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BAYESIAN FUSION OF MULTISPECTRAL AND HYPERSPECTRAL IMAGES USING A
BLOCK COORDINATE DESCENT METHOD

Qi Wei, Nicolas Dobigeon, and Jean-Yves Tourneret

University of Toulouse, IRIT/INP-ENSEEIHT, 31071 Toulouse cedex 7, France

ABSTRACT

This paper studies a new Bayesian optimization algorithm for fus-

ing hyperspectral and multispectral images. The hyperspectral im-

age is supposed to be obtained by blurring and subsampling a high

spatial and high spectral target image. The multispectral image is

modeled as a spectral mixing version of the target image. By intro-

ducing appropriate priors for parameters and hyperparameters, the

fusion problem is formulated within a Bayesian estimation frame-

work, which is very convenient to model the noise and the target im-

age. The high spatial resolution hyperspectral image is then inferred

from its posterior distribution. To compute the Bayesian maximum

a posteriori estimator associated with this posterior, an alternating

direction method of multipliers within block coordinate descent al-

gorithm is proposed. Simulation results demonstrate the efficiency

of the proposed fusion method when compared with several state-of-

the-art fusion techniques.

Index Terms— Fusion, multispectral and hyperspectral images,

Bayesian estimation, block coordinate descent, alternating direction

method of multipliers

1. INTRODUCTION

Image fusion has been a very active research topic during recent

years in remote sensing [1]. A conventional fusion problem for re-

mote sensing images is the pansharpening, which consists of fusing

a high spatial resolution panchromatic (PAN) image and a low spa-

tial resolution multispectral (MS) image. Recently, hyperspectral

(HS) imaging, which consists of acquiring a same scene in several

hundreds of contiguous spectral bands, has opened a new range of

relevant applications, such as target detection [2] and spectral un-

mixing [3]. To take advantage of the good spectral properties of

HS images, the problem of fusing HS and PAN images has been

explored [4]. Many existing MS pansharpening algorithms have

been adapted to HS pansharpening [5, 6]. Some methods have also

been specifically designed to the HS pansharpening problem such

as [7–9]. Conversely, the fusion of MS and HS images has been

considered in fewer works. It is a challenging problem since the

data to be processed are of high dimensionality and both spatial and

spectral information is contained in multi-band images. Note that a

lot of pansharpening methods, such as component substitution [10]

and relative spectral contribution [11] are inapplicable or inefficient

for the HS/MS fusion problem. Since the fusion problem is gen-

erally ill-posed, Bayesian inference can offer a convenient way to

regularize the problem by defining an appropriate prior distribution

Part of this work has been supported by the Hypanema ANR Project
n◦ANR-12-BS03-003, ANR-11-LABX-0040-CIMI in particular during the
program ANR-11-IDEX-0002-02 within the thematic trimester on image
processing and the Chinese Scholarship Council.

for the scene of interest. Following this strategy, Hardie et al. pro-

posed a Bayesian estimator for fusing the co-registered high spatial-

resolution MS and high spectral-resolution HS images [12]. The

estimator of [12] was implemented by Zhang et al. in the wavelet

domain to improve denoising performance [13]. However, in both

of these two works, the spectral response of MS sensors is not fully

exploited. More recently, a hierarchical Bayesian model, explicitly

taking advantage of the MS sensor spectral response, was proposed

in [14,15]. The Bayesian estimators associated with this model were

computed from samples generated from the target posterior distri-

bution using Markov chain Monte Carlo (MCMC) methods. How-

ever, Monte Carlo based methods are quite computationally inten-

sive, which makes the implementation time-consuming.

In this work, we propose to address the problem of fusing HS

and MS images following the Bayesian framework initially proposed

in [14], with an optimization method. Based on the posterior distri-

bution of the unknown parameters, we propose to compute the MAP

estimators of the unknown scene and the noise variances by using a

block coordinate descent (BCD) method [16]. This descent method

includes an alternating direction method of multipliers (ADMM)

step. The ADMM step differs from the gradient method by intro-

ducing variable splitting and an augmented Lagrangian, which can

solve the optimization problem analytically and alternately instead

of descending along gradient direction.

The paper is organized as follows. Section 2 formulates the fu-

sion problem. Section 3 introduces the hierarchical Bayesian model

of [14] defined by the joint posterior distribution of the unknown im-

age, its hyperparameters and the noise variances. Section 4 studies a

BCD algorithm based on an ADMM step to maximize the joint pos-

terior distribution of the proposed fusion model. Simulation results

are presented in Section 5. Conclusions are reported in Section 6.

2. PROBLEM FORMULATION

Fusing HS and MS images consists of estimating an unknown high-

spatial and high-spectral resolution image from a high-spatial low-

spectral MS image and a low-spatial high-spectral HS image. The

HS image YH is supposed to be a blurred down-sampled and noisy

version of the target image X whereas the MS image YM is a spec-

trally degraded and noisy version of X. As a consequence, the obser-

vation models associated with the HS and MS images can be written

as [12]

YH = XBS+NH

YM = RX+NM
(1)

where X = [x1, · · · ,xn] ∈ R
mλ×n is the unknown full resolu-

tion image composed of mλ bands and n pixels, YH ∈ R
mλ×m

is the HS image composed of mλ bands and m pixels and YM ∈
R

nλ×n is the MS image composed of nλ bands and n pixels. In (1),

B ∈ R
n×n is a cyclic convolution operator acting on the bands that



models the point spread function of the HS sensor and S ∈ R
n×m

is a downsampling matrix. The matrix R ∈ R
nλ×mλ models the

spectral response of the MS sensor. In this work, the noise matrices

NH = [nH,1, · · ·nH,m] and NM = [nM,1, · · ·nM,n] are assumed

to be distributed according to matrix Gaussian distributions [17]

NH ∼ MNmλ,m(0mλ,m,ΛH, Im)
NM ∼ MNnλ,n(0nλ,n,ΛM, In)

where Ic is the c × c identity matrix, 0a is the a × 1 vector of

zeros, and the diagonal matrices ΛH = diag(s2H,1, · · · , s
2
H,mλ

) ∈

R
mλ×mλ and ΛM = diag(s2M,1, · · · , s

2
M,nλ

) ∈ R
nλ×nλ corre-

spond to band-dependent noise variances. The fusion problem con-

sists of estimating the high-spatial resolution HS image X from the

two available images YH and YM using the observation model (1).

The proposed estimation scheme relies on a hierarchical Bayesian

model introduced in Section 3.

3. HIERARCHICAL BAYESIAN MODEL

3.1. Dimension Reduction

Because the HS bands are spectrally correlated, the HS vector xi

usually lives in a space whose dimension is much smaller than mλ

[3]. More precisely, the HS image can be rewritten as X = VU

where V ∈ R
mλ×m̃λ has normalized orthogonal columns and U ∈

R
m̃λ×n is the projection of X onto the subspace spanned by the

columns of V. Incorporating this decomposition of the HS image X

into the observation model (1) leads to

YH = VUBS+NH

YM = RVU+NM.
(2)

Note that V is a full-column rank matrix whose rows span the space

R
m̃λ×1. In this work, we assume that the signal subspace has been

previously identified, e.g. obtained after conducting a principal com-

ponent analysis of the HS data. Then, the considered fusion problem

is solved in this lower-dimensional subspace, by estimating the pro-

jected image U.

3.2. Likelihood and prior distributions

Using the statistical properties of the noise matrices NH and NM,

the distributions of YH and YM are matrix Gaussian distributions,

i.e.,
YH|U,ΛH ∼ MNmλ,m(VUBS,ΛH, Im)
YM|U,ΛM ∼ MNnλ,n(RVU,ΛM, In).

(3)

The unknown parameter vector θ associated with (3) is com-

posed of the projected scene U and the noise variances s2 ={
s2H,1, · · · , s

2
H,mλ

, s2M,1, · · · , s
2
M,nλ

}
, i.e., θ =

{
U, s2

}
. Appro-

priate prior distributions assigned to the unknown parameters are

presented below.

Scene prior: Independent Gaussian prior distributions are assigned

to the projected vectors ui (i = 1, · · · , n), i.e.,

ui|µui
,Σ ∼ N

(
µ

ui
,Σ

)
. (4)

The Gaussian prior has the advantage of being a conjugate distri-

bution relative to the likelihood function, leading to simple compu-

tations of the Bayesian estimators derived from the posterior dis-

tribution of interest and has been used successfully in many image

processing applications including image denoising [18] and image

restoration [19].

The means µ
ui

are fixed using the interpolated HS image in

the subspace of interest following the strategy of [12] and Σ is an

unknown covariance matrix. The hyperparameter Σ is related to the

regularization parameter of a penalized optimization problem, which

adjusts the trade-off between the data-fitting term (likelihood) and

the penalty term (prior). Instead of fixing Σ a priori, we propose to

estimate it jointly with U from the data by defining a hierarchical

Bayesian model, which requires to define prior for this hyperparam-

eter.

Hyperparameter prior: Assigning a conjugate inverse-Wishart

(IW) distribution to the covariance matrix Σ has provided interest-

ing results in the signal/image processing literature. Following these

works, an IW distribution has been chosen, i.e.,

Σ ∼ IW(Ψ, η) (5)

where (Ψ, η)T are fixed to provide a reasonable prior for Σ.

Noise variance priors: Conjugate inverse-gamma distributions are

chosen as prior distributions for the noise variances s2H,i and s2M,j

s2H,i|νH, γH ∼ IG
(
νH
2
, γH

2

)
, i = 1, · · · ,mλ

s2M,i|νM, γM ∼ IG
(
νM
2
, γM

2

)
, i = 1, · · · , nλ.

(6)

These conjugate distributions allow one to obtain closed-form ex-

pressions for the conditional distributions p
(
s2|YH,YM

)
of the

noise variances. Other motivations for using this kind of prior distri-

bution can be found in [20]. In this work, we assume the variances

s2H,i and s2M,j are a priori independent since the noise properties

highly depend on the sensor characteristics.

3.3. Posterior distribution

Defining Y = {YH,YM} as the set of observed images, the joint

posterior distribution of the unknown parameters and hyperparame-

ters can be computed as

p (θ,Σ|Y) ∝ p (Y|θ) p (θ|Σ) p (Σ)
∝ p (YH|θ) p (YM|θ) p (θ|Σ) p (Σ)

where the parameter prior is

p (θ|Σ) =

n∏

l=1

p (ul|Σ)

mλ∏

i=1

p
(
s
2
H,i

) nλ∏

j=1

p
(
s
2
M,j

)
.

The two classical estimators considered within a Bayesian es-

timation framework are the minimum mean square error (MMSE)

and maximum a posteriori (MAP) estimators. However, for the con-

sidered fusion problem, deriving closed-form expressions for these

estimators is difficult. An alternative for approximating the MMSE

estimator consists of resorting to Monte Carlo integration. However,

this strategy is computationally intensive due to the high dimension-

ality of the problem. Instead, in this work, an optimization algorithm

is designed to maximize p (θ,Σ|Y) providing the MAP estimator

of (θ,Σ). The negative logarithm of the joint posterior distribution

p (θ,Σ|Y) is given as

L(U, s2,Σ) = − log p (θ,Σ|Y) =

− log p (YH|θ)− log p (YM|θ)−
n∑

l=1

log p (ul|Σ)

−
mλ∑
i=1

log p
(
s2H,i

)
−

nλ∑
j=1

log p
(
s2M,j

)
− log p (Σ)−C

(7)

where C is a constant. The MAP estimator of the unknown

model parameters can then be obtained by minimizing the function

L(U, s2,Σ) with respect to U, s2 and Σ. To solve this multivariate

optimization problem, we propose to use a BCD algorithm whose

details are given in the following section.



4. BLOCK COORDINATE DESCENT METHOD

BCD consists of optimizing with respect to (w.r.t.) the unknown pa-

rameters iteratively, which can be easily implemented in the consid-

ered fusion problem (see Algorithm 1). Contrary to gradient based

optimization methods, BCD does not require any stepsize tuning,

which makes the algorithm more usable by practitioners. BCD is

known to converge to a stationary point of the target cost function

to be optimized provided that this target function has a unique min-

imum point with respect to each variable [16, Prop. 2.7.1], which is

the case for the criterion in (7). The three steps of the BCD algo-

rithm are detailed below.

Algorithm 1: Block coordinated descent algorithm

Input: YH, YM, m̃λ, B, S, R, s2
0, Σ0

1 for t = 1, 2, . . . to stopping rule do

2 Ut = argminU L(U, s2
t−1,Σt−1) ; /* See Section 4.1 */

3 s2
t = argmin

s
2 L(Ut, s

2,Σt−1) ; /* See Section 4.2 */

4 Σt = argminΣ L(Ut, s
2
t ,Σ) ; /* See Section 4.3 */

5 end

Output: Û (Projected high resolution HS image)

4.1. Optimization with respect to U

The optimization w.r.t. to U consists of minimizing

LU(U) = 1
2
‖Λ

− 1

2

H (YH −VUBS) ‖2F+
1
2
‖Λ

− 1

2

M (YM −RVU) ‖2F + 1
2
‖Σ− 1

2 (U− µ
U
) ‖2F .

(8)

Determining U which makes the gradient of LU(U) equal to zero

is not straightforward, mainly due to left- and right-side linear op-

erators applied to U and the size of the matrices involved in the

computation.

Fortunately, this kind of optimization problem has been solved

efficiently by the ADMM method [21]. After defining the splittings

V1 = UB, V2 = U and V3 = U and the respective scaled La-

grange multipliers G1,G2,G3, the augmented Lagrangian associ-

ated with (8) can be written as

LU(U,V1,V2,V3,G1,G2,G3) =

1

2

∥∥H− 1

2 (YH −VV1S)
∥∥2

F
+

µ

2

∥∥UB−V1 −G1

∥∥2

F
+

1

2

∥∥Λ− 1

2

M (YM −RVV2)
∥∥2

F
+

µ

2

∥∥U−V2 −G2

∥∥2

F
+

1

2

∥∥Σ− 1

2 (µ
U
−V3)

∥∥2

F
+

µ

2

∥∥U−V3 −G3

∥∥2

F
.

The iterative update of U,V1,V2,V3,G1,G2,G3 can be achieved

with the split augmented Lagrangian shrinkage algorithm (SALSA)

[22, 23], which is an instance of the ADMM algorithm with conver-

gence guaranty. Complementary technical details on the implemen-

tation of the SALSA scheme for the fusion problem are available in

the companion technical report [24].

4.2. Optimization with respect to s2

The optimization w.r.t. s2 is decomposed into (mλ+nλ) parallel op-

timizations w.r.t.
{
s2H,j

}mλ

j=1
and

{
s2M,j

}nλ

j=1
thanks to the criterion

separability

L
s
2(s2) =

(
νH+n

2
+ 1

) mλ∑
i=1

log s2H,i +
mλ∑
i=1

γH+‖(YH−VUt−1BS)
i
‖2F

2s2
H,i

(
νM+n

2
+ 1

) nλ∑
j=1

log s2M,j +
nλ∑
j=1

γM+‖(YM−RVUt−1)j‖
2

F

2s2
M,j

.

Computing the derivatives of L
s
2(s2) w.r.t. s2H,i and s2M,j and forc-

ing them to be zero leads to the update rules

s2H,i =
1

νH+n+2

(
γH + ‖ (YH −VUt−1BS)

i
‖2F

)

s2M,j = 1
νM+n+2

(
γM + ‖ (YM −RVUt−1)j ‖

2
F

)
.

4.3. Optimization with respect to Σ

Fixing U and s2, the objective function is

LΣ(Σ) = η+m̃λ+n+1
2

log |Σ|

+ 1
2

tr
((∑n

i=1

(
ui − µ

ui

) (
ui − µ

ui

)T
+Ψ

)
Σ

−1
)

where tr(·) is the trace operator. The maximum of this function is

obtained for

Σt =
(Ut−1 −µ

U
) (Ut−1 − µ

U
)T +Ψ

η + m̃λ + n+ 1
.

4.4. Relationship with the MCMC method of [14]

It is worthy to note that the proposed optimization procedure is struc-

tured similarly to the Gibbs sampler developed in [14] to solve the

fusion problem. Indeed, the BCD method can be interpreted as a de-

terministic counterpart of the Gibbs sampler, consisting of replacing

the stochastic sampling procedures according to the conditional pos-

terior distributions of the target distribution by iterative evaluations

of their modes. However, the BCD method requires much fewer

computation resources when compared with Monte Carlo-based

methods, which is crucial for practical implementations.

5. SIMULATION RESULTS

This section presents numerical results obtained with the proposed

fusion algorithm. The reference image, considered here as the high

spatial and high spectral resolution image to be recovered, is an HS

image acquired over Moffett field, CA, in 1994 by the JPL/NASA

airborne visible/infrared imaging spectrometer (AVIRIS). This im-

age is of size 128 × 64 and was initially composed of 224 bands

that have been reduced to 177 bands after removing the water vapor

absorption bands. A composite color image of the scene of interest

is shown in the top right panel of Fig. 1.

5.1. Simulation scenario

We propose to reconstruct the reference HS image X from two HS

and MS images YH and YM. First, a high-spectral and low-spatial

resolution image YH has been generated by applying a 5 × 5 av-

eraging filter and by down-sampling every 4 pixels in both vertical

and horizontal direction for each band of X . Second, a 7-band MS

image YM has been obtained by filtering X with the LANDSAT-

like reflectance spectral responses [25]. The HS and MS images are

both contaminated by additive centered Gaussian noises. The sim-

ulations have been conducted with SNRH,j = 35dB for the first



Fig. 1. Fusion results. Top, left: HS image. Top, middle: MS image.

Top, right: Reference image. Middle, 1: MAP estimator [12]. Mid-

dle, 2: Wavelet MAP estimator [13]. Middle, 3: MMSE estimator.

Middle, 4: Proposed method. Bottom: The corresponding RMSE

maps (More black, smaller errors; more white, larger errors).

127 bands and SNRH,j = 30dB for the remaining 50 bands of

the HS image, where SNRH,j = 10 log

(
‖[XBS]j‖

2

F

s2
H,j

)
. For the

MS image, the noise level has been adjusted to obtain SNRM,j =

10 log

(
‖[RX]j‖

2

F

s2
M,j

)
= 30dB in all the spectral bands. The observed

HS and MS images are shown in the top left and right of Fig. 1 (note

that the HS image has been interpolated for better visualization and

that the MS image has been displayed using an arbitrary color com-

position). To learn the projection matrix V, a PCA has been con-

ducted, i.e., the m̃λ = 10 most discriminant vectors associated with

the 10 largest eigenvalues of the sample covariance matrix of the HS

image have been computed. These 10 vectors lead to 99.89% of the

information contained in the HS image.

5.2. Fusion performance

To evaluate the quality of the proposed fusion strategy, three image

quality measures have been investigated. Referring to [13, 14], the

root mean square error (RMSE), the averaged spectral angle mapper

(SAM) and the universal image quality index (UIQI) are used as

quantitative measures. The RMSE is defined by the distance between

the estimated and reference images, while the definitions of SAM

and UIQI can be found in [13]. The smaller RMSE and SAM, the

better the fusion. The larger UIQI, the better the fusion.

The experiments compare the proposed algorithm with three

state-of-the-art fusion algorithms [12–14]. Note that the fusion

method in [14] can be considered as the Monte Carlo-based coun-

terpart of the proposed method, since both methods share the same

hierarchical Bayesian model. Results obtained with these algorithms

are depicted in Fig. 1 and quantitative results are reported in Table 1.

These results show that the proposed method provides better results

than the methods of [12], [13] and competitive results when com-

pared with the method in [14]. However, as observed by comparing

the execution times reported in Table 1, the proposed optimization

algorithm is significantly faster than the method of [14].

Table 1. Performance of the fusion methods: RSNR (×10−2), UIQI,

SAM (◦) and time (second).

Methods RMSE UIQI SAM Time

Hardie [12] 6.96 0.9932 5.15 3

Zhang [13] 5.68 0.9956 4.22 72

MCMC [14] 5.06 0.9971 3.73 6228

Proposed 5.10 0.9971 3.74 96
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Fig. 2. Noise variances and their MMSE estimates. Top: HS Image

(SNR2 = 30dB). Bottom: MS Image (SNR1 = 30dB).

The estimation of noise variances for both HS bands and MS

bands are shown in Fig. 2. These results show that the noise vari-

ances for different bands can be tracked with tolerant discrepancy.

6. CONCLUSION

This paper proposed to maximize the posterior distribution asso-

ciated with a hierarchical Bayesian model for fusing multispectral

and hyperspectral images using a block coordinate descent (BCD)

method. The high spatial and high spectral resolution image to be re-

covered was defined in a lower-dimensional subspace, identified by a

PCA applied to the hyperspectral image. The joint optimization was

conducted iteratively with respect to the image to be recovered, the

noise variances and the image prior covariance matrix. One particu-

larity of the proposed BCD algorithm was to involve an ADMM step

for estimating the unknown image. Numerical experiments showed

that the proposed method compares competitively with other state-

of-the-art methods, with the great advantage of reducing the compu-

tational complexity when compared with a Monte Carlo-based coun-

terpart method. It is interesting to note that recently the proposed

framework has been successfully used to incorporate a sparse prior

[26]. A related acceleration to achieve fast fusion is also noteworthy

[27].
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