari-

ance for each observed pixel. This parameter brings an informa-

tion about pixels that are inaccurately described by the linear mixing

model, i.e., allows modeling errors to be quantified. Fig. 1 (c) shows

the obtained noise variances for the considered image. This figure

shows a higher error in the shadow area and around trees, i.e., for

regions where possible interactions between physical components

might occur (e.g., tree/soil) resulting in a more complex model than

the proposed linear one. Note finally that Fig. 1 (c) highlights the

presence of regular vertical patterns that have also been observed in

[20] and were associated with a sensor defect or other miscalibration

problems.

4. CONCLUSIONS

This paper introduced a Bayesian model for unsupervised unmixing

of HS images accounting for EV. The proposed model was based

on a generalization of the NCM defined by the endmembers of the

scene, their variability controlled by a scale parameter (variance)

and the abundances for each pixel of the scene. The observed im-

age was also spatially classified into regions sharing homogeneous

abundance characteristics. The physical constraints about the abun-

dances were ensured by choosing a Dirichlet distribution for each

spatial class of the image. Due to the complexity of the resulting

joint posterior distribution, an MCMC procedure (based on a hybrid

Gibbs sampler) was used to sample the posterior of interest and to

approximate the Bayesian estimators of the unknown parameters us-

ing the generated samples. The proposed algorithm showed good

performance when processing real data presenting EV and spatial

correlation between adjacent image pixels. It was also shown to be

robust to the absence of pure pixels in the observed scene. Future

work includes the introduction of endmember variability in nonlin-

ear mixing models.
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