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ON THE ASYMPTOTIC LIMIT OF THE THREE DIMENSIONAL
VLASOV-POISSON SYSTEM FOR LARGE MAGNETIC FIELD : FORMAL

DERIVATION.

PIERRE DEGOND AND FRANCIS FILBET

Abstract. In this paper we establish the asymptotic limit of the three dimensional Vlasov–Poisson
equation with strong external magnetic field. The guiding center approximation is investigated in
the three dimensional case with a non-constant magnetic field. In the long time asymptotic limit,
the motion can be split in two parts : one stationary flow along the lines of the magnetic field
and the guiding center motion in the orthogonal plane of the magnetic field where classical drift
velocities and invariants (magnetic moment) are recovered.

Keywords. Vlasov-Poisson system; Guiding-centre model; Asymptotic expansion.
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1. Introduction

We consider a plasma confined by a strong external non constant magnetic field, hence the
charged gas evolves under its self-consistent electrostatic field and the confining magnetic field.
This configuration is typical of a tokamak plasma [3, 39] where the magnetic field is used to confine
particles inside the core of the device.

We assume that on the time scale we consider, collisions can be neglected both for ions and
electrons, hence collective effects are dominant and the plasma is entirely modelled with kinetic
transport equations, where the unknown is the number density of particles f ≡ f(t,x,v) depending
on time t ≥ 0, position x ∈ Ω ⊂ R3 and velocity v ∈ R3.

Such a kinetic model provides an appropriate description of turbulent transport in a fairly general
context, but it requires to solve a six dimensional problem which leads to a huge computational
cost.

Date: October 12, 2016.
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To reduce the cost of numerical simulations, it is classical to derive asymptotic models with a
smaller number of variables than the kinetic description. Large magnetic fields usually lead to
the so-called drift-kinetic limit [1, 14, 31, 32] and we refer to [9, 13, 18, 19, 20, 23] for recent
mathematical results on this topic. In this regime, due to the large applied magnetic field, particles
are confined along the magnetic field lines and their period of rotation around these lines (called
the cyclotron period) becomes small. It corresponds to the finite Larmor radius scaling for the
Vlasov–Poisson equation, which was introduced by Frénod and Sonnendrücker in the mathematical
literature [18, 19]. The two-dimensional version of the system (obtained when one restricts to the
perpendicular dynamics) and the large magnetic field limit were studied in [20] and more recently
in [9, 22, 26]. We also refer to the recent work [30] of Hauray and Nouri, dealing with the well-
posedness theory with a diffusive version of a related two dimensional system. A version of the
full three dimensional system describing ions with massless electrons was studied by Han-Kwan
in [27, 29]. In the context of space plasmas, C. Cheverry also recently proposed a study of the
Vlasov-Maxwell system with a strong external magnetic field [4] in the long time asymptotic to
justify the validity of gyro-kinetic models and achieved a precise analysis of oscillatory integrals to
understand the confinement property of the external magnetic field.

Here, we formally derive a new asymptotic model under both assumptions of large magnetic
fields and large time asymptotic limit for the three dimensional Vlasov-Poisson system. Analogous
problem has already been carefully studied by F. Golse and L. Saint-Raymond in two dimension
[23, 42, 24].

We consider a plasma model in which we focus on the dynamics of the fast electrons and the
magnetic field is assumed to be given. In the large magnetic field regime, the Lorentz force term in
the Vlasov equation is scaled by a large parameter, 1/ε, where ε stands for the dimensionless ion
cyclotron period, i.e. the rotation period of the electrons about a magnetic field line (or Larmor
rotation). The so called drift-kinetic or gyro-kinetic regimes are reached when ε tends to zero (see
[31, 36]).

Here we are interested in the long time behavior of the distribution of electrons since they
can be considered as fast particles compared to the characteristic velocity of ions. In this limit,
the new distribution function only depends on space, time and two components of the velocity,
corresponding to the parallel component along the magnetic field line and the magnitude of the
perpendicular velocity. In other words, the distribution function is independent of the gyro-phase
of the perpendicular velocity in the plane normal to the magnetic field line. This is a consequence
of the ultra-fast cyclotron rotation about the magnetic field lines.

It is also convenient to express the distribution in terms of the parallel velocity and the magnetic
moment or adiabatic invariant, which is proportional to the perpendicular energy divided by the
magnitude of the magnetic field.

The present work is an attempt to give a mathematical framework of the theory developed for
plasma confinement in theoretical physics [32]. Using our approach, the distribution function in
these new variables satisfies a transport equation with a constraint. A Lagrange multiplier allows
to express this constraint in the differential system. More precisely, the constraint comes from
the perturbation and imposes that the distribution function is constant along the trajectories of
the fast parallel motion along the magnetic field lines. The resulting asymptotic model seems to
be different to the models in [32] but these differences only come from a rigorous treatment of
the terms which have been neglected in [32]. However, our asymptotic model shares some basic
properties with classical ones (drift kinetic model, guiding center equation) since we recover drift
velocity, energy conservation, magnetic moment invariant.

The derivation of the model roughly follows the following steps: we first proceed with formal
expansions of the distribution function with respect to the parameter ε. Now, carrying the Hilbert
expansion procedure through for the distribution function equation is best done if we change the
random velocity variable into a coordinate system consisting of the parallel velocity, the energy,
and the angle of rotation or gyrophase around the magnetic field line.

Thanks to this coordinate change, we show that the leading order term of the distribution
function does not depend on the gyrophase. Next, we realize that, at each level of the expansion,
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we are led to inverting the gyrophase averaging operator [31, 32]. We show that the inverse operator
can only act on functions satisfying a specific solvability condition, namely that their gyrophase
average is zero. We find the asymptotic model following the classical Hilbert expansion procedure
of kinetic theory. Providing an explicit expression of the Hilbert expansion procedure is achieved
here assuming that the magnetic field only acts in the z direction.

The remainder of the paper is organized as follows. In Section 2, we present the scaling which
expresses the assumptions of strong magnetic field and long time asymptotic regime. Then, we
present and comment the main result of this article, namely the asymptotic model. In Section 4,
by using Hilbert expansions we derive the asymptotic model and provide the main computational
steps which lead to the explicit partial differential system for the limit distribution function. Finally,
in Section 5 we give several directions for future work (description of the curvature effects, existence
theory of the asymptotic model, numerical simulations).

2. Scaling and main results

2.1. The Vlasov equation in a strong magnetic field. We are interested in the fast dynamics
of the negatively charged electrons in the plasma. At this stage of the study, the coupling with the
ions is discarded and the electric field is given by the Poisson equation whereas the magnetic field
is external.

We investigate the asymptotic limit of the Vlasov equation describing the long time dynamics of
the electrons when they are submitted to an asymptotically large external magnetic field.

Denoting by m the electron mass and by q the negative charge of the electron, we start from the
Vlasov equation

(1) ∂f

∂t
+ v · ∇xf + q

m
(E + v×Bext) · ∇vf = 0,

where f ≡ f(t,x,v) is the distribution function and x ∈ Ω ⊂ R3, v ∈ R3, and t ∈ R+ are
respectively the position, velocity, and time variables. Also, Bext is the external magnetic field
applied to confine the charged particles, whereas E represents the self-consistent electric field such
that E = ∇φ and the potential φ is solution to the Poisson equation

−∆φ = 4π
ε0

(ρ− ρ0),

where ε0 is the permittivity of the vacuum and ρ0 represents the given ion density and ρ is the
charge density of electrons

ρ = q

∫
R3
f dv.

Then, we prescribe an initial datum

f(0,x,v) = fin(x,v), x ∈ Ω, v ∈ R3,(2)

where fin is the distribution function of particles initially present inside the domain Ω.
Next, we introduce a set of characteristic scales from which an appropriate scaling of equation

(1) will be derived.
The characteristic length scale of the problem x is the Debye length

λD =
(
kBε0T

4π n q2

)1/2

,

where kB is the Boltzmann constant, T is the temperature scale and n is the density scale. Then, the
characteristic magnitude of the electric field can be expressed from n and x by E = 4πqnx/ε0 and
the characteristic velocity of electrons v is the thermal velocity of the electrons, vth = (kBT/m)1/2.

Therefore, the plasma frequency of electrons satisfies

ω−1
p = x

v
,
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which corresponds to one time scale. Moreover, we denote by B the characteristic magnitude of
the applied magnetic field and define ωc = qB

m the characteristic electron cyclotron frequency, and
ω−1
c corresponds to a second time scale.
Hence we define the new variables and given fields by

x′ = x
x
, v′ = v

v
, t′ = t

t
, E′(t′,x′) = E(t,x)

E
, B′ext(t′,x′) = Bext(t,x)

B
.

Subsequently, letting f = n/v3 the distribution function scale, we introduce the new unknown

f ′(t′,x′,v′) = f(t,x,v)
f

.

Inserting all these changes into (1), dividing by ωp and dropping the primes for clarity, we obtain
the dimensionless equation

(3) 1
ωpt

∂f

∂t
+ v · ∇xf +

(
E + ωc

ωp
v×Bext

)
· ∇vf = 0.

When the external magnetic field is assumed to be large, the rotation period of the electrons about
the magnetic field lines becomes small. We introduce the dimensionless cyclotron period

ε = ωp
ωc

and since we are interested in asymptotically large time scale, we also have that

ε = 1
t ωp

.

Then, under this scaling, the Vlasov equation (3) for f = fε takes the form:

(4) ε
∂fε

∂t
+ v · ∇xf

ε +
(

Eε + 1
ε

v×Bext

)
· ∇vf

ε = 0,

with the Poisson equation for the potential, φ such that Eε = −∇φε and

−∆φε =
∫
R3
f ε dv− ρ0,

and initial conditions still given by (2).

2.2. Assumptions and main result. To simplify the presentation and the following calculation,
we assume that the domain is Ω := Q× (0, Lz), with Q ⊂ R2 and the external magnetic field only
applies in the z-direction
(5) Bext(t,x) = (0, 0, b(t,x⊥))t,
where x = (x, y, z)t ∈ Ω with x⊥ = (x, y) and x‖ = z. The velocity variable will be denoted in the
same manner v = (v⊥, v‖), with v⊥ = (vx, vy) and v‖ = vz.

Since the external magnetic field must satisfy the Gauss’s law for magnetism
∇x ·Bext = 0,

it gives that indeed b only depends on x⊥ ∈ R2 and t ∈ R+. Furthermore, we assume that b does
not vanish and is smooth: there exists α > 0 such that
(6) b ∈W 1,∞(R+ ×Q), b(t,x⊥) > α.

A natural assumption is that the distribution function is periodic in the z-direction
(7) f ε(t,x,v) = f ε(t,x + Lzez,v), (x,v) ∈ Ω× R3,

but for simplicity of the presentation, we also assume either periodic boundary condition in the
domain Q or Q = R2. Hence, we have the compatibility condition

(8)
∫

Ω
ρε(t,x) dx =

∫
R3×Ω

f ε(t,x,v) dv dx =
∫

Ω
ρ0(x) dx.
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Under these assumptions, the Vlasov equation (4) can be written in a simple form, which allows
us to ignore curvature effects

(9)



ε
∂fε

∂t
+ v · ∇xf

ε +
(

Eε + b

ε
v⊥
)
· ∇vf

ε = 0,

−∆φε = ρε − ρ0 =
∫
R3
f εdv − ρ0, Eε = −∇xφ

ε,

f ε(0) = f εin,

where the operator v⊥ = (vy,−vx, 0) and therefore it only acts on the v⊥ = (vx, vy) component
and keeps the third component identical : for any v = (v⊥, v‖) ∈ R3, we have v⊥ = (vy,−vx, 0).

Let us first emphasize that applying the arguments of A.A. Arsen’ev [2] and R. DiPerna and
P.-L. Lions [6], we easily prove the existence of weak solutions for any ε > 0.

Theorem 2.1. Assume the magnetic field satisfies (5)-(6) and the initial datum f εin is a nonnegative
function such that
(10) f εin ∈ L1 ∩ L∞(Ω× R3),
and has finite kinetic energy

(11) 1
2

∫
Ω×R3

|v|2 f εin dx dv <∞,

with the compatibility condition (8). Then there is a weak solution (f ε,Eε) to the Vlasov-Poisson
system (9) with periodic boundary conditions (7), where f ε ∈ L∞(R+, L1∩L∞(Ω×R3)), the charge
densities ρε is such that

ρε ∈ L∞(R+;L5/3(Ω))
and

Eε ∈ L∞(R+;L2 ∩W 1,5/3(Ω)).

Note here that the Lp and energy estimates hold uniformly with respect to ε > 0. Furthermore,
this results strongly relies on the energy estimate, which is uniform with respect to ε > 0. We
define the total energy associated to (9)

Eε(t) :=
∫

Ω×R3

|v|2

2 f ε(t) dx dv + 1
2

∫
Ω
|Eε|2 dx ≤ Eε(0).

The aim of this paper is then to obtain a systematic expansion of Hilbert type of the function
(f ε,Eε) solution to the Vlasov-Poisson system (9) and to study the asymptotic model formally
obtained by taking the limit ε→ 0.

Let us assume that (f ε,Eε) can be written as

(12) f ε =
∑
k∈N

εk fk, Eε =
∑
k∈N

εk Ek,

where for any k ∈ N, fk and Ek do not depend on ε. The existence of such an expansion would
guarantee that f ε and Eε and their derivatives with respect to x and v are uniformly bounded, at
least if the functions fk, Ek are sufficiently smooth.

In particular we assume that

(13) f εin =
∑
k∈N

εk fin,k,

where for any k ∈ N, fin,k does not depend on ε > 0.
To introduce the gyroaveraging operator in the orthogonal plane to magnetic field, we will work

in polar coordinate for v⊥ = (vx, vy) ∈ R2,

(14)
{
vx = w cos(θ),
vy = w sin(θ),
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and set ew = (cos θ, sin θ), eθ = −e⊥w = (− sin θ, cos θ). Then we introduce the gyroaveraging
operator Π defined for every function f(v) by

(15) Πf (w, v‖) = 1
2π

∫ 2π

0
f(v⊥, v‖)dθ,

where in the integral v⊥ is expressed thanks to the change of coordinate (14).

Theorem 2.2 (Formal expansion of f ε and Eε). Let us consider an external the magnetic field
such that (5)-(6) and f εin a nonnegative function satisfying (10), (11) and (13). Assume there exists
a sequence (fk,Ek)k∈N such that the weak solutions (f ε,Eε)ε to the Vlasov-Poisson system (9) can
be expanded as (12) for all ε > 0. Then,{

E0 ≡ EF (t,x),
f0 ≡ F (t,x, w, v‖)

and there exists (P,EP ) with P ≡ P (t,x, w, v‖) such that (F, P,EF ,EP ) is a solution to the fol-
lowing system

(16)



∂F

∂t
+ U⊥ · ∇x⊥F + uw

∂F

∂w
− ∂φP

∂x‖

∂F

∂v‖
+ v‖

∂P

∂x‖
− ∂φF

∂x‖

∂P

∂v‖
= 0,

v‖
∂F

∂x‖
− ∂φF

∂x‖

∂F

∂v‖
= 0,

F (0) = Πfin,0,

P (0) = Πfin,1,

where U⊥ corresponds to the drift velocity and (U⊥, uw) is given by

(17) U⊥ = −1
b

(
∇x⊥φF + w2

2b∇x⊥b

)⊥
, uw = w

2b2 ∇
⊥
x⊥
b · ∇x⊥φF ,

and the electric fields EF = −∇φF , EP = −∇φP are such that (φF , φP ) solves Poisson equations
with source terms (ρF − ρ0, ρP ),

(18)


−∆φF = 2π

∫
R+×R

F (t,x, w, v‖)w dw dv‖ − ρ0,

−∆φP = 2π
∫
R+×R

P (t,x, w, v‖)w dw dv‖.

with the compatibility condition (8)

2π
∫

Ω×R+×R
F w dw dv‖dx =

∫
Ω
ρ0dx,

∫
Ω×R+×R

P w dw dv‖dx = 0.

Moreover, the following relation holds

(19) f1 = − 1
b(t,x⊥) eθ ·

(
w∇x⊥F + EF⊥

∂F

∂w

)
+ P (t,x, r, v‖).

Remark 2.3. The transport equation (16) is not standard in kinetic theory due to the presence of
the transport operator acting on the pertubation P for the variables (x‖, v‖). This operator acts as
a source term in order to ensure that at any time t > 0, the following equation

v‖
∂F

∂x‖
− ∂φF

∂x‖

∂F

∂v‖
= 0,

is satisfied. This results indicates that when we are interested in the asymptotic behavior of the
solution (f ε,Eε) to the Vlasov-Poisson sytem, when ε → 0, we cannot ignore the effect of the
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perturbation corresponding to 
f ε = F + ε f1

Eε = EF + εEP ,

where f1 is given by (19).

Let us emphasize that the first equation of (16) means that F and P do not depend of the
gyrophase θ ∈ [0, 2π], but on w = |v⊥|. In this model, F is determined by (16) while the unknown
function P plays the role of the Lagrange multiplier associated to the constraint in (16). This con-
straint reflects the fact that the fast parallel motion along the magnetic field line is instantaneously
relaxed and F is constant along these trajectories. In other words, there are three time scales for
a particle moving in a large magnetic field:

• the fastest time scale corresponds to the cyclotron or Larmor rotation period about the
magnetic field. This time scale is eliminated here by averaging over θ ∈ (0, 2π);
• the second fastest scale is the scale of the parallel motion along the magnetic field line,
which is described here by the constraint in (16);
• the slow time scale corresponds to the various drifts across the magnetic field lines, due
to spatio-temporal variations of the electromagnetic field. In the system (16), we focus on
the slow time scale, which corresponds to the large time behavior of the solution to the
Vlasov-Poisson system (9).

Of course these various drifts are often obtained directly on the particle trajectories, but the
averaging effect is difficult to justify and is only valid for slowly varying electromagnetic fields.
The use of the kinetic model directly provides a way to do it by imposing constraints on the
distribution function. This easier derivation reflects the fact that, to some extent, the distribution
function describes the particle dynamics in a statistical sense. Averaging the trajectories over some
fast component is best done by looking at the evolution of an observable of the system which is
constant over this fast motion.

3. Fundamental properties of the asymptotic model

In this section, we prove some fundamental properties satisfied by the asymptotic model (16),
which illustrates the physical validity of the present approach. In the following, we show that

• we recover the classical drift velocity E×B and the gradient drift velocity;
• the asymptotic model satisfies conservation of energy;
• the magnetic moment is an invariant of the asymptotic model.

3.1. Drift velocities. The drift velocity U⊥ corresponds to the sum of classical guiding center
drift UE and U∇B. Indeed, the external magnetic field only acts on the z-direction, Bext = (0, 0, b),
then we first recover the drift velocity called E×B

UE = E×Bext
‖Bext‖2

= −
∇⊥x⊥

φF

b

and the so called gradient-B drift,

U∇B = |v⊥|2

2
Bext ×∇ |Bext|
‖Bext‖3

= −w
2

2
∇⊥x⊥

b

b2
.

Here there is no curvature drift since we considered this simple external magnetic field Bext =
(0, 0, b).

3.2. Lp norms and total energy conservation. Let us first write (16) in a conservative form
∂

∂t
(wF ) + ∇x⊥ · (wU⊥ F ) + ∂

∂w
(w uw F ) − ∂

∂v‖

(
∂φP
∂x‖

wF

)

+ ∂

∂x‖

(
w v‖ P

)
− ∂

∂v‖

(
w
∂φF
∂x‖

P

)
= 0.(20)
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Thus, we prove the following conservation property.

Proposition 3.1. Let f εin be a nonnegative function satisfying (10)-(11) and (13). Assume that
the limiting system (16) has a smooth solution (F,EF ) and (P,EP ). Then, for any Θ ∈ C1(R) such
that ∫

Ω×R+×R
Θ(F (0))w dw dv‖ dx < +∞,

we have ∫
Ω×R+×R

Θ(F (t))w dw dv‖ dx =
∫

Ω×R+×R
Θ(F (0))w dw dv‖ dx.

Proof. Assuming that F is a smooth solution to (16) together with a smooth P , we multiply (16)
by Θ′(F ) and integrate with respect to (x, w, v‖) ∈ Ω× R+ × R. Then, using that

w∇x⊥ ·U⊥ = −w
b2
∇⊥x⊥

b · ∇x⊥φF

and observing that

v‖
∂Θ′(F )
∂x‖

− ∂φF
∂x‖

∂Θ′(F )
∂v‖

= 0,

we easily get after a simple integration by part and for suitable boundary conditions (either periodic
or vanishing property in the whole space)

d

dt

∫
Ω×R+×R

Θ(F (t))w dw dv‖ dx = 0,

hence the results follows. �

From Proposition 3.1, we get classical Lp estimates, for any 1 ≤ p ≤ ∞, on the distribution
function F : for all t ∈ R+

(21) ‖F (t)‖Lp ≤ ‖F0‖Lp

and F (t) ≥ 0 for any nonnegative initial data F0.

Another remarkable property of our model is the preservation of the energy structure. Let us
define the total energy E0(t): for a smooth solution (F,EF ) to (16),

E0(t) :=
∫

Ω×R+×R

(
w2 + v2

‖
2

)
F (t)w dw dv‖ dx + 1

4π

∫
Ω
|EF (t)|2 dx.

Proposition 3.2. Let f εin be a nonnegative function satisfying (10)-(11) and (13). Assume that
the limiting system (16) has a smooth solution (F,EF ) and (P,EP ). Then, we have for any t ≥ 0,

E0(t) = E0(0).

Proof. Let us first multiply (20) by v2
‖/2 and integrate both in space and velocity, it gives

d

dt

∫ |v‖|2
2 F (t)w dw dv‖ dx = −

∫
∂φP
∂x‖

v‖ F (t)w dw dv‖ dx −
∫
∂φF
∂x‖

v‖ P (t)w dw dv‖ dx.

Using the constraint in the parallel direction (16) on F , we obtain the following cancellation∫
∂φP
∂x‖

v‖ F (t)w dw dv‖ dx = −
∫
φP v‖

∂F

∂x‖
(t)w dw dv‖ dx

=
∫

∂

∂v‖

(
φP

∂φF
∂x‖

F (t)
)
w dw dv‖ dx = 0,

hence it yields

(22) d

dt

∫ |v‖|2
2 F (t)w dw dv‖ dx = −

∫
∂φF
∂x‖

v‖ P (t)w dw dv‖ dx.
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Then we multiply (20) by w2/2 and integrate both in space and velocity, we have

(23) d

dt

∫
w2

2 F (t)w dw dv‖ dx =
∫
∇⊥x⊥

b · ∇x⊥φF F
w3

2b2 dw dv‖ dx.

Finally, we multiply (20) by the potential φF computed from ρF and after integration, we have∫
∂F

∂t
φF w dw dv‖ dx =

∫
∇x⊥φF ·U⊥F w dw dv‖ dx +

∫
∂φF
∂x‖

v‖ P (t)w dw dv‖ dx

= −
∫
∇x⊥φF · ∇

⊥
x⊥
b F

w3

2b2 dw dv‖ dx +
∫
∂φF
∂x‖

v‖ P (t)w dw dv‖ dx.

On the other hand, by definition of ρF and using the Poisson equation (18), we have∫
∂F

∂t
φF w dw dv‖ dx = 1

2π

∫
∂ρF
∂t

φFdx

= 1
4π

d

dt

∫
|∇xφF |2 dx.

Hence, gathering the later results, we obtain
1

4π
d

dt

∫
|∇xφF |2 dx = −

∫
∇x⊥φF · ∇

⊥
x⊥
b F

w3

2b2 dw dv‖ dx(24)

+
∫
∂φF
∂x‖

v‖ P (t)w dw dv‖ dx.

Finally, adding (22), (23) and (24), we get the conservation of energy
d

dt
E0(t) = 0.

�

3.3. Invariance of the magnetic moment (first adiabatic invariant). In this section we
assume that the external magnetic field does not depend on time. Then we define µ as the magnetic
moment

µ = w2

2 b(x⊥)
and let us show that it is an invariant of the movement for the asymptotic model (16).

We compute the time derivative along the flow,
dµ

dt
= w

b

dw

dt
− w2

2b2 ∇x⊥b ·
dx⊥
dt

.

Using the characteristic curves to (16) and the orthogonality properties of the ⊥ operator, it yields

dµ

dt
= w2

2b3 ∇
⊥
x⊥
b · ∇x⊥φF + w2

2b3 ∇x⊥b ·
(
∇x⊥φF + w2

2
∇x⊥b

b

)⊥
,

= w2

2b3 ∇
⊥
x⊥
b · ∇x⊥φF + w2

2b3 ∇x⊥b · ∇
⊥
x⊥
φF ,

= 0.
Therefore, we can perform a change of variable on (16) to get the time evolution of the distribution
function expressed in term of the magnetic moment F ≡ F (t,x, µ, v‖), it yields the following
equation

(25)



∂F

∂t
+ U⊥ · ∇x⊥F −

∂φP
∂x‖

∂F

∂v‖
+ v‖

∂P

∂x‖
− ∂φF

∂x‖

∂P

∂v‖
= 0,

v‖
∂F

∂x‖
− ∂φF

∂x‖

∂F

∂v‖
= 0,
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where U⊥ is now given by

(26) U⊥ = −1
b

(∇x⊥φF + µ∇x⊥b)
⊥

and the electric fields EF , EP in (18). Notice that since b(x⊥) dµ dx⊥ = w dw dx⊥, the limiting
system (25) can be written in conservative form when b does not vary with time

(27)



∂bF

∂t
+ ∇x⊥ · (U⊥ bF ) − ∂

∂v‖

(
∂φP
∂x‖

bF

)
+ ∂

∂x‖

(
v‖ bP

)
− ∂

∂v‖

(
∂φF
∂x‖

bP

)
= 0,

∂

∂x‖

(
v‖ bF

)
− ∂

∂v‖

(
∂φF
∂x‖

bF

)
= 0.

3.4. Maxwell-Boltzmann steady state. In this part, we prove that the classical Maxwell-
Boltzmann distribution is a steady state of the asymptotic model (16)

Proposition 3.3. Assume that the magnetic field b satisfies (5)-(6) and does not depend on time.
Choosing (P, φP ) = 0,

(28) F (x, µ, v‖) ≡
1√
2π

exp
(
−
(
v2
‖
2 + φF (x) + µb(x⊥)

))
,

where µ is the first adiabatic invariant, and φF solution to

(29) −∆φF = e−φF − ρ0.

Then (F, P, φF , φP ) is a steady state solution to (16)-(18).

Proof. Consider (16) written in the form of (25) with the first adiabatic invariant µ = w2/(2b).
Therefore, the constraint in the parallel direction is automatically satisfied and also

∇x⊥F = − (∇x⊥φ+ µ∇x⊥b) F,

which is orthogonal to the velocity field U⊥, hence (25) is verified. Finally we compute

ρF =
∫
R×R+

F (t,x, µ, v‖) b(t,x⊥) dµ dv‖ = exp(−φF ),

it yields the nonlinear Poisson equation (29). �

4. The asymptotic limit ε→ 0

It is worth to mention here that these a priori estimates on the distribution function F and the
electric field EF would give enough compactness to treat the nonlinear term U⊥bF , but we do
not get any estimate on the additional term (P,EP ) so that the existence of weak solution to the
limiting system (16) is still an open problem.

In order to establish a convergence result, we apply a formal analysis of the system (9). Apply-
ing a standard Hilbert expansion to (f ε,Eε) solution to the Vlasov-Poisson system (9), we get a
hierarchy of differential equations which have to be solved at each order. Here, we take advantage
of the simple structure of the magnetic field to solve explicitly each problem and get the asymptotic
model (16).

4.1. The Hilbert expansion. Since the leading order term in (9) involves the effect of a circular
motion around the magnetic field lines, we now specifically examine the properties of this operator.
Let us denote by L the following operator

Lf = −b(t,x⊥) v⊥ · ∇vf.

We have the following result
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Lemma 4.1. Assume that b satisfies (5)-(6). Then, the null space kerL of L consists of functions
which only depend on the parallel component v‖ and on the amplitude of v⊥, that is, w = |v⊥|,

(30) Lf = 0 ⇐⇒ f(v) ≡ f̃(w, v‖) with (w, v‖) ∈ R+ × R.

Proof. On the one hand, we notice that the magnetic field Bext only acts on v⊥ = (vx, vy), which
means that

Lf = −b(t,x⊥) v⊥⊥ · ∇v⊥f,

where now ⊥ acts on a vector of R2 and v⊥⊥ = (vy,−vx). Then, applying a change of variable to
polar coordinates on v⊥ ∈ R2, it yields

Lf = b(t,x⊥) ∂f
∂θ
.

From (6), the magnetic field does not vanish, hence we get Lf = 0 if and only if f(v) ≡ f̃(w, v‖),
which proves (30). �

Now, our goal is to find the asymptotic limit ε→ 0 to the Vlasov-Poisson system (9). We start
by assuming that (f ε,Eε) admits an Hilbert expansion:

f ε = f0 + ε f1 + ε2 f2 + . . . ,

and
Eε = E0 + εE1 + ε2 E2 + . . .

Inserting these expansions in the Vlasov-Poisson system (9), we find for the leading order ε−2,

(31) Lf0 = 0,

the order ε−1

(32) Lf1 = v · ∇xf0 + E0 · ∇xf0

and the order ε0

(33) Lf2 = ∂f0
∂t

+ v · ∇xf1 + E0 · ∇vf1 + E1 · ∇vf0.

In order to solve eq. Lf = h, we proceed in two steps :
• we verify the solvability condition Πh = 0;
• we compute f by integrating h over θ.

4.2. Proof of Theorem 2.2. In this section we derive an asymptotic model for the limit f0 of
f ε by formally passing to the limit ε → 0 in the Vlasov-Poisson system (9). This model will be
deduced by solving the sequence of equations appearing in the Hilbert expansion (31)-(33).

First, by a simple application of Lemma 4.1, the leading order of the Hilbert expansion (31) can
be directly solved. The function f0 does not depend on θ ∈ [0, 2π] and f0 ≡ F (t,x, w, v‖) for any
v = (v⊥, v‖) ∈ R3 and at time t = 0, we set F (0) = Πfin,0, where fin,0 is given from the expansion
of the initial data f εin in (13).

Moreover, substituting the Hilbert expansion to Eε in the Poisson equation in (9), gives that
E0 = EF := −∇φF with

∆φF = ρF = 2π
∫
R+×R

F w dwdv‖.

Now, the goal is to find the equation satisfied by F , hence we turn to (32) and first set

(34) G(t,x, w, v‖) := w∇x⊥F − ∇x⊥φF
∂F

∂w
.

Then we prove the following Proposition.
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Proposition 4.2. Assume that b satisfies (5)-(6) and consider (F,EF ) the leading order of the
Hilbert expansion (12). Then equation (32) admits a solution f1 if and only if F satisfies the
solvability condition

v‖
∂F

∂x‖
− ∂φF

∂x‖

∂F

∂v‖
= 0.

Moreover, if this condition is satisfied, then there exists a function P ∈ kerL such that
f1(t,x,v) = − 1

b(t,x⊥) eθ ·G(t,x, w, v‖) + P (t,x, w, v‖),

E1(t,x) = EP := −∇φP ,
with eθ = (− sin θ, cos θ)t, φP satisfies the Poisson equation (18) and at time t = 0, we have
P (0) = Πf1(0,x,v).
Proof. Thanks to the definition of G, we write (32) as

Lf1 = ew ·G(t,x, w, v‖) + v‖
∂F

∂x‖
− ∂φF

∂x‖

∂F

∂v‖
.

On the one hand, we require that the solvability condition of (32) is satisfied
ΠLf1 = 0.

Since Πew = 0, a necessary and sufficient condition for the solvability of (32) is that F satisfies the
following condition

v‖
∂F

∂x‖
− ∂φF

∂x‖

∂F

∂v‖
= 0,

which corresponds to the constraint equation in (16).
On the other hand, assuming that this solvability condition is verified, we can explicitly solve

(32) by integration with respect to θ ∈ [0, 2π]. Then there exists a function P ∈ kerL such that
for any (t,x,v) ∈ R+ × R3 × R3,

f1(t,x,v) = − 1
b(t,x⊥) eθ ·G(t,x, w, v‖) + P (t,x, w, v‖),

where Πeθ = 0 and from the initial condition (13), it gives that
P (0) = Πfin,1.

Finally, substituting the Hilbert expansion to Eε in the Poisson equation in (9) and using that

Πf1 = 1
b

Πeθ ·G + ΠP = ΠP,

we observe that
ρ1 =

∫
R3
f1dv = 2π

∫
R+×R

P w dwdv‖,

which gives that E1 = EP := −∇φP with φP solution to the Poisson equation

−∆φP = ρF = 2π
∫
R+×R

P w dwdv‖.

�

Note that f1 depends now on the whole variable (x,v) ∈ R3×R3. Finally, the equation satisfied
by F now appears as the solvability condition of (33).
Proposition 4.3. Assume that b satisfies (5)-(6) and consider (F,EF ) the leading order of the
Hilbert expansion (12). Then, equation (33) admits a solution f2 if and only if F satisfies the first
equation in (16), that is,

∂F

∂t
+ U⊥ · ∇x⊥F + uw

∂F

∂w
− ∂φP

∂x‖

∂F

∂v‖
+ v‖

∂P

∂x‖
− ∂φF

∂x‖

∂P

∂v‖
= 0,

where the drift velocity U⊥ and uw are given by (17).
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Proof. As before we apply the solvability condition to (33), which corresponds to
ΠLf2 = 0,

or it can be written as

(35)
∫ 2π

0

(
∂F

∂t
+ v · ∇xf1 + EF · ∇vf1 + EP · ∇vF

)
dθ = 0,

where EQ = −∇φQ corresponds to electric field obtained by solving the Poisson equation (18).
Let us compute explicitly each term with respect to (F,EF ) and (P,EP ) given from the previous

analysis.
On the one hand, since the distribution function F does not depend on the angular velocity, we

have that
1

2π

∫ 2π

0

∂F

∂t
dθ = ∂F

∂t
and

1
2π

∫ 2π

0
EP · ∇vF dθ = −∂φP

∂x‖

∂F

∂v‖
.

On the other hand, from the definition of f1 given in Proposition 4.2, we get that
1

2π ∇x ·
(∫ 2π

0
vf1dθ

)
= −w2 ∇x⊥ ·

(
G⊥

b

)
+ v‖

∂P

∂x‖
,

with
G⊥ = w∇⊥x⊥

F − ∇⊥x⊥
φF

∂F

∂w
.

Then, since the operator ∇x⊥ · ∇⊥x⊥
= 0, it yields that

(36) 1
2π ∇x ·

(∫ 2π

0
vf1dθ

)
= w

2b ∇
⊥
x⊥
φF

∂

∂w
(∇x⊥F ) + w

2
∇x⊥b

b2
·G⊥ + v‖

∂P

∂x‖
.

Finally, we evaluate the penultimate term in (35). From the expression of f1 in Proposition 4.2,
we obtain

1
2π EF ·

(∫ 2π

0
∇vf1dθ

)
= 1

2b ∇x⊥φF ·
(G
w

+ ∂G
∂w

)⊥
− ∂φF

∂x‖

∂P

∂v‖
.

Hence using the orthogonality property and u⊥ ·w = −w⊥ · u for any (u,w) ∈ R2 × R2, it yields

(37) 1
2π EF ·

(∫ 2π

0
∇vf1dθ

)
= −
∇⊥x⊥

φF

b
· ∇x⊥F + w

2b ∇x⊥φF ·
∂

∂w

(
∇⊥x⊥

F
)
− ∂φF

∂x‖

∂P

∂v‖
.

Gathering (36) and (37), we get some cancellation and it yields to the following expression
1

2π

∫ 2π

0
(∇x · vf1 + EF · ∇vf1) dθ = U⊥ · ∇x⊥F + uw

∂F

∂w

+ v‖
∂P

∂x‖
− ∂φF

∂x‖

∂P

∂v‖
.

where

U⊥ = −1
b

(
∇x⊥φ + w2

2b∇x⊥b

)⊥
, uw = w

2b2 ∇
⊥
x⊥
b · ∇x⊥φF .

Finally, the solvability condition on f2 is satisfied once the distribution function F is solution to
the following equation

∂F

∂t
+ U⊥ · ∇x⊥F + uw

∂F

∂w
− ∂φP

∂x‖

∂F

∂v‖
+ v‖

∂P

∂x‖
− ∂φF

∂x‖

∂P

∂v‖
= 0,

which completes the first part of the proof.
When the solvability condition is satisfied, then the equation (33), can be solved explicitly and

the solution f2 only depends on (F,EF ) and (P,EP ) and a function R ∈ kerL. �
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5. Open problems and conclusion

In this paper we studied the long time behavior of the solution to the Vlasov-Poisson system
(9) with a strong external magnetic field Bext = (0, 0, b). We provide a formal analysis based on a
Hilbert type expansion of the solution and the formal limit is solution to a reduced kinetic model
(16) where the solution does not depend anymore on the angular perpendicular velocity θ ∈ (0, 2π).
As fas as we know, this reduced model is new and satisfies some fundamental properties as the
correct drift velocities E × Bext, gradient B-drift, conservation of energy, entropy, and invariance
of the magnetic moment. However due to the constraint property in the parallel direction in
(16), it deserves more attention in term of well-posedness, regularity of solutions and numerical
discretization.

About the generalization to an arbitrary external magnetic field. Here we focus on the
formal analysis when the magnetic field only applies in the z-direction. We may also consider an
arbitrary external magnetic field Bext in order to get a more elaborated limiting system taking into
account curvature drift, polarization effects, etc. This can be done by following the guideline of the
analysis performed in [5].

The main modification is that we cannot anymore work in Cartesian coordinate but need to
apply a change of coordinates to follow the parallel direction of the external magnetic field

v = v‖b(t,x) + v⊥

where b represents a unit vector parallel to the magnetic field. This moving frame induces new
drift velocity both in the parallel and perpendicular direction to the magnetic field which have to
be taken into account.

About the rigorous justification of the limiting system. To justify our asymptotic analysis,
we should consider a smooth solution to the Vlasov-Poisson system (9), and should assume that
the limiting system also admits a smooth solution : for any k ≥ 0, (F,EF ) ∈ Ck+3

c × Ck+3 and
(P,EP ) ∈ Ck+2

c ×Ck+2, where Ck is the space of functions with k continuous derivatives and Ckc the
sub-space of Ck with compactly supported functions.

Then, we construct (F ε,Eε) by

F ε = F + ε f1 + ε2 f2, Eε = EF + εEP ,

where f1 and f2 are solutions to (32) and (33), and f2 such that Πf2 = 0. Therefore (F ε,Eε) ∈
Ck+1
c × Ck+1 satisfies the Vlasov-Poisson system (9) with a source term (Rε)ε>0

ε
∂F ε

∂t
+ v · ∇xF

ε +
(

Eε + b

ε
v⊥
)
· ∇vF

ε = −εRε,

−∆φε = ρε =
∫
R3
F εdv, Eε = −∇xφ

ε,

F ε(0) = F (0) + ε f1(0) + ε2 f2(0),

with

Rε = ε

(
∂f1
∂t

+ EP · ∇vf1

)
+ ε2

(
∂f2
∂t

+ + v · ∇xf2 + Eε · ∇vf2

)
,

such that for all k ≥ 0,

‖Rε‖Hk ≤ C
[
ε (‖F‖Hk+2 + ‖EF ‖Hk+2) + ε2 (‖F‖Hk+3 + ‖EF ‖Hk+3)

]
.

The second step is to establish a comparison principle on the Vlasov-Poisson system (9) to prove
the convergence

‖F ε − f ε‖Hk ≤ C ‖Rε‖Hk .
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About existence, uniqueness and regularity of solutions to the limiting system (16).
From the Lp estimate on F and the regularizing properties of the Poisson equation, we get enough
compactness to treat the nonlinear term U⊥ F . However, the lack of estimates on the Lagrange
multiplier (P,EP ) is the main issue to prove existence of weak solutions. Unfortunately, the con-
straint introduced in the limiting system (16) is not standard in kinetic theory and fluid mechanics
since the constraint is nonlinear in the sense that the differential operator TF applied to P depends
on the solution itself via the potential φF

TFP := v‖
∂P

∂x‖
− ∂φF

∂x‖

∂P

∂v‖
.

Therefore, we cannot simply eliminate the constraint by introducing an appropriate functional
space. However for some situations, it is possible to construct solutions. We have already mentioned
that the Maxwell-Boltzmann distribution (28) is a steady state for (16). Another example is when
(P, φP ) = 0 and F does not depend on x‖. We choose F ≡ G(t,x⊥)M(µ, v‖), where G is solution
to the guiding center equation

∂G
∂t

+ U⊥ · ∇x⊥G = 0,

with U⊥ is given by (26) andM is an arbitrary smooth and nonnegative function. The constraint
in (16) is automatically satisfied and (F,EF ) is solution to (16).

About the long time behavior of the solution to the limiting system (16). The constraint
in the parallel direction to the magnetic field

v‖
∂F

∂x‖
− ∂φF

∂x‖

∂F

∂v‖
= 0,

is very unusual and may be very strong. Therefore, it is not guaranteed that the limiting system
(16) can describe accurately plasma turbulence from current and spatial gradients and a stability
analysis of the particular solutions (28) may be investigated.

About the numerical simulation of (16). Finally the numerical approximation of the limiting
system (16) should be investigated to study the relevance of such a model. This system has a clear
advantage from a numerical point of view since the stiffness due to the external magnetic field of
the Vlasov-Poisson system (9) has been removed and the fast variable θ ∈ (0, 2π) is eliminated by
averaging. However, the discretization of (16) is not straightforward due to the constraint in the
parallel direction to the magnetic field and a specific investigation have to be done. One possibility
is to follow the strategy applied in fluid mechanics for the two dimensional incompressible Euler
system using Galerkin discontinuous methods [38].
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