
Task-based multifrontal QR solver for heterogeneous

architectures

Florent Lopez

To cite this version:

Florent Lopez. Task-based multifrontal QR solver for heterogeneous architectures. Distributed,
Parallel, and Cluster Computing [cs.DC]. Université Paul Sabatier - Toulouse III, 2015. English.
<NNT : 2015TOU30303>. <tel-01386600>

HAL Id: tel-01386600

https://tel.archives-ouvertes.fr/tel-01386600

Submitted on 24 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01386600

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par :

L’Université Paul Sabatier

Présentée et soutenue par :

Florent Lopez

Le 11 décembre 2015

Titre :

Task-based multifrontal QR solver for heterogeneous architectures

Solveur multifrontal QR à base de tâches pour architectures hétérogènes

Ecole doctorale et discipline ou spécialité :

ED MITT : Domaine STIC : Sûreté du logiciel et calcul haute performance

Unité de recherche :

IRIT - UMR 5505

Directeurs de Thèse :

Michel Daydé (ENSEEIHT-IRIT)
Alfredo Buttari (CNRS-IRIT)

Rapporteurs :

Timothy A. Davis (Texas A&M University)
Pierre Manneback (Université de Mons)

Autres membres du jury :

Frédéric Desprez (Inria Rhône-Alpes)
Iain S. Duff (Rutherford Appleton Laboratory)
Raymond Namyst (Inria Bordeaux Sud-Ouest)

Résumé

Afin de s’adapter aux architectures multicoeurs et aux machines de plus en plus complexes,
les modèles de programmations basés sur un parallélisme de tâche ont gagné en popularité
dans la communauté du calcul scientifique haute performance. Les moteurs d’exécution
fournissent une interface de programmation qui correspond à ce paradigme ainsi que des
outils pour l’ordonnancement des tâches qui définissent l’application.

Dans cette étude, nous explorons la conception de solveurs directes creux à base de
tâches, qui représentent une charge de travail extrêmement irrégulière, avec des tâches de
granularités et de caractéristiques différentes ainsi qu’une consommation mémoire variable,
au-dessus d’un moteur d’exécution. Dans le cadre du solveur qr mumps, nous montrons
dans un premier temps la viabilité et l’efficacité de notre approche avec l’implémenta-
tion d’une méthode multifrontale pour la factorisation de matrices creuses, en se basant
sur le modèle de programmation parallèle appelé “flux de tâches séquentielles” (Sequential
Task Flow). Cette approche, nous a ensuite permis de développer des fonctionnalités telles
que l’intégration de noyaux dense de factorisation de type “minimisation de communica-
tions” (Communication Avoiding) dans la méthode multifrontale, permettant d’améliorer
considérablement la scalabilité du solveur par rapport a l’approche original utilisée dans
qr mumps. Nous introduisons également un algorithme d’ordonnancement sous contraintes
mémoire au sein de notre solveur, exploitable dans le cas des architectures multicoeur, ré-
duisant largement la consommation mémoire de la méthode multifrontale QR avec un
impacte négligeable sur les performances.

En utilisant le modèle présenté ci-dessus, nous visons ensuite l’exploitation des archi-
tectures hétérogènes pour lesquelles la granularité des tâches ainsi les stratégies l’ordon-
nancement sont cruciales pour profiter de la puissance de ces architectures. Nous pro-
posons, dans le cadre de la méthode multifrontale, un partitionnement hiérarchique des
données ainsi qu’un algorithme d’ordonnancement capable d’exploiter l’hétérogénéité des
ressources. Enfin, nous présentons une étude sur la reproductibilité de l’exécution parallèle
de notre problème et nous montrons également l’utilisation d’un modèle de programmation
alternatif pour l’implémentation de la méthode multifrontale.

L’ensemble des résultats expérimentaux présentés dans cette étude sont évalués avec
une analyse détaillée des performance que nous proposons au début de cette étude. Cette
analyse de performance permet de mesurer l’impacte de plusieurs effets identifiés sur la
scalabilité et la performance de nos algorithmes et nous aide ainsi à comprendre pleinement
les résultats obtenu lors des tests effectués avec notre solveur.

Mots-clés : méthodes directes de résolution de systèmes linéaires, méthode multifron-
tale, multicoeur, moteurs d’exécutions, ordonnancement, algorithmes d’ordonnancement
sous contraintes mémoire, architectures hétérogènes, calcul haute performance, GPU

iii

Abstract

To face the advent of multicore processors and the ever increasing complexity of hardware
architectures, programming models based on DAG parallelism regained popularity in the
high performance, scientific computing community. Modern runtime systems offer a pro-
gramming interface that complies with this paradigm and powerful engines for scheduling
the tasks into which the application is decomposed. These tools have already proved their
effectiveness on a number of dense linear algebra applications.

In this study we investigate the design of task-based sparse direct solvers which con-
stitute extremely irregular workloads, with tasks of different granularities and character-
istics with variable memory consumption on top of runtime systems. In the context of
the qr mumps solver, we prove the usability and effectiveness of our approach with the
implementation of a sparse matrix multifrontal factorization based on a Sequential Task
Flow parallel programming model. Using this programming model, we developed features
such as the integration of dense 2D Communication Avoiding algorithms in the multi-
frontal method allowing for better scalability compared to the original approach used in
qr mumps. In addition we introduced a memory-aware algorithm to control the memory
behaviour of our solver and show, in the context of multicore architectures, an impor-
tant reduction of the memory footprint for the multifrontal QR factorization with a small
impact on performance.

Following this approach, we move to heterogeneous architectures where task granu-
larity and scheduling strategies are critical to achieve performance. We present, for the
multifrontal method, a hierarchical strategy for data partitioning and a scheduling algo-
rithm capable of handling the heterogeneity of resources. Finally we present a study on
the reproducibility of executions and the use of alternative programming models for the
implementation of the multifrontal method.

All the experimental results presented in this study are evaluated with a detailed
performance analysis measuring the impact of several identified effects on the performance
and scalability. Thanks to this original analysis, presented in the first part of this study,
we are capable of fully understanding the results obtained with our solver.

Keywords: sparse direct solvers, multifrontal method, multicores, runtime systems,
scheduling, memory-aware algorithms, heterogeneous architectures, high-performance com-
puting, GPU

v

Acknowledgements

I am extremely grateful to Alfredo Buttari for his excellent supervision and constant
support throughout three years of intensive work. Without his efforts this thesis would
not have been possible. Thanks also to my two co-advisors Emmanuel Agullo and Abdou
Germouche for their fruitful collaborations and very interesting discussions. I also wish to
thank Michel Daydé for his support during this thesis.

Thanks to Jack Dongarra and George Bosilca for their warm welcome at the Univer-
sity of Tennessee, Knoxville, during my six month scholar visit to the ICL Laboratory.
Thanks to the Distributed Computing team for the great collaboration, valuable help and
introducing me to the PaRSEC library.

I would like to thank all the members of the thesis committee for reviewing my dis-
sertation and particularly the “Rapporteurs” Tim Davis and Pierre Manneback for the
insightful reports they provided about this manuscript. Also a big thank you to Iain Duff
for providing such a complete and detailed feedback on the dissertation.

Thanks to my colleagues and particularly my office mates who are now among my
closest friends: François-Henry Rouet, Clement Weisbecker, Mohamed Zenadi, Clément
Royet and Théo Mary. Thanks to them for the good moments we shared, and the advice
and support I received from you.

Finally, I’m deeply grateful to my family for their love, support and encouragement
during the production of this thesis.

vii

Contents

Résumé iii

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Architectures . 1
1.2 Linear systems and direct methods . 4

1.2.1 Problems/applications . 4
1.2.2 QR decomposition . 6
1.2.3 Multifrontal QR methods . 9

1.3 Parallelization of the QR factorization . 14
1.3.1 Dense QR factorization . 14
1.3.2 Sparse QR factorization . 17

1.4 Programming models and runtime systems 17
1.4.1 Programming models for task-based applications 18
1.4.2 Task-based runtime systems for modern architectures 20

1.4.2.1 The StarPU runtime system 22
1.4.2.2 The PaRSEC runtime system 25

1.5 Related work on dense linear algebra . 27
1.6 Related work on sparse direct solvers . 28
1.7 The qr mumps solver . 30

1.7.1 Fine-grained parallelism in qr mumps 30
1.7.2 Tree pruning . 34
1.7.3 Blocking of dense matrix operations 35
1.7.4 The qr mumps scheduler . 36

1.7.4.1 Scheduling policy . 36
1.8 Positioning of the thesis . 38
1.9 Experimental settings . 40

1.9.1 Machines . 40
1.9.2 Problems . 41

2 Performance analysis approach 45

2.1 General analysis . 46
2.2 Discussion . 50

3 Task-based multifrontal method: porting on a general purpose runtime
system 53

3.1 Efficiency and scalability of the qr mumps scheduler 53

ix

Contents

3.2 StarPU-based multifrontal method . 54
3.2.1 DAG construction in the runtime system 54
3.2.2 Dynamic task scheduling and memory consumption 58
3.2.3 Experimental results . 60

4 STF-parallel multifrontal QR method on multicore architecture 65
4.1 STF-parallel multifrontal QR method . 65

4.1.1 STF-parallelization . 65
4.2 STF multifrontal QR method 1D . 69

4.2.1 STF parallelization with block-column partitioning 69
4.2.2 Experimental results . 71
4.2.3 The effect of inter-level parallelism 75

4.3 STF multifrontal QR method 2D . 76
4.3.1 Experimental results . 79
4.3.2 Inter-level parallelism in 1D vs 2D algorithms 83

4.4 Task scheduling with lws . 85

5 Memory-aware multifrontal method 89
5.1 Memory behavior of the multifrontal method 89
5.2 Task scheduling under memory constraint 91

5.2.1 The sequential case . 91
5.2.2 The parallel case . 92

5.3 STF Memory-aware multifrontal method 93
5.4 Experimental results . 95

6 STF-parallel multifronatal QR method on heterogeneous architecture 99
6.1 Frontal matrices partitioning schemes . 99
6.2 Scheduling strategies . 102
6.3 Implementation details . 105
6.4 Experimental results . 106

6.4.1 Performance and analysis . 106
6.4.2 Multi-streaming . 110
6.4.3 Comparison with a state-of-the-art GPU solver 112

6.5 Possible minor, technical improvements 113

7 Associated work 115
7.1 PTG multifrontal QR method . 115
7.2 Simulation of qrm starpu with StarPU SimGrid 120
7.3 StarPU contexts in qrm starpu . 124

8 Conclusion 129
8.1 General conclusion . 129
8.2 Perspectives and future work . 130

Submitted articles . 133
Conference proceedings . 133
Posters . 133
Conference talks . 133

References 135

x

Chapter 1

Introduction

1.1 Architectures

The world of computing, and particularly the world of High Performance Computing
(HPC), have witnessed a substantial change at the beginning of the last decade as all the
classic techniques used to improve the performance of microprocessors reached the point of
diminishing returns [17]. These techniques, such as deep pipelining, speculative execution
or superscalar execution, were mostly based on the use of Instruction Level Parallelism
(ILP) and required higher and higher clock frequencies to the point where the processors
power consumption, which grows as the cube of the clock frequency, became (or was
about to become) unsustainable. This was not only true for large data or supercomputing
centers but also, and even more so, for portable devices such as laptops, tablets and
smartphones which have recently become very widespread. In order to address this issue,
the microprocessor industry sharply turned towards a new design based on the use of
Thread Level Parallelism (TLP) achieved by accommodating multiple processing units or
cores on the same die. This led to the production of multicore processors that are nowadays
ubiquitous. The main advantage over the previous design principles lies in the fact that
the multicore design does not require an increase in the clock frequency but only implies
an augmentation of the chip capacitance (i.e., the number of transistors) on which the
power consumption only depends linearly. As a result, the multicore technology not only
enables improvement in performance, but also reduces the power consumption: assuming
a single-core processor with frequency f , a dual-core with frequency 0.75 ∗ f is 50% faster
and consumes 15% less energy.

Since their introduction, multicore processors have become increasingly popular and
can be found, nowadays, in almost any device that requires some computing power. Be-
cause they allow for running multiple processes simultaneously, the introduction of multi-
core in high throughput computing or in desktop computing was transparent and imme-
diately beneficial. In HPC, though, the switch to the multicore technology lead to a sharp
discontinuity with the past as methods and algorithms had to be rethought and codes
rewritten in order to take advantage of the added computing power through the use of
TLP. Nonetheless, multicore processors have quickly become dominant and are currently
used in basically all supercomputers. Figure 1.1 (left) shows the performance share of mul-
ticore processors in the Top5001 list (a list of the 500 most powerful supercomputers in the
world, which is updated twice per year); the figure shows that after their first appearance
in the list (May 2005) multicore has quickly become the predominant technology in the
Top500 list and ramped up to nearly 100% of the share in only 5 years. The figure also

1http://top500.org

1

1. Introduction

0

20

40

60

80

100

93 95 97 99 01 03 05 07 09 11 13 15

Year

Cores per socket -- performance share

60

32

18

14

10

12

8

16

6

9

4

2

1

0

20

40

60

80

100

93 95 97 99 01 03 05 07 09 11 13 15

Year

Accelerators -- performance share

PEZY-SC

Hybrid

Nvidia Kepler

Intel Xeon Phi

ATI Radeon

Nvidia Fermi

IBM Cell

Clearspeed

None

Figure 1.1: Performance share of multicore processors (on the left) and accelerators (on
the right) in the Top500 list.

shows that the number of cores per socket has grown steadily over the years: a typical
modern processor features between 8 and 16 cores. In Section 1.9.1 we present the sys-
tems used for the experiments reported in this document. The most recent and powerful
among these processors is the Xeon E5-2680 which hosts 12 cores; each of these cores has
256 bit AVX vector units with Fused Multiply-Add (FMA) capability which, with a clock
frequency of 2.5 GHz make a peak performance of 40 Gflop/s per core and 480 Gflop/s
on the whole processor for double-precision floating point operations.

Around the same period as the introduction of multicore processors, the use of ac-
celerators or coprocessors started gaining the interest of the HPC community. Although
this idea was not new (for example FPGA boards were previously used as coprocessors),
it was revamped thanks to the possibility of using extremely efficient commodity hard-
ware for accelerating scientific applications. One such example is the Cell processor [65]
produced by the STI consortium (formed by IBM, Toshiba and Sony) from 2005 to 2009.
The Cell was used as an accelerator board on the Roadrunner supercomputer installed
at the Los Alamos National Labrador (USA) which was ranked #1 in the Top500 list of
November 2008. The use of accelerators for HPC scientific computing, however, gained a
very widespread popularity with the advent of General Purpose GPU computing. Specif-
ically designed for image processing operations, Graphical Processing Units (GPUs) offer
a massive computing power which is easily accessible for highly data parallel applications
(image processing often consists in repeating the same operation on a large number of
pixels). This led researchers to think that these devices could be employed to accelerate
scientific computing applications, especially those based on the use of operations with a
very regular behaviour and data access pattern, such as dense linear algebra. In the last
few years, GPGPU has become extremely popular in scientific computing and is employed
in a very wide range of applications, not only dense linear algebra. This widespread use
of GPU accelerators was also eased by the fact that GPUs, which were very limited in
computing capabilities and difficult to program, have become, over the years, suited to
a much wider range of applications and much easier to program thanks to the devel-

2

1.1. Architectures

opment of specific high-level programming languages and development kits. Figure 1.1
(right) shows the performance share of supercomputers equipped with accelerators. Al-
though some GPU accelerators are also produced by AMD, currently the most widely
used ones are produced by Nvidia. Figure 1.2 shows a block diagram of the architecture
of a recent Nvidia GPU device, the K40m of the Kepler family. This board is equipped
with 15 Streaming Multiprocessors (SMX), each containing 192 single precision cores and
64 double precision ones for a peak performance of 1.43 (4.29) Tflop/s for double (single)
precision computations. The K40m also has a memory of 12 GB capable of streaming data
at a speed of 288 GB/s.

More recently Intel has also started producing accelerators, namely the Xeon Phi
boards. The currently distributed models of the Xeon Phi devices, the Knights Corner
family, can host up to 61 cores connected with a bi-directional ring interconnect. Each
core has a 512 bit wide vector unit with FMA capability and the clock frequency can
be as high as 1.238 GHz which makes an overall maximum peak performance of 1208
Gflop/s for double-precision, floating point computation. On-board memory can be as big
as 16 GB and transfer data at a speed of 352 GB/s. One outstanding advantage of the
Xeon Phi devices is that the instruction set is fully x86 compliant which allows for using
“traditional” multithreading programming technologies such as OpenMP.

Figure 1.2: Block diagram of the Kepler K40m GPU.

Figure 1.3 shows a typical configuration of a modern HPC computing platform. This is
formed by multiple (up to thousands) nodes connected through a high-speed network; each
node may include multiple processors, each connected with a NUMA memory module. A
node may also be equipped with one or more accelerators. Please note that the figure
reports indicative values for performance, bandwidths and memory capacities and do not
refer to any specific device. The figure shows that modern HPC platforms are based
on extremely heterogeneous architectures as they employ processing units with different
performance, memories with different capacities and interconnects with different latencies
and bandwidths.

3

1. Introduction

Core
40 Gflop/s

Core

25 GB/s

Memory
64 GB

CPU
400 Gflop/s

Core

Core

Core Core

Core
40 Gflop/s

Core

CPU
400 Gflop/s

Core

Core

Core Core

30 GB/s

Memory

Accelerator

Cores
1500 Gflop/s

Memory
12 GB

300 GB/s

10 GB/s

Node
2-3 TFlop/s

10 GB/s

Figure 1.3: Illustration of a typical HPC computing platform architecture.

1.2 Linear systems and direct methods

1.2.1 Problems/applications

This thesis deals with the efficient and scalable implementation of direct solvers for large
scale, sparse linear systems of equations on modern architectures equipped with multicore
processors and accelerators, such as GPU devices. Specifically, this work focuses on sparse
multifrontal solvers based on the QR factorization of the system matrix. This method
decomposes the input matrix A ∈ R

m×n2, assumed to be of full rank, into the product of
a square, orthogonal matrix Q ∈ R

m×m and an upper triangular matrix R ∈ R
n×n.

Theorem 1.1 - Björck [23, Theorem 1.3.1].
Let A ∈ R

m×n, m ≥ n. Then there is an orthogonal matrix Q ∈ R
m×m such that

A = Q

(
R
0

)
, (1.1)

where R is upper triangular with nonnegative diagonal elements. The decomposi-
tion (1.1) is called the QR decomposition of A, and the matrix R will be called the
R-factor of A.

The columns of the Q matrix can be split in two groups

Q = [Q1Q2] (1.2)

where Q1 ∈ R
m×n is an orthogonal basis for the range of A, R(A) and Q2 ∈ R

m×(m−n)

is an orthogonal basis for the kernel of AT , N (AT).

The QR decomposition can be used to solve square linear system of equations

Ax = b, with A ∈ R
n×n, (1.3)

2Without loss of generality here, and in the rest of this document, we will assume that the same
algorithms and methods, programming techniques and experimental analysis can be generalized to the
case of complex arithmetic.

4

1.2. Linear systems and direct methods

as the solution x can be computed through the following three steps (where we use
MATLAB notation) ⎧⎪⎨

⎪⎩
[QR] = qr(A)
z = QT b
x = R\z

(1.4)

where, first, the QR decomposition is computed (e.g., using one of the methods described
in the next section), an intermediate result is computed trough a simple matrix-vector
product and, finally, solution x is computed through a triangular system solve. It must
be noted that the second and the third steps are commonly much cheaper than the first
and that the same QR decomposition can be used to solve matrix A against multiple
right-hand sides b. If the right hand sides are available all together, then the second and
third steps can each be applied at once to all of them. As we will explain the next two
sections, the QR decomposition is commonly unattractive in practice for solving square
systems mostly due to its excessive cost when compared to other available techniques,
despite its desirable numerical properties.

The QR decomposition is instead much more commonly used for solving linear systems
where A is overdetemined, i.e. where there are more equations than unknowns. In such
cases, unless the right-hand side b is in the range of A, the system admits no solution; it
is possible, though, to compute a vector x such that Ax is as close as possible to b, or,
equivalently, such that the residual ‖Ax − b‖2 is minimized:

min
x

‖Ax − b‖2. (1.5)

Such a problem is called a least-squares problem and commonly arises in a large variety
of applications such as statistics, photogrammetry, geodetics and signal processing. One
typical example is given by linear regression where a linear model, say f(x, y) = a+bx+cy
has to be fit to a number of observations subject to errors (fi, xi, yi), i = 1, ..., m. This
leads to the overdetermined system

⎡
⎢⎢⎢⎢⎣
1 x1 y1

1 x2 y2
...

...
...

1 xm ym

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣ a

b
c

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

f1

f2
...

fm

⎤
⎥⎥⎥⎥⎦

Assuming the QR decomposition of a in Equation (1.1) has been computed and

QT b =

[
QT

1

QT
2

]
b =

[
c
d

]

we have
‖Ax − b‖2

2 = ‖QT Ax − QT b‖2
2 = ‖Rx − c‖2

2 + ‖d‖2
2.

This quantity is minimized if Rx = c where x can be found with a simple triangular
system solve. This is equivalent to saying that Ax = Q1QT

1 b and thus solving Equa-
tion (1.5) amounts to finding the vector x such that Ax is the orthogonal projection of b
over the range of A, as shown in Figure 1.4. Also note that r = Q2QT

2 b and thus r is the
projection of b on the null space of AT , N (A).

Another commonly used technique for the solution of the least-squares problem is the
Normal Equations method. Because the residual r is in N (AT)

AT (Ax − b) = 0

5

1. Introduction

Figure 1.4: Solution of a least-squares problem.

and, thus, the solution x to Equation (1.5) can be found solving the linear system
AT Ax = AT b. Because AT A is Symmetric Positive Definite (assuming A has full rank),
this can be achieved through the Cholesky factorization. Nonetheless, the method based
on the QR factorization is often preferred because the conditioning of AT A is equal to the
square of the conditioning of A, which may lead to excessive error propagation.

The QR factorization is also commonly used to solve underdetermined systems, i.e.,
with more unknowns than equations, which admit infinite solutions. In such cases the
desired solution is the one with minimum 2-norm:

min‖x‖2, Ax = b. (1.6)

The solution of this problem can be achieved computing the QR factorization of AT

[Q1Q2]

[
R
0

]
= AT

where Q1 ∈ Rn × m and Q2 ∈ Rn × (n − m). Then

Ax = RT QT x = [RT 0]

[
z1

z2

]
= b

and the minimum 2-norm solution follows by setting z2 = 0. Note that Q2 is an orthog-
onal basis for N (A) and, thus, the minimum 2-norm solution is computed by removing
for any admissible solution x̃ all of its components in N (A).

For the sake of space and readability, we do not discuss here the use of iterative
methods such as LSQR [91] or Craig [39] for the solution of problems (1.5) and (1.6) but
we refer the reader to the book by Björck [23] which contains a thorough description of
the classical methods used for solving least-squares and minimum 2-norm problems.

1.2.2 QR decomposition

The QR decomposition of a matrix can be computed in different ways; the use of Givens
Rotations [57], Householder reflections [69] or the Gram-Schmidt orthogonalization [100]
are among the most commonly used and best known ones. We will not cover here the use of
Givens Rotations, Gram-Schmidt orthogonalization and their variants and refer, instead,
the reader to classic linear algebra textbooks such as Golub et al. [59] or Björck [23] for an
exhaustive discussion of such methods. We focus, instead, on the QR factorization based
on Householder reflections which has become the most commonly used method especially

6

1.2. Linear systems and direct methods

because of the availability of algorithms capable of achieving very high performance on
processors equipped with memory hierarchies.

For a given a vector u, a Householder Reflection is defined as

H = I − 2
uuT

uT v
(1.7)

and u is commonly referred to as Householder vector. It is easy to verify that H is
symmetric and orthogonal. Because Pu = uuT

uT u
is a projector over the space of u, Hx can

be regarded as the reflection of a vector x on the hyperplane that has normal vector u.
This is depicted in Figure 1.5 (left).

Figure 1.5: Householder reflection

The Householder reflection can be defined in such a way that Hx has all zero coefficients
except the first, which means to say that Hx = ±‖x‖2e1 where e1 is the first unit vector.
This can be achieved if Hx is the reflection of x on the hyperplane that bisects the angle
between x and ±‖x‖2e1. This hyperplane is orthogonal to the difference of these two
vectors x ∓ ‖x‖2e1 which can thus be used to construct the vector

u = x ∓ ‖x‖2e1. (1.8)

Note that, if, for example, x is close to a multiple of e1, then ‖x‖2 ≈ x(1) which may
lead to a dangerous cancellation in Equation (1.8); to avoid this problem u is commonly
chosen as

u = u + sign(x(1))‖x‖2e1. (1.9)

In practice, it is very convenient to scale u in such a way that its first coefficient is
equal to 1 (more on this will be said later). Assuming v = u/u(1), through some simple
manipulations, the Householder transformation H is defined as

H = I − τvvT , where τ =
sign(x(1))(x(1) − ‖x‖2)

‖x‖2
. (1.10)

Note that the matrix H is never explicitly built neither to store, nor to apply the
Householder transformation; the storage is done implicitly by means of v and τ and the
transformation can be applied to an entire matrix A ∈ R

m×n in 4mn flops like this

HA = (I − τvvT)A = A − τv(vT A) (1.11)

7

1. Introduction

The Householder reflection can be computed and applied as described above using the
larfg and larf routines in the LAPACK[15] library.

A sequence of Householder transformations can be used to zero-out all the coefficients
below the diagonal of a dense matrix to compute its QR factorization:

HnHn−1...H2H1A = R, where HnHn−1...H2H1 = QT .

Each transformation Hk annihilates all the coefficients below the diagonal of column
k and modifies all the coefficients in the trailing submatrix A(k : m, k + 1 : n). The total
cost of this algorithm is 2n2(m − n/3). The Q matrix is implicitly represented by means
of the vk vectors and the τk coefficients. One extra array has to be allocated to store the
τk coefficients, whereas the vk vectors can be stored inside matrix A in the same memory
as the zeroed-out coefficients; this is possible because the vk have been scaled as described
above and thus the 1 coefficients along the diagonal must not be explicitly stored. The
LAPACK geqr2 routine implements this algorithm.

Theorem 1.2 - Björck [23, Remark 2.4.2].
Let R̄ denote the computed R. It can be shown that there exists an exactly orthogonal
matrix Q̄ (not the computed Q) such that

A + E = Q̄R̄, ‖E‖F ≤ c1u‖A‖F ,

where the error constant c1 = c1(m, n) is a polynomial in m and n, ‖ · ‖F denotes the
Frobenius norm and u the unit roundoff.

In other words, the Householder QR factorization is normwise backward stable.
The use of a QR factorization by mean of a sequence of orthogonal transformations

to solve least-squares problems was introduced by Golub [58]; this method is also proven
to be backward stable:

Theorem 1.3 - Björck [23, Remark 2.4.8].
Golub’s method for solving the standard least squares problem is normwise backward
stable. The computed solution x̂ can be shown to be the exact solution of a slightly
perturbed least squares problem

min
x

‖(A + δA)x − (b + δb)‖2,

where the perturbations satisfy the bounds

‖δA‖2 ≤ cun1/2‖A‖2, ‖δb‖2 ≤ cu‖b‖2

and c = (6m − 3n + 41)n.

Despite these very favorable numerical properties, the QR factorization is rarely pre-
ferred to the Gaussian Elimination (or LU factorization) with Partial Pivoting (GEPP)
for the solution of square systems because its cost is twice the cost of GEPP and because
partial pivoting is considered stable in most practical cases.

The above discussed algorithm for computing the QR factorization is basically never
used in practice because it can only achieve a modest fraction of the peak performance of a
modern processor. This is due to the fact that most of the computations are done in the ap-
plication of the Householder transformation to the trailing submatrix as in Equation (1.11)
which is based on Level-2 (i.e., matrix-vector) BLAS operations and thus limited by the

8

1.2. Linear systems and direct methods

speed of the memory rather than the speed of the processor. In order to overcome this
limitation and considerably improve the performance of the Householder QR factorization
on modern computers equipped with memory hierarchies, Schreiber et al. [101] proposed
a way of accumulating multiple Householder transformations and applying them at once
by means of Level-3 BLAS operations.

Theorem 1.4 - Adapted form Schreiber et al. [101].
Let Q = H1...Hk−1Hk, with Hi ∈ R

m×m an Householder transformation defined as in
Equation (1.10) and k ≤ m. Then, there exist an upper triangular matrix T ∈ R

k×k and
a matrix V ∈ R

m×k such that

Q = I − V TV T .

Using this technique, matrix A can be logically split into 	n/nb
 panels (block-columns)
of size nb and the QR factorization achieved in the same number of steps where, at step k,
panel k is factorized using the geqr2 routine, the corresponding T matrix is built using
the larft routine and then the set of nb transformations is applied at once to the trailing
submatrix through the larfb routine. This last operation/routine is responsible for most
of the flops in the QR factorization: because it is based on matrix-matrix operations it
can achieve a considerable fraction of the processor’s peak performance. This method is
implemented in the LAPACK geqrf routine which uses an implicitly defined blocking
size nb and discards the T matrices computed for each panel. More recently, the geqrt

routine has been introduced in LAPACK which employs the same algorithm but takes the
block size nb as an additional argument and returns the computed T matrices.

1.2.3 Multifrontal QR methods

One of the most used and well known definitions of a sparse matrix is attributed to James
Wilkinson:

“A sparse matrix is any matrix with enough zeros that it pays to take advantage
of them”.

There are three main ways to take advantage of the fact that a matrix is mostly filled
up with zeroes. First of all the memory needed to store the matrix is lesser than the
memory needed for a dense matrix of the same size because the zeroes need not be stored
explicitly. Second the complexity of numerous operations on a sparse matrix can be greatly
reduced with respect to the same operation on a dense matrix of the same size because
most of the zero coefficients in the original matrix can be skipped during the computation.
Finally, parallelism can be much higher than in the dense case because some operations
may affect distinct subsets of the matrix nonzeroes and can thus be applied concurrently.
This clearly also applies to the QR factorization of a sparse matrix. We will make use
of the example in Figure 1.6 to illustrate these advantages. The original matrix, shown
on the left side of the figure, as well as the intermediate and final results can be stored
in one of the many sparse storage formats such as Coordinate (COO) or Compressed
Row Storage (CRS) which allow for storing a matrix with nz nonzero coefficients in a
memory of order O(nz). More specialized formats can be used for example depending
of the specific algorithm that one has to implement (the multifrontal method described
below is one of these) or on the particular architecture that has to be used. Now, imagine
we apply the first step of a (unblocked) QR factorization to this matrix. As described in

9

1. Introduction

the previous section, we want to annihilate all the coefficients below the diagonal in the
first column: there are only two of them rather than m − 1 and thus the Householder
reflection can be computed at a much lower cost. The produced Householder vector has
the same structure as the first column of A and, therefore, when the reflection is applied
to the trailing submatrix, only part of its coefficients will be updated. Specifically, only
coefficients along the rows that have a nonzero in the pivotal column (the first column in
this case) and in the columns that have at least one nonzero in the same position as the
pivotal column. As a result, the trailing submatrix update is also much cheaper than in
the dense case because it only touches a restricted set of coefficients. Finally, it must be
noted that the elimination of column one and of column two affect two disjoint sets of
coefficients of A and can thus be computed in parallel.

Figure 1.6 also illustrate a very peculiar phenomenon of sparse matrix factorizations.
Once the trailing submatrix is updated in an elimination step, all the concerned coeffi-
cients, identified as described above, are nonzero, even those that were zero in the original
matrix. This is know as fill − in and is represented by red underlined coefficients in
Figure 1.6. It must be noted that fill-in coefficients generate, in turn, more fill-in in the
subsequent steps of the factorization and thus the columns of the trailing submatrix be-
come denser and denser as the factorization proceeds. The fill-in is such that the factors
resulting from a sparse factorization are much denser than the original matrix even though
they are still sparse, according to Wilkinson’s definition.

It must be noted that when eliminating column k, the pivotal row is not necessarily
row k as in the dense factorization, i.e., at the end of the factorization the coefficient of the
R factor (the V matrix) are not necessarily above (below) the diagonal. In the example
above, the R factor is distributed along rows [1, 2, 3, 13, 7, 9, 15, 16, 8].

1 2 3 4 5 6 7 8 9

1 a a

2 a a

3 a a a

4 a a a

5 a a

6 a a

7 a

8 a a

9 a a

10 a a

11 a a a

12 a a a

13 a a

14 a a

15 a a

16 a a

17 a a

18 a a

19 a a a

��

1 2 3 4 5 6 7 8 9

1 r r r

2 a a

3 a a a

4 a a a

5 a a

6 v a a

7 a

8 a a

9 a a

10 v a a

11 a a a

12 a a a

13 a a

14 a a

15 a a

16 a a

17 a a

18 a a

19 a a a

��

1 2 3 4 5 6 7 8 9

1 r r r

2 r r r r

3 r r r r

4 v v v v v v

5 v v v v

6 v v v v v

7 r r r

8 v r

9 v r r

10 v v v v v

11 v v v v

12 v v v v

13 v r r r

14 v v v v

15 r r r

16 v r r

17 v v v v v v

18 v v

19 v v v v v

Figure 1.6: QR factorization of a sparse matrix: original matrix (left), first step (middle)
and final result (right).

Taking advantage of the sparsity of a matrix in a sparse factorization is, however, very
complex and requires a considerable amount of logic to retrieve nonzero coefficients, add

10

1.2. Linear systems and direct methods

new ones, identify tasks that can be performed in parallel etc. Graph theory can assist
in achieving these tasks as it allows for computing matrix permutations that reduce the
fill-in, computing the number and position of fill-in coefficients, defining the dependencies
between the elimination steps of the factorization. All this information is commonly com-
puted in a preliminary phase, commonly referred to as analysis whose cost is O(|A|+ |R|)
where |A| and |R| are, respectively, the number of nonzeroes in A and R. We refer the
reader to classic textbooks on direct, sparse methods such as the ones by Duff et al. [48] or
Davis [41] for a thorough description of the techniques used in the analysis phase. One this
symbolic, structural information is available upon completion of the analysis, the actual
factorization can take place using different techniques. For the sparse QR factorization,
the most commonly employed technique is the multifrontal method which was first intro-
duced by Duff and Reid [49] as a method for the factorization of sparse, symmetric linear
systems. At the heart of this method is the concept of an elimination tree, introduced by
Schreiber [102] and extensively studied and formalized later by Liu [84]. This tree graph,
computed at the analysis phase, describes the dependencies among computational tasks
in the multifrontal factorization. The multifrontal method can be adapted to the QR fac-
torization of a sparse matrix thanks to the fact that the R factor of a matrix A and the
Cholesky factor of the normal equation matrix AT A share the same structure under the
hypothesis that the matrix A is Strong Hall:

Definition 1.1 - Strong Hall matrix [23, Definition 6.4.1].
A matrix A ∈ R

m×n, m ≥ n is said to have the Strong Hall property if every subset of
k columns, 0 < k < n, the corresponding submatrix has nonzeroes in at leas k + 1 rows.

Based on this equivalence, the structure of the R factor of A is the same as that of the
Cholesky factor of AT A (excluding numerical cancellations) and the elimination tree for
the QR factorization of A is the same as that for the Cholesky factorization of AT A. In
the case where the Strong Hall property does not hold, the elimination tree related to the
Cholesky factorization of AT A can still be used although the resulting QR factorization
will perform more computations and consume more memory than what is really needed;
alternatively, the matrix A can be permuted to a Block Triangular Form (BTF) where all
the diagonal blocks are Strong Hall.

In a basic multifrontal method, the elimination tree has n nodes, where n is the number
of columns in the input matrix A, each node representing one pivotal step of the QR
factorization of A. This tree is defined by a parent relation where the parent of node i
is equal to the index of the first off-diagonal coefficient in row i of the factor R. The
elimination tree for the matrix in Figure 1.6 is depicted in Figure 1.7. Every node of
the tree is associated with a dense frontal matrix (or, simply, front) that contains all
the coefficients affected by the elimination of the corresponding pivot. The whole QR
factorization consists in a topological order (i.e., bottom-up) traversal of the tree where,
at each node, two operations are performed:

• assembly: a set of rows from the original matrix (all those which have a nonzero
in the pivotal column) is assembled together with data produced by the processing
of child nodes to form the frontal matrix. This operation simply consists in stacking
these data one on top of the other: the rows of these data sets can be stacked in any
order but the order of elements within rows has to be the same. The set of column
indices associated with a node is, in general, a superset of those associated with its
children;

11

1. Introduction

• factorization: one Householder reflector is computed and applied to the whole
frontal matrix in order to annihilate all the subdiagonal elements in the first column.
This step produces one row of the R factor of the original matrix and a complement
which corresponds to the data that will be later assembled into the parent node
(commonly referred to as a contribution block). The Q factor is defined implicitly by
means of the Householder vectors computed on each front; the matrix that stores
the coefficients of the computed Householder vectors, will be referred to as the V
matrix from now on.

1 2 3 4 5 6 7 8 9

1 r r r

6 v v v v v

10 v v v v v

2 r r r r

4 v v v v v v

17 v v v v v v

3 r r r r

13 v r r r

19 v v v v v

5 v v v v

12 v v v v

7 r r r

9 v r r

11 v v v v

14 v v v v

15 r r r

16 v r r

8 v r

18 v v

1 2 3 4 5 6 7 8 9

1 r r r

2 r r r r

3 r r r r

13 r r r

7 r r r

9 r r

15 r r r

16 r r

8 r

2

5

4

1 3

9

8

7

6

1

2

4
3

5

Figure 1.7: Example of multifrontal QR factorization. On the left side the factorized matrix
(the same as in Figure 1.6 with a row permutation). On the upper-right part, the structure
of the resulting R factor. On the right-bottom part the elimination tree; the dashed boxes
show how the nodes are amalgamated into supernodes.

In practical implementations of the multifrontal QR factorization, nodes of the elimi-
nation tree are amalgamated to form supernodes. The amalgamated pivots correspond to
rows of R that have the same structure and can be eliminated at once within the same
frontal matrix without producing any additional fill-in in the R factor. The elimination of
amalgamated pivots and the consequent update of the trailing frontal submatrix can thus
be performed by means of efficient Level-3 BLAS routines through the WY representa-
tion [101]. Moreover, amalgamation reduces the number of assembly operations increasing
the computations-to-communications ratio which results in better performance. The amal-
gamated elimination tree is also commonly referred to as assembly tree.

Figure 1.7 shows some details of a sparse QR factorization. The factorized matrix is
shown on the left part of the figure. Note that this is the same matrix as in Figure 1.6
where the rows of A are sorted in order of increasing index of the leftmost nonzero in order
to show more clearly the computational pattern of the method on the input data. Actually,
the sparse QR factorization in insensitive to row permutations which means that any row
permutation will always yield the same fill-in, as it can be verified comparing Figures 1.6
and 1.7. On the top-right part of the figure, the structure of the resulting R factor is shown.

12

1.2. Linear systems and direct methods

The elimination/assembly tree is, instead reported in the bottom-right part: dashed boxes
show how the nodes can be amalgamated into supernodes with the corresponding indices
denoted by bigger size numbers. The amalgamated nodes have the same row structure
in R modulo a full, diagonal block. It has to be noted that in practical implementations
the amalgamation procedure is based only on information related to the R factor and, as
such, it does not take into account fill-in that may eventually appear in the V matrix. The
supernode indices are reported on the left part of the figure in order to show the pivotal
columns eliminated within the corresponding supernode and on the top-right part to show
the rows of R produced by the corresponding supernode factorization.

In order to reduce the operation count of the multifrontal QR factorization, two opti-
mizations are commonly applied:

1. once a frontal matrix is assembled, its rows are sorted in order of increasing index of
the leftmost nonzero. The number of operations can thus be reduced, as well as the
fill-in in the V matrix, by ignoring the zeroes in the bottom-left part of the frontal
matrix;

2. the frontal matrix is completely factorized. Despite the fact that more Householder
vectors have to be computed for each frontal matrix, the overall number of floating
point operations is lower since frontal matrices are smaller. This is due to the fact
that contribution blocks resulting from the complete factorization of frontal matrices
are smaller.

1 4 9

1 a a

10 a a

6 a a

1 4 9

1 r r r

10 v c1c1

6 v v c1

2 3 4 7

2 a a

4 a a a

17 a a

2 3 4 7

2 r r r r

4 v c2c2c2

17 v v c2c2

Assembled front 1 Factorized front 1 Assembled front 2 Factorized front 2

3 4 7 9

3 a a a

13 a a

19 a a a

5 a a

12 a a a

3 4 7

4 c2c2c2

17 c2c2

4 9

10 c1c1

6 c1

3 4 7 9

3 a a a

13 a a

19 a a a

4 c2c2c2

5 a a

12 a a a

10 c1 c1

17 c2c2

6 c1

3 4 7 9

3 r r r r

13 v r r r

19 v v c3c3

4 v v v c3

5 v v v

12 v v v

10 v v v

17 v v v

6 v

A coefficients

for front 3

Contribution block

from front 1

Contribution block

from front 2

Assembled front 3 Factorized front 3

Figure 1.8: Assembly and factorization of the frontal matrices associated with supernodes
1, 2 and 3 in Figure 1.7. Coefficients from the original matrix are represented as a, those in
the resulting R and V matrices as r and v, respectively, the fill-in coefficients as dots and
the coefficients in the contribution blocks as c with a subscript to specify the supernode
they belong to.

Figure 1.8 shows the assembly and factorization operations for the supernodes 1, 2
and 3 in Figure 1.7 when these optimization techniques (referred to as Strategy 3 in

13

1. Introduction

Amestoy et al. [14]) are applied. Note that, because supernodes 1 and 2 are leaves of the
assembly tree, the corresponding assembled frontal matrices only include coefficients from
the matrix A. The contribution blocks resulting from the factorization of supernodes 1
and 2 are appended to the rows of the input A matrix associated with supernode 3 in
such a way that the resulting, assembled, frontal matrix has the staircase structure shown
in Figure 1.8 (bottom-middle). Once the front is assembled, it is factorized as shown in
Figure 1.8 (bottom-right).

A detailed presentation of the multifrontal QR method, including the optimization
techniques described above, can be found in the work by Amestoy et al. [14] or Davis [41].

The multifrontal method can achieve very high efficiency on modern computing sys-
tems because all the computations are arranged as operations on dense matrices; this re-
duces the use of indirect addressing and allows the use of efficient Level-3 BLAS routines
which can achieve a considerable fraction of the peak performance of modern computing
systems.

1.3 Parallelization of the QR factorization

1.3.1 Dense QR factorization

Computing the QR factorization of a dense matrix is a relatively expensive task because
as explained above, its cost is O(n2m) flops. Therefore, especially when dealing with large
size problems, parallelization is a natural way of reducing the execution time. In addition,
due to its high computational intensity (i.e., the number of operations divided by the
amount of data manipulated), the QR factorization of a dense matrix can potentially
achieve a good scaling under favorable circumstances (more on these below).

As explained in Section 1.2.2, the blocked QR factorization is a succession of panel
reductions (geqrt) and update (gemqrt) operations. The panel reduction is essentially
based on Level-2 BLAS operations. This means that this operation cannot be efficiently
parallelized because its cost is dominated by data transfers, either from main memory to
the processor, or among processors; moreover, the computation of a Householder reflector
implies computing the norm of an entire column and therefore, at each internal step of the
panel reduction, if the panel is distributed among multiple processors a heavily penalizing
reduction operation has to take place. The trailing submatrix update, instead is very rich
in Level-3 BLAS operations and is thus an ideal candidate for parallelization because the
data transfers can easily overlapped with computations.

A very classic and straightforward way to parallelize the blocked QR factorization
described in Section 1.2.2 is based on a fork-join model where sequential panel operations
are alternated with parallel updates. This can be easily implemented if the trailing sub-
matrix is split into block-columns and each block-column updated by a different process
independently of the others, as in the interior loop of the following pseudocode:

1 do k=1, n/nb

! reduce panel a(k)

3 call _geqrt (a(k))

5 do j=k+1, n/nb

! update block - column a(j) w.r.t. panel a(k)

7 call _gemqrt (a(k), a(j))

end do

9 end do

14

1.3. Parallelization of the QR factorization

The scalability of this approach can be improved noting that it is not necessary to
wait for the completion of all the updates in step k to compute the reduction of panel
a(k+1) but this can be started as soon as the update of block-column a(k+1) with respect
to panel a(k) is finished. This technique is well known under the name of lookahead and
essentially allows for pipelining two consecutive stages of the blocked QR factorization;
the same idea can be pushed further in order to pipeline l stages, in which case we talk of
depth-l lookahead. In the rest of this document we will refer to this approach as the 1D
parallelization. Despite the improvements brought by lookahead, its scalability remains
extremely poor; even if we had enough resources to perform concurrently all the updates in
each stage of the blocked factorization, the execution time will be severely limited by the
slow and sequential panel reductions. This is especially true for extremely overdetermined
matrices where the cost of panel reductions becomes very high relative to the cost of
update operations.

For this reason, when multicore architectures started to appear (around the beginning
of the 2000s) and the core count of supercomputers started to ramp up, novel algorithms
were introduced to overcome these limitations. These methods, known under the name of
tile or communication-avoiding algorithms are based on a 2D decomposition of matrices
into tiles (or blocks) of size nb x nb; this permits to break down the panel factorization
and the related updates into smaller tasks which leads to a three-fold advantage:

1. the panel factorization and the related updates can be parallelized;

2. the updates related to a panel stage can be started before the panel is entirely
reduced;

3. subsequent panel stages can be started before the panel is entirely reduced.

In these 2D (because of the decomposition into square blocks) algorithms, the topmost
panel tile (the one lying on the diagonal) is used to annihilate the others; this can be
achieved in different ways. For example, the topmost tile can be first reduced into a
triangular tile with a general geqrt LAPACK QR factorization which can then be used
to annihilate the other tiles, one after the other, with tpqrt LAPACK QR factorizations,
where t and p stand for triangular and pentagonal, respectively. The panel factorization is
thus achieved through a flat reduction tree as shown in Figure 1.10 (left). This approach
allows for a better pipelining of the tasks (points 2 and 3 above); in the case of extremely
overdetermined matrices, however, it provides only a moderate additional concurrency
with respect to the 1D approach because the tasks within a panel stage cannot be executed
concurrently. Another possible approach consists in first reducing all the tiles in the panel
into triangular tiles using geqrt operations; this first stage is embarrassingly parallel.
Then, through a binary reduction tree, all the triangular tiles except the topmost one
are annihilated using tpqrt operations, as shown in Figure 1.10 (middle). This second
method provides better concurrency but results in a higher number of tasks, some of which
are of very small granularity. Also, in this case a worse pipelining of successive panel stages
is obtained [47]. In practice a hybrid approach can be used where the panel is split into
subsets of size bh: each subset is reduced into a triangular tile using a flat reduction tree
and then, the remaining tiles are reduced using a binary tree. This is the technique used
in the PLASMA library [9] and illustrated in Figure 1.10 (right) for the case of bh= 2.
Other reduction trees can also be employed; we refer the reader to the work by Dongarra
et al. [47] for an excellent survey of such techniques.

It must be noted that these algorithms require some extra flops with respect to the
standard blocked QR factorization [34]; this overhead can be reduced to a negligible level
by choosing and appropriate internal block size of the elementary kernels described above.

15

1. Introduction

1 do k=1, n/nb

! for all the block - columns in the front

3 do i = k, m/nb , bh

call _geqrt (f(k,i))

5 do j=k+1, n/nb

call _gemqrt (f(k,i), f(i,j))

7 end do

! intra - subdomain flat -tree reduction

9 do l=i+1, min(i+bh -1,m/nb)

call _tpqrt (f(i,k), f(l,k))

11 do j=k+1, n/nb

call _tpmqrt (f(l,k), f(i,j), f(l,j))

13 end do

end do

15 end do

do while (bh.le.m/nb -k+1)

17 ! inter - subdomains binary -tree reduction

do i = k, m/nb -bh , 2*bh

19 l = i+bh

if(l.le.m/nb) then

21 call _tpqrt (f(i,k), f(l,k))

do j=k+1, n

23 call _tpmqrt (f(l,k), f(i,j), f(l,j))

end do

25 end if

end do

27 bh = bh*2

end do

29 end do

Figure 1.9: Pseudo-code showing the implementation of the tiled QR.

Figure 1.10: Possible panel reduction trees for the 2D front factorization. On the (left),
the case of a flat tree, i.e., with bh= ∞. In the (middle), the case of a binary tree, i.e.,
with (bh= 1). On the (right) the case of an hybrid tree with bh= 2.

These communication avoiding algorithms have been the object of numerous theoret-
ical studies [21, 22, 29] and have been used to accelerate the dense QR factorization on
multicore systems either in single-node, shared memory settings [10, 61, 31, 34, 35], on dis-
tributed memory, multicore parallel machines [47, 44, 105, 116], GPU equipped systems [4,
16, 116] and even on Grid environments [8].

16

1.4. Programming models and runtime systems

1.3.2 Sparse QR factorization

As explained in Section 1.2.3, sparsity implies that, when performing an operation on a
matrix, it is often possible to identify independent tasks that can be executed concurrently,
i.e., sparsity implies parallelism. In sparse, direct solvers and thus, being one of them, in
the multifrontal QR method, this concurrency is expressed by the elimination tree: fronts
that belong to different branches are independent and can thus be treated in any order
and, possibly, in parallel. We refer to this type of parallelism as tree parallelism. The
amount of concurrency available in the tree parallelism clearly depends on the shape
of the tree and on the distribution of the computational load along its branches and,
as a consequence, on the sparsity structure of the input matrix. As explained above,
prior to its factorization a sparse matrix is permuted in order to reduce the fill-in; the
shape of the elimination tree clearly depends on this permutation and, consequently, the
amount of tree parallelism does too. Local methods such as Average Minimum Degree [12]
(AMD) or its column variant COLAMD [40], although capable of reducing the fill-in,
commonly lead to deep and rather unbalanced elimination trees where tree parallelism
is difficult to exploit, especially in distributed memory systems where load balancing is
harder to achieve. Nested-dissection [55] based methods instead, not only are very effective
in reducing fill-in (much better than local methods especially for large scale problems),
but also lead to wider (binary) and better balanced elimination trees because the load
balancing can be taken into account by the dissector selection criterion.

Fronts, although much smaller in size than the input sparse matrix, are not small in
general. Some of them may have hundred thousands rows or column and, consequently,
their factorization may require a considerable amount of work. This provides a second
source of concurrency which is commonly referred to as front or node parallelism. Any of
the algorithms presented in the previous section can be used to factorize a frontal matrix
using multiple processes.

The degree of concurrency in tree and node parallelism changes during the bottom-up
traversal of the tree. Fronts are relatively small at the leaf nodes of the tree and grow
bigger towards the root node; as a result, front parallelism is scarce at the bottom of
the tree and abundant at the top. On the other hand, tree parallelism provides a high
amount of concurrency at the bottom of the tree and only a little at the top part where the
tree shrinks towards the root node. Because of this complementarity, using both types of
parallelism is essential for achieving a good scalability. This is clearly much more difficult
in the distributed memory parallel case where a careful mapping of processes to tree and
node parallelism has to be done.

1.4 Programming models and runtime systems

Computing platform hardware has dramatically evolved ever since the computer science
began, always striving to provide new convenient accelerating features. Each new accel-
erating hardware feature inevitably leaves programmers to decide whether to make their
application dependent on that feature (and break compatibility) or not (and miss the
potential benefit), or even to handle both cases (at the cost of extra management code in
the application). This common problem is known as the performance portability issue.

The first purpose of runtime systems is thus to provide abstraction. Runtime systems of-
fer a uniform programming interface for a specific subset of hardware (e.g., OpenGL or Di-
rectX are well-established examples of runtime systems dedicated to hardware-accelerated
graphics) or low-level software entities (e.g., POSIX-thread implementations). They are
designed as thin user-level software layers that complement the basic, general purpose

17

1. Introduction

functions provided by the operating system calls. Applications then target these uniform
programming interfaces in a portable manner. Low-level, hardware dependent details are
hidden inside runtime systems. The adaptation of runtime systems is commonly handled
through drivers. The abstraction provided by runtime systems thus enables portability.
Abstraction alone is however not enough to provide portability of performance, as it does
nothing to leverage low-level-specific features to get increased performance.

Consequently, the second role of runtime systems is to optimize abstract application
requests by dynamically mapping them onto low-level requests and resources as efficiently
as possible. This mapping process makes use of scheduling algorithms and heuristics to
decide the best actions to take for a given metric and the application state at a given
point in its execution time. This allows applications to readily benefit from available
underlying low-level capabilities to their full extent without breaking their portability.
Thus, optimization together with abstraction allows runtime systems to offer portability
of performance.

In the specific case of parallel work mapping, other approaches have occasionally been
adopted instead of using runtimes. Many scientific applications and libraries, including
linear system solvers, integrate their own, customized dynamic scheduling algorithms or
even resort to static scheduling techniques, either for historical reasons, or to avoid the
potential overhead of an extra runtime layer.

However, as multicore processors densify, as cache and memory hierarchies deepen,
the resulting increase in complexity now makes the use of work-mapping runtime systems
virtually unavoidable. Such work-mapping runtime systems take elementary task descrip-
tions and dependencies as input and are responsible for dynamically scheduling the tasks
on available computing units so as to minimize a given cost function (usually the execution
time) under some pre-defined set of constraints.

Work-mapping runtime systems themselves are now facing new challenges with the
recent move of the high performance community towards the use of specialized accelerating
cores together with traditional general-purpose cores. They not only have to decide about
the interest (or not) to use some specific hardware features, but also have to decide whether
some entire application tasks should rather be performed on an accelerated core or is better
left on a standard core.

In the case where specialized cores are located on an expansion card having its own
memory (e.g., most existing GPUs), the input data of a task have to be copied from central
memory to the card memory before the task can be run. The output results must also be
copied back to the central memory once the task computation is complete. The cost of
copying data between central memory and accelerator memory is not negligible. This cost,
as well as data dependencies between tasks, must therefore also be taken into account
by the scheduling algorithms when deciding whether to offload a given task, to avoid
unnecessary data transfers. Transfers should also be done in advance and asynchronously
so as to overlap communication with computation.

1.4.1 Programming models for task-based applications

Modern task-based runtime systems aim at abstracting the low-level details of the hard-
ware achitechture and enhance the portability of the performance of the code designed on
top of them. As it is the case in this thesis, in most cases, this abstraction relies on a DAG
of tasks. In this DAG, vertices represent the tasks to be executed while edges represent
the dependences between them.

While tasks are almost systematically explicitly encoded, runtime systems offer mul-
tiple ways to encode the dependencies of the DAG. Each runtime system usually comes

18

1.4. Programming models and runtime systems

Figure 1.11: Pseudo-code (left) and associated DAG (right). Arguments corresponding
to data that are modified by the function are underlined. The id1 → id3 dependency is
declared explicitly while the id1 → id2 dependency is implicitly inferred with respect to
the data hazard on x.

with its own API which includes one or multiple ways to encode the dependencies and
their exhaustive listing would be out of the scope of this thesis. However, we may con-
sider that there are two main modes for encoding dependencies. The most natural method
consists in declaring explicit dependencies between tasks. In spite of the simplicity of the
concept, this approach may have a limited productivity in practice as some algorithms
may have dependencies that are difficult to express. Alternatively, dependencies may be
implitcly computed by the runtime system thanks to the sequential consistency. In this
latter approach, tasks are provided in sequence and the data they operate on are also
declared.

We illustrate these two dominant modes of expression of dependencies with a simple
example relying on a minimum number of pseudo-instructions. Assume we want to en-
code the DAG shown in Figure 1.4.1 (right) relying on an explicit dependency between
tasks id1 and id3 and an implicit dependency between tasks id1 and id2. A task can be
defined as an instance of a function working on a specific set of data, different tasks
possibly being different instances of a same function. For instance, in our example we
assume that tasks id1 and id3 are instances of function fun1 while task id2 is an instance
of function fun2. While tasks are instanciated with the submit task pseudo-instruction
(see Figure 1.4.1, left), the explicit dependency between tasks id1 and id3 can simply be
encoded with a declare dependency pseudo-instruction (see Figure 1.4.1, left). On the
other hand, implicit dependencies aim letting the runtime system automatically infer de-
pendencies thanks to so-called superscalar analysis [11] which aims at ensuring that the
parallelization does not violate dependencies, following the sequential consistency. While
CPUs implement such a superscalar analysis on chip at the instruction level [11], run-
time systems implement it in a software layer on tasks. Superscalar analysis is performed
on tasks and the associated input/output data they operate on. Assume that task id1

operates on data x and y in read/write mode and read mode (calling fun1(x, y) if the
arguments corresponding to data which are modified by a function are underlined), re-
spectively, while task id2 operates on data x in read mode (fun2(x)). Because of possible
data hazards occurring on x between tasks id1 and id2, the superscalar analysis detects
that a dependency is required to respect the sequential consistency.

Another important paradigm for handling dependencies consists of recursive submis-
sion. Indeed, it may be convenient for the programmer to let tasks trigger other tasks.
Sometimes, one may furthermore need the task to be fully completed and cleaned up be-
fore triggering other tasks. Runtime systems often support this option through a so-called
call-back mechanism consisting of a post-processing portion of code executed once the task
is completed and cleaned up.

Depending on the context, the programmer affinity and portion of the algorithm to
encode, different paradigms may be considered as natural and appropriate. For instance,

19

1. Introduction

we propose and study a task-based multifrontal method relying a combination of these
four types of dependencies (explicit, implicit, recursive, call-back) in Section 3.2.1 in or-
der to reproduce as accurately as possible the behavior of the original qr mumps code
with a general purpose runtime system. Although relatively natural to write as it follows
the trends of the original code, the resulting task-based code is complex and difficult to
maintain because it relies on multiple paradigms for handling dependencies. Alternatively,
one may rely on a well-defined and more simple programming model in order to design a
relatively more simple code, easier to maintain and benefit from properties provided by
the model. The Sequential Task Flow (STF) programming model consists on fully relying
on sequential consistency using only implicit dependencies. The STF model, there-
fore, consists of submitting a sequence of tasks through a non blocking function call that
delegates the execution of the task to the runtime system. Upon submission, the runtime
system adds the task to the current DAG along with its dependencies which are automati-
cally computed through data dependency analysis [11]. The actual execution of the task is
then postponed to the moment when its dependencies are satisfied. As mentioned above,
this paradigm is also sometimes referred to as superscalar since it mimics the functioning
of superscalar processors where instructions are issued sequentially from a single stream
but can actually be executed in a different order and, possibly, in parallel depending on
their mutual dependencies. We propose and study the design of a multifrontal method
based on this model in Chapter 4. We show that the simplicity of the model allows for de-
signing more advanced numerical algorithms with an concise yet effective expression. We
also rely on properties we can derive from the model in order to design a memory-aware
mechanism in Chapter 5 and extend the scope of the method to heterogeneous platforms
in Chapter 6.

One challenge in scaling to large scale many-core systems is how to represent extremely
large DAGs of tasks in a compact fashion. Cosnard et al. [38] presented a model, namely the
Parameterized Task Graph (PTG), which addresses this issue. In this model, tasks are not
enumerated but parametrized and dependencies between tasks are explicit. For instance,
in the DAG represented in Figure 1.4.1 (right), tasks id1 and id3 are two instances of the
same type of task implementing fun1. This property can be used to encode the DAG in a
compact way inducing a lower memory footprint for its representation as well as ensuring
limited complexity for parsing it while the problem size grows. For this reason the memory
consumption overhead in the runtime system for representing the DAG can much lower
for the PTG model than for the STF model. In addition with a STF model the DAG has
to be completely unrolled whereas with a PTG the DAG is only partially unfolded during
the execution following the task progression. From this point of view, the advantage of the
PTG approach over the STF one can be crucial in a distributed memory context because
the DAG is pruned on every nodes and only a portion of the DAG is represented on each
nodes. This could considerably reduce the runtime overhead for the management of the
DAG. On the other hand, knowing the entire DAG can be useful to compute the schedule
of the DAG or give information to the dynamic scheduler by prepossessing the DAG. For
these reasons we discuss the potential advantages of relying on such a model for designing
a multifrontal method in Section 7.1.

1.4.2 Task-based runtime systems for modern architectures

Many initiatives have emerged in the past years to develop efficient runtime systems
for modern heterogeneous platforms. Most of these runtime systems use a task-based
paradigm to express concurrency and dependencies by employing a task dependency graph
to represent the application to be executed. The main differences between all the ap-

20

1.4. Programming models and runtime systems

proaches are related, to the programming model, to whether or not they manage data
movements between computational resources and to which extent they focus on task
scheduling.

Some runtime systems have been specifically designed for the development of parallel
linear algebra applications. One of these if the TBLAS runtime system [106], which pro-
vides a simple interface to create dense linear algebra applications and automates data
transfers. TBLAS assumes that programmers should statically map data on the different
processing units but it supports heterogeneous data block sizes (i.e., different granularity
of computations). The QUARK runtime system [79] was specifically designed for schedul-
ing linear algebra kernels on multi-core architectures. It is characterized by a scheduling
algorithm based on work-stealing and by its higher scalability in comparison with other
dedicated runtime systems. Finally, the SuperMatrix runtime system [37], follows nearly
the same idea as it represents the matrix hierarchically: the matrix is viewed as blocks
that serve as units of data where operations over those blocks are treated as units of com-
putation. The implementation transparently enqueues the required operations, internally
tracking dependencies, and then executes the operations utilizing out-of-order execution
techniques.

Most of the available runtime systems, however, do not target any specific type of
applications and provide a general API. Qilin [87], for example, provides an interface to
submit kernels that operate on arrays which are automatically dispatched between the dif-
ferent processing units of an heterogeneous machine. Moreover, Qilin dynamically compiles
parallel code for both CPUs (by relying on the Intel TBB [95] technology) and for GPUs,
using CUDA. Another relevant framework is Charm++ [75] which is a parallel variant of
the C++ language that provides sophisticated load balancing and a large number of com-
munication optimization mechanisms. Charm++ has been extended to provide support
for accelerators such as the Cell processors as well as GPUs [78]. Many runtime systems
propose a task-based programming paradigm. Runtime systems like KAAPI/XKAAPI [53]
or APC+ [62], Legion [31], Realm [112] offer support for hybrid platforms mixing CPUs
and GPUs. Their data management is based on a DSM-like mechanism: each data block is
associated with a bitmap that permits to determine whether there is already a copy locally
available to a specific processing unit or not. Moreover, task scheduling within KAAPI
is based on work-stealing mechanisms or on graph partitioning. The StarSs project is
actually an umbrella term that describes both the StarSs language extensions and a col-
lection of runtime systems targeting different types of platforms [20, 19]. StarSs provides
an annotation-based language which extends C or Fortran applications to offload pieces
of computation on the architecture targeted by the underlying runtime system. The PaR-
SEC [26, 25] (formerly DAGuE) runtime system dynamically schedules tasks within a node
using a rather simple strategy based on a locality-aware work-stealing strategy. It was first
introduced for linear algebra but was later extended to more generic applications. It takes
advantage of the specific shape of the task graphs (in the sense that there are few types
of tasks) to represent the task dependency graph in an algebraic fashion. More details
on this tool are given in Section 1.4.2.2 The StarPU runtime system provides a generic
interface for developing parallel, task-based applications. It supports multicore architec-
tures equipped with accelerator as well as distributed memory systems. This runtime is
capable of transparently handling data and provides a rich panel of features. The details
of this runtime systems are given in Section 1.4.2.1. All the above mentioned efforts have
contributed to proving the ease of use, the effectiveness and portability of general purpose
runtime systems to the point where the OpenMP board has decided to include similar
features in the latest OpenMP standard 4.0: the task construct was extended with the
depend clause which enables the OpenMP runtime to automatically detect dependencies

21

1. Introduction

among tasks and consequently schedule them. The same OpenMP standard also provides
constructs for using accelerator devices.

Whereas task-based runtime systems were mainly research tools in the past years,
their recent progress makes them now solid candidates for designing advanced scientific
software as they provide programming paradigms that allow the programmer to express
concurrency in a simple yet effective way and relieve him from the burden of dealing with
low-level architectural details.

The work presented in this thesis relies on the StarPU runtime system. This is mostly
due to its large set of features which include full control over the scheduling policy, support
for accelerators and distributed memory parallelism and transparent handling of data. For
this reason, this runtime is described in more details in Section 1.4.2.1. Part of our work
is also focused on evaluating the use of the PaRSEC runtime system for the implemen-
tation of the multifrontal QR factorization. This runtime supports a radically different
programming model with respect to StarPU; more details can be found in Section 1.4.2.2.

1.4.2.1 The StarPU runtime system

StarPU is a runtime system developed by the STORM (formerly RUNTIME) team at
Inria Bordeaux specifically designed for the parallelization of algorithms on heterogeneous
architectures. A complete description of StarPU can be found in the work by Augonnet
et al. [18].

StarPU provides an interface which is extremely convenient for implementing and
parallelizing applications or algorithms that can be described as a graph of tasks. Tasks
have to be explicitly submitted to the runtime system along with the data they work on and
the corresponding data access mode. Through data analysis, StarPU can automatically
detect the dependencies among tasks and build the corresponding DAG. Once a task is
submitted, the runtime tracks its dependencies and schedules its execution as soon as
these are satisfied, taking care of gathering the data on the unit where the task is actually
executed. In StarPU the execution is initiated by a master thread, running on a CPU,
which is commonly in charge of submitting the tasks; the execution of the tasks, instead,
is performed by worker threads (or, simply, workers) whose number and type (e.g., CPU
or GPU) can be chosen by the programmer or by the user at run time. A CPU worker is
bound to a CPU core whereas a GPU worker is bound to a GPU and a CPU core which
is used to drive the work of the GPU. Note that nothing prevents worker threads from
submitting tasks although this does not comply with the Sequential Task Flow model.
Because StarPU has full control over a task and the associated data, these have to be
declared to the runtime prior to the task submission. A task type can be declared through
a codelet which specifies, among other things, the name of the task type, the units where
it can be executed (e.g., CPU and/or GPU), the corresponding implementations (one
for each type of unit) and the number of input data. Data, instead, is declared through
a specific function call where the programmer informs StarPU about the location of the
data (i.e., the data pointer) and about its properties such as the size, the rank, the leading
dimension. Upon execution of this function call, StarPU returns a handle; once declared
the data is not meant to be directly accessed by the programmer anymore but only through
the handle and the associated methods. A task can roughly be defined as an instance of a
task type coupled with a set of handles which represent the data used by the task itself.

We can more conveniently illustrate the functioning of StarPU using the simple se-
quential code in Figure 1.12 as an example. The purpose of the sequential example is to
compute every elements of the array denoted y, using the input array x. The computation
is done by applying the functions f, g as shown in the example. The right side of the figure

22

1.4. Programming models and runtime systems

shows the dependencies between function calls in the various iterations of the for loop.
Note that in this example we rely on a STF model for parallelization of the sequential
code which is explained in Section 1.4.1.

1 for (i = 1; i < N; i++) {

x[i] = f(x[i]);

3 y[i] = g(x[i], y[i -1]);

}
f g

f g

f g

i-1

i

i+1

Figure 1.12: Simple example of a sequential code.

The parallel version of our simple example is proposed in Figure 1.13. In this code, ex-
ecuted by the master thread, we first declare the codelet structures. A codelet corresponds
to the description of the code that is to be executed by a certain type of tasks which is
defined by setting, at least, the following fields:

• where enumerates which computational units may execute the task type. The possi-
bilities includes STARPU CPU for CPU workers or STARPU CUDA for GPU workers and
can be composed when when a task type may be executed by several workers with
the following notation STARPU CPU | STARPU CUDA.

• cpu funcs and/or cuda funcs are function pointers referring to the computational
kernels (i.e., the actual implementations) to be executed by respectively CPU and
CUDA workers.

• nbuffers indicates the numbers of data/handles manipulated by the tasks.

Assuming we want to execute f and g function calls in separate tasks, we need to
declare two codelets, one for each type of task. Because a CPU and a GPU implementation
exist for function g, the corresponding tasks of type g cl can be executed on either type
of units. Next, the data accessed by the tasks have to be registered; because we want each
task to work on a single coefficient of the x and y arrays, we have to register each one of
them to obtain the corresponding handle. This is done in the loop at line 23. Finally, the
tasks are submitted in the loop at line 29 by specifying, for each task, the codelet and the
corresponding data. The master thread finally reaches the barrier at line 43 where it sits
waiting for all the tasks to be executed by the worker threads. When a task, say, of type
f cl is actually executed, the worker thread invokes the f cpu func; this retrieves the
x[i] data using the dedicated method on the x handle[i] handle and the calls function
f.

As mentioned above, StarPU can transparently handle the data accessed by a task
and move it where the task is actually executed. If, for example, for the iteration i of
the loop in our example, function f is executed on the CPU and function g on the GPU,
the data x[i] is automatically moved to the GPU memory. To avoid unnecessary data
transfers, StarPU allows multiple copies of the same data to reside concurrently on several
processing units and makes sure of their consistency. For instance, when a data is modified
on a computational unit StarPU marks all the corresponding copies as invalid.

23

1. Introduction

/* Codelet definition for kernel f */

2 struct starpu_codelet f_cl =

{

4 .where = STARPU_CPU ,

. cpu_funcs = { f_cpu_func },

6 . nbuffers = 1

};

8

/* Codelet definition for kernel g */

10 struct starpu_codelet g_cl =

{

12 .where = STARPU_CPU | STARPU_CUDA ,

. cpu_funcs = { g_cpu_func },

14 . cuda_funcs = { g_cuda_func },

. nbuffers = 3

16 };

18 starpu_data_handle_t x_handle [N], y_handle [N];

20 starpu_init ();

22 /* declaration of data handles */

for (i = 0; i < N; i++) {

24 starpu_variable_data_register (& x_handle [i], STARPU_MAIN_RAM , (

uintptr_t) &x[i], sizeof (double));

starpu_variable_data_register (& y_handle [i], STARPU_MAIN_RAM , (

uintptr_t) &y[i], sizeof (double));

26 }

28 /* tasks submission */

for (i = 1; i < N; i++) {

30

starpu_insert_task (&f_cl ,

32 STARPU_RW , x_handle [i],

0);

34

starpu_insert_task (&g_cl ,

36 STARPU_R , x_handle [i],

STARPU_R , y_handle [i-1],

38 STARPU_W , y_handle [i],

0);

40

}

42

starpu_task_wait_for_all ();

44

starpu_shutdown ();

Figure 1.13: Simple example of a parallel version of the sequential code in Figure 1.12
using a STF model with StarPU.

Among the other features of the StarPU runtime system, in the work described in the
following chapters, we will use the following:

24

1.4. Programming models and runtime systems

Figure 1.14: Two commonly used approaches to the multithreading of the multifrontal
method.

• StarPU provides a framework for developing task scheduling policies in a portable
way. The implementation of a scheduler consists in creating a task container and
defining the code that will be triggered each time a new task gets ready to be
executed (push) or each time a worker thread has to select the next task to be
executed (pop) as illustrated in Figure 1.14. The implementation of each queue may
follow various strategies (e.g. FIFO or LIFO) and sophisticated policies such as work-
stealing may be implemented. StarPU comes with a number of predefined scheduling
policies suited for different types of architectures and workloads. We will comment
more on the development of schedulers in Sections 3.2.2, 4.4 and 6.2.

• If a task is assigned to a worker sufficiently ahead of its execution, the data it needs
can be automatically prefetched. This allows for overlapping the data transfers with
the execution of other tasks which results in better performance and scalability. We
will describe the use of this feature in Section 6.2.

• In StarPU, it is possible to associate a callback function with a task. This is just
a function which is executed upon termination of the task itself. We will use this
feature in Section 3.2 to express some dependencies among tasks.

• StarPU has several facilities which allow for detailed performance profiling of an ap-
plication. For example, it can generate execution traces containing accurate timings
of all the executed tasks, of the runtime overhead, of data transfers etc. It can also au-
tomatically build performance models for the tasks. These can be used to implement
complex scheduling policies (such as the HEFT-like policies described in Section 6.2)
or to generate a linear program whose solution provides a lower bound for the per-
formance achievable by an application. This feature as well as the execution traces,
are used in our performance analysis approach presented in Chapter 2. StarPU can
also dump the DAG of an application, which we use to compute the average degree
of parallelism (or best achievable speedup) as described in Section 4.3.2.

• It is sometimes convenient to explicitly declare dependencies between tasks rather
than letting the runtime system figure them out; StarPU provides methods to im-
plement this.

1.4.2.2 The PaRSEC runtime system

PaRSEC is a runtime system based on a data-flow programming and execution model
model which is developed at the ICL laboratory, University of Tennessee by Bosilca et al.

25

1. Introduction

[25]. It provides a programming interface complying with the PTG model presented in
Section 1.4.1 and is capable of handling applications, expressed as a DAG, on distributed,
heterogeneous architectures.

In PaRSEC the DAG is represented with a compact format describing tasks and data-
flow, i.e., how data flows from one task to another. During the execution, the DAG is
dynamically unrolled upon events such as task completion. Thanks to the data-flow rep-
resentation, communications are implicit and automatically handled by the runtime. The
embedded scheduler is dynamic and designed to exploit the memory hierarchy of these
architectures. In addition, because of the data-flow representation, the scheduler is able
to maximize computation to communication overlap, exploit data locality and achieve
load-balancing between the resources. As explained in Section 1.4.1, this runtime system,
by exploiting the PTG model, is suited to target large scale systems.

1 N [type = int]

3 task_f (i) /* Task name */

5 i = 1..N-1 /* Execution space declaration for parameter i */

7 : x(i) /* Task must be executed on the node where x(i) is stored */

9 /* Task reads x(i) from memory ... */

RW X <- x(i)

11 /* ... and sends it to task_g (i) */

-> X task_g (i)

13 BODY

15 X = f(X) /* Code executed by the task */

17 END

19 task_g (i) /* Task name */

21 i = 1..N-1 /* Execution space declaration for parameter i */

23 : y(i) /* Task must be executed on the node where x(i) is stored */

25

/* Task reads x(i) fron task_f (i)... */

27 R X <- X task_f (i)

/* ... y(i -1) from task_g (i -1) ... */

29 R Y1 <- (i > 1) ? Y2 task_g (i -1) : y(i -1)

/* ... and sends y(i) to task_g (i+1) */

31 W Y2 -> (i < N -1) ? Y2 task_g (i+1)

33 BODY

35 Y2 = h(X, Y1) /* Code executed by the task */

37 END

Figure 1.15: Simple example of a parallel version of the sequential code in Figure 1.12
using a PTG model with PaRSEC.

26

1.5. Related work on dense linear algebra

PaRSEC provides a language called Job Data Flow (JDF) to express PTG parallel
codes. During the compilation process, the files containing the JDF code are translated
into C-code files by a specific compiler distributed with PaRSEC called daguepp. The DAG
is defined by a set of task types that can be associated with several parameters defined on
a given range of values. The tasks are associated with a list of predecessors and successors
that define the dependencies in the DAG. These dependencies are generally based on data
but may also represent precedence constraints. Tasks are associated with a code that will
be executed for each task instances. A code specific to different types of resources, such
as CPU or GPU, may be given.

We illustrate the features provided by PaRSEC using the same sequential example used
in the previous section to introduce StarPU. A PTG parallel version of the sequential code
in Figure 1.12 is shown in Figure 1.15, using the JDF language. For the sake of brevity we
only show the PTG representation of our example and we do not present the declaration
of data types or the instantiation of the DAG from the JDF.

In our JDF we define two different type of tasks, namely task f and task g, that
are associated with the parameter i. This parameter is defined on the ranges 0..N-1 for
task f and 1..N-1 for task g. The parameter N defined at the beginning of the JDF
code, associated with a type, int in our example, and set when the DAG is instantiated.
The data-flow associated with task task f contains two edges. The first one reads data
x(i) from memory in a variable referred to as X. The second edge send the modified data
X to task task g(i). The data-flow associated with task task g has three edges. The
first incoming edge consists in retrieving the data X modified by task task f(i). The
second incoming edges retrieved the data called Y1 necessary to compute Y2. For this data
we consider two cases. If i > 1 then Y1 is retrieved from the computed data Y2 in task
task g(i-1) and otherwise it is read in memory. Finally Y2 is send to tasks task g(i+1)

in the case where such task exists.

Note that the expression of the DAG presented above is independent from the problem
size. The memory needed for its representation as well as the complexity for its analysis
is constant when the problem grows. For this reason the memory consumption overhead
in the runtime system for representing the DAG is much lower for the PTG model than
for the STF model. In addition, with a STF model the DAG is entirely built and stored
whereas with a PTG the DAG is only partially unfolded during the execution following the
task progression. From this point of view, The advantage of the PTG approach over the
STF one can be crucial in a distributed memory context because the DAG is pruned and
only a portion of the DAG is represented on each node. This could considerably reduce
the runtime overhead for the management of the DAG. On the other hand, knowing the
entire DAG can be useful to compute the schedule of the DAG or give information to the
dynamic scheduler by prepossessing the DAG.

1.5 Related work on dense linear algebra

The linear algebra computing community is spending a great deal of effort to tackle the
new challenges raised by the drastic increase of the computational resources due to the
relatively recent introduction of multicore processors. One commonly employed approach
consists in reducing the granularity of computations and avoiding “fork-join” parallelism,
as the scalability of this scheme suffers from an excessive amount of synchronizations. Most
of the related work focuses on intra-node parallelization with a shared memory parallel
programming paradigm. To be more precise, thread based parallelization is widely used
to tackle the performance issues within a computing node. These concepts have been first

27

1. Introduction

introduced in the field of dense linear algebra computations [33] where the main idea was
to replace the commonly used data layout for dense matrices with one based on tiles/blocks
and to write novel algorithms suited to this new data organization; by defining a task as
the execution of an elementary operation on a tile and by expressing data dependencies
among these tasks in a Directed Acyclic Graph (DAG), the number of synchronizations
is drastically reduced in comparison with classical approaches (such as the LAPACK or
ScaLAPACK libraries) thanks to a dynamic data-flow parallel execution model. This idea
led to the design of new algorithms for various algebra operations [34, 94] now at the base
of well known software packages like PLASMA [9] and FLAME [113].

Interestingly, to extract potential parallelism better, these software packages are al-
ready often designed with, to some extent, the concept of task before having in mind the
goal of being executed on top of a runtime system. This possibility was considered when
these software packages need to target modern heterogeneous systems. A lot of attention
has recently been paid to the design of new algorithms able to fully exploit the huge po-
tential of accelerators (mostly GPUs). The main challenges raised by these heterogeneous
platforms are mostly related to task granularity and data management: although regular
cores require fine granularity of data as well as computations, accelerators such as GPUs
need coarse-grain tasks. This inevitably introduces the need for identifying the parts of the
algorithm which are more suitable to be processed by accelerators. As for the multicore
case described in the previous section, the exploitation of this kind of platform was first
considered in the context of dense linear algebra algorithms. This has been accomplished
in four main steps by

1. Designing and implementing efficient kernels [89, 90, 52, 114];

2. Designing algorithms for heterogeneous mono-accelerator platforms with an offloading
approach [109];

3. Exploiting both CPUs and the accelerator in the context of mono-accelerator plat-
forms [110];

4. Extending the designed approaches to the multi-accelerator case [93, 85, 10, 116].

While the first three steps do not require complex scheduling techniques, the lat-
ter relies on a dynamic scheduling approach to achieve the flexibility required by these
heterogeneous platforms [3, 4]. Specifically, runtime systems are used to manage tasks
dynamically, these runtime systems being either generic like StarPU [18] or PaRSEC [26,
25], or specific like QUARK [79] , or the one developed for the TBLAS [106] library. As
a result, higher performance portability is also achieved thanks to the hardware abstrac-
tion layer introduced by runtime systems [5]. These efforts resulted in the design of the
MAGMA library [9] on top of StarPU, the DPLASMA library [27] on top of PaRSEC and
the adaptation of the existing FLAME library [73] to heterogeneous multicore systems
using the SuperMatrix [37] runtime system.

1.6 Related work on sparse direct solvers

The literature on parallel, sparse direct methods is very abundant and many solver are
currently available with different features and efficiency. Many of them are also based on
task parallelism, to some extent, although very few (apart from PaStiX, described below,
no other solver fully relies on a runtime system) rely on a general purpose runtime system
for implementing parallelism. Some target multicore architectures, others are designed for

28

1.6. Related work on sparse direct solvers

using GPUs and other for distributed memory systems; some can handle all these types of
devices in a single package. A complete taxonomy of all the known solvers and methods
is out of the scope of this document but we will make, in the rest of this section, a list of
works that are more closely related to the subject of this thesis.

One of the first multifrontal QR solvers is the MA49 developed by Amestoy et al.
[14] and still distributed in the HSL Mathematical Software Library. This solver was de-
signed for shared memory multiprocessors and employed a rather simple approach to the
use of tree and node parallelism where each type is exploited separately with a different
technique. In this solver, tree parallelism is achieved trough a hand coded task queue-
ing system, where a task is defined as the assembly and the factorization of a front; a
task associated with a front is pushed in the task queue as soon as all the tasks associ-
ated with child fronts are completed. Node parallelism, instead, is entirely delegated to a
multithreaded BLAS library.

More recently, in 2011, Tim Davis released a new multifrontal QR solver named SuiteS-
parseQR [42] (SPQR) which is also specifically designed for shared memory, multicore
systems. In essence, SPQR uses the same approach as MA49 for implementing parallelism
but relies on a runtime system, namely Intel Threading Building Blocks [95] for handling
the tasks: tasks are submitted to the TBB runtime in a recursive fashion and barriers are
used to ensure that a front is processed once the tasks associated to its children are done.
As for node parallelism, SPQR relies on the use of multithreaded BLAS libraries.

Even more recently, Davis and his team developed a variant of the SPQR solver, called
SPQR-GPU, that runs on a GPU; this is a GPU-only solver in the sense that the CPU is
only used to drive the work of the GPU where all the computation takes place. SPQR-GPU
employs 2D communication avoiding algorithms for the factorization of frontal matrices
and uses a task-based approach for implementing parallelism. The elimination tree is split
into pieces called “stages” such that each stage fits into the GPU memory (for smaller
problems the whole elimination tree can be processed in a single stage). The handling of
tasks is done trough the use of two nested schedulers which are hand-coded. The outer
scheduler, called the “Sparse QR scheduler” handles the stages and as soon as a stage is
ready for being processed (i.e., when its child stages are finished) spawns an instance of
the inner scheduler, called the “Bucket scheduler”, which is in charge of generating the
numerical tasks related to the fronts in the stage and of submitting them to the GPU
device for execution. The tracking of dependencies in both schedulers is done manually.

The UHM solver (which uses the LDLT factorization) by Kim et al. [76] uses a sim-
ilar approach to SPQR and SPQR-GPU but targets shared memory multicore machined
(without GPU). It also employs a nested tasking mechanism. A recursive submission of
OpenMP tasks (one task per front) is used to handle tree parallelism exactly in the same
way as SPQR uses Intel TBB. When one such task is executed, it spawns an instance of
an inner, hand-coded scheduler which generates OpenMP tasks for the operations related
to the associated front. The tracking of the dependencies between these tasks is done in
a rather complicated way where multiple tasks may be generated for the same operation
although only one of them actually executes the operation. Another variant of the UHM
solver can handle GPU devices [77]: tree parallelism is handled as in the base variant and
node parallelism is achieved through a bulk synchronous execution of task lists with a
stating mapping of tasks to processing units (CPUs or GPUs) based on a performance
model.

In 2014 Hogg et al. [67] released SSIDS, a GPU-only multifrontal solver for sparse,
symmetric indefinite systems. This solver shares some commonalities with SPQR-GPU:
the factorization proceeds in successive steps where, at each step, a list of independent
tasks is generated and submitted to the GPU for execution.

29

1. Introduction

The same authors of SSID also developed the MA86 [66] and MA87 [68] solvers that
target, respectively, the solution of symmetric indefinite and symmetric positive definite
sparse linear systems on multicore machines. Both these solvers are based on a left-looking,
supernodal factorization where supernodes are decomposed into tiles and use a task-based
parallelization approach; the scheduling of tasks is achieved with a hand-coded task queue-
ing system. The tracking of task dependencies is done associating a counter to each tile
which describes its state and, consequently, the operations that can be executed on it; as
soon as it is possible to execute an operation on a tile, the corresponding task is pushed
in the task pool.

Among the other efforts to port sparse, direct methods on GPUs, we can cite the
work by George et al. [56], Lucas et al. [86], and Yu et al. [119]. These approaches mainly
target the multifrontal method for LU or Cholesly factorizations due to its very good data
locality properties. The main idea is to treat some parts of the computations (mostly,
trailing submatrix updates) entirely on the GPU. Therefore the main originality of these
efforts is in the methods and algorithms used to decide whether or not a task can be
processed on a GPU. In most cases this was achieved through a threshold based criterion
on the size of the computational tasks. More complex approaches can be found in the
work by [120, 99, 96]. These improve over previous efforts mostly by proposing techniques
for aggregating fine grain operations to form large grain tasks which maximise the GPU
occupancy (either by grouping basic BLAS operation or by treating a complete subtree as
a single task) and pipelining to overlap communications with computations. In more recent
work, Sao et al. [98] extend the SuperLU Dist package to support Xeon Phi architectures
using analogous techniques as in their previous effort [99].

The work which is most closely related to this thesis, is described in the PhD thesis
of Xavier Lacoste [80]. Lacoste implemented two variants of the PaStiX [64] solver based,
respectively, on STF and PTG task parallelism each relying on a different runtime system,
namely StarPU and PaRSEC, respectively. Both variants implement a 1D, left-looking su-
pernodal factorization and are capable of using multicore systems equipped with multiple
GPUs. The variant based on StarPU can also run on distributed memory systems. These
implementations do not take full advantage of the features of runtime systems. In the
StarPU variant, task dependencies are declared explicitly through the use of tags, rather
than inferred by the runtime through data analysis. In both variants the scheduling of
tasks to GPU devices is static and relies on a performance model; moreover, no eviction
policy is implemented: once the supernodes that are mapped on the GPU are processed,
they are not brought back to the host device in order to free space for new ones. This
means that the amount of computation that can be done on the GPU is limited by the size
of the memory available on the device. Ultimately, Lacoste concluded that, in a shared
memory context and up to a certain number of cores, it is possible to use runtime sys-
tem to develop sparse direct solvers whose performance is on par with (or slightly lesser
than) that of a finely tuned, hand coded package. Nonetheless he showed how runtime
systems can ease the porting of such solvers on GPU equipped architectures thanks to the
automatic dependency tracking and the transparent data handling capability.

1.7 The qr mumps solver

1.7.1 Fine-grained parallelism in qr mumps

As explained in the previous section, Other existing multithreaded, multifrontal QR
solvers, such as MA49 or SPQR only explicitly handle tree parallelism, but rely on third
party, multithreaded BLAS operations for exploiting node parallelism. This is illustrated

30

1.7. The qr mumps solver

1
2

3

1
2

3

Figure 1.16: Two commonly used approaches to the multithreading of the multifrontal
method.

in Figure 1.16 (left) Although this approach works reasonably well for a limited number
of threads, its scalability suffers because of two main issues:

1. Because the node parallelism is delegated to an external multithreaded BLAS library,
the number of threads dedicated to node parallelism and to tree parallelism has to
be fixed before the execution of the factorization. Thus, a thread configuration that
may be optimal for the bottom part of the tree will result in a poor parallelization
of the top part and vice versa. If the BLAS library allows for, it could be possible
to dynamically change the number of threads in each call to a BLAS routine but
this is poorly portable and extremely difficult from an algorithmic point of view as
it requires a very accurate performance model and sophisticated scheduling policies;
to our knowledge, there is no existing solver that achieves this.

2. It is not possible to start working on a front until all of its children are completely
factorized; this results from the fact that each front is entirely processed in a single
task and may considerably limit the scalability of the code (we will provide experi-
mental proof of this fact in Sections 4.2.3 and 4.3.2).

Other multifrontal solvers, such as UHM overcome the first of these two shortcomings
by explicitly parallelizing the factorization of each front through a DAG based approach.
This approach is depicted in Figure 1.16 (right). In this case each working thread can
execute any factorization task no matter which front this comes from which ensures a
good load balancing and does not require any performance modeling. Nonetheless, in this
solver it is still not possible to start working on a front until all of of its children are
completed.

The qr mumps solver [32] pushes this approach even further and overcomes both the
previously mentioned limitations by using a fine-grain partitioning and data flow model
of execution which allows for handling both tree and node parallelism in a consistent way.
The approach used in this solver uses a 1D partitioning of fronts into block-columns of
size nb (a tunable parameter) as shown in Figure 1.17 (left) and defines five elementary
kernels applied on block-columns or frontal matrices:

31

1. Introduction

1. activate: this routine computes the structure of the front3 (which essentially de-
pends on the structure of the child fronts and the rows of the original matrix A
associated with the front itself), allocates and initializes the front data structure
and assembles the coefficients in the rows of the original matrix A associated with
the front;

2. assemble: for a block-column in the child node, assembles the corresponding part
of the contribution block into the parent node (if it exists). Note that, in practice,
only a subset of the block-columns of f; moreover, because the assembly of a front
simply consists in copying coefficients into distinct memory locations, the assemble

operations are all independent;

3. geqrt: computes the QR factorization of a block-column. This is the panel fac-
torization in the LAPACK dense QR factorization; Figure 1.17 (middle) shows the
data modified when the panel operation is executed on the first block-column;

4. gemqrt: applies to a block-column the Householder reflectors computed in a pre-
vious geqrt operation. This is the update operations in the LAPACK dense QR
factorization; Figure 1.17 (right) shows the coefficients read and modified when the
third block-column is update’d with respect to the first panel;

5. deactivate: stores the coefficients of the R and H factors aside and frees the memory
containing the contribution block;

Block-column partitioning geqrt operation gemqrt operation

Figure 1.17: Block-column partitioning of a frontal matrix (left) and geqrt and gemqrt
operations pattern (middle and right, respectively); dark gray coefficients represent data
read by an operation while black coefficients represent written data.

The multifrontal factorization of a sparse matrix can thus be defined as a sequence of
tasks, each task corresponding to the execution of an elementary operation of the type
described above on a block-column or a front. The tasks are arranged in a Directed Acyclic
Graph (DAG) such that the edges of the DAG define the dependencies among tasks and
thus the relative order in which they have to be executed. In this approach assembly
operations are parallelized and the status of each block-column is tracked individually;
consequently, it is possible to start working on a block-column as soon as it is fully assem-
bled regardless of the other block-columns in the same front. As a result, the factorization

3Note that this data could be computed at the analysis phase and stored but this would result in
excessive memory consumption.

32

1.7. The qr mumps solver

of a front can be pipelined with the processing of its children; we will refer to this extra
source of concurrency as inter-level parallelism and we will provide more details on its
advantages as well as a detailed analysis in the Sections 4.2.3 and 4.3.2. It must be noted
that some supernodal solvers, such as HSL MA87 by Hogg et al. [68] or PaStiX by Hénon
et al. [64] can also exploit inter-level parallelism. Also, the multifrontal MUMPS solver
by Amestoy et al. [13], can partially use this source of concurrency in the more challeng-
ing context of distributed memory parallelism: in MUMPS fronts are distributed among
multiple MPI processes and each process can start working on its share of a front as soon
as it is fully assembled regardless of the rest of the front.

Figure 1.18 shows the DAG associated with the subtree defined by supernodes one,
two and three for the problem in Figure 1.7 for the case where the block-columns have
size one4; the dashed boxes surround all the tasks that are related to a single front.

1
2

a

p1 u2 u3

p2 u3

p3

s2 s3

a

p1 u2 u3

u3

u4

u4

u4

s2 s3 s4

p2

p3

cc

3

a

p1 u2 u3

u3

u4

u4

u4

p4

s3 s4

p2

p3

c

d1
d2

d4

d5

d6d7

a

u

s

c

activate

p geqrt

gemqrt

assemble

deactivate

d3

Figure 1.18: DAG associated with supernodes 1,2 and 3 in Figure 1.7. For the panel, update
and assemble operations, the index of the block column is specified. For this example, the
block-column size is chosen to be one.

The dependencies on the DAG represented in Figure 1.18 are defined as follows:

• d1: no other elementary operation can be executed on a front or on one of its block-
columns until the front is not activated;

• d2: a block column can be updated with respect to a geqrt operation only if the
corresponding panel factorization is completed;

• d3: the geqrt operation can be executed on block-column i only if it is up-to-date
with respect to geqrt i − 1;

4Figure 1.18 actually shows the transitive reduction of the DAG, i.e., the direct dependency between
two nodes is not shown in the case where it can be represented implicitly by a path of length greater than
one connecting them.

33

1. Introduction

• d4: a block-column can be updated with respect to a geqrt i in its front only if it
is up-to-date with respect to the previous panel i − 1 in the same front;

• d5: a block-column can be assembled into the parent (if it exists) when it is up-to-
date with respect to the last geqrt factorization to be performed on the front it
belongs to (in this case it is assumed that block-column i is up-to-date with respect
to geqrt i when the corresponding geqrt operation is executed);

• d6: no other elementary operation can be executed on a block-column until all the
corresponding portions of the contribution blocks from the child nodes have been
assembled into it, in which case the block-column is said to be assembled;

• d7: since the structure of a frontal matrix depends on the structure of its children,
a front can be activated only if all of its children are already active;

This DAG globally retains the structure of the assembly tree but expresses a higher
degree of concurrency because tasks are defined on a block-column basis instead of a
front basis. As explained, it implicitly represents both tree and node parallelism which
allows the exploitation of both of them in a consistent way. Finally, it removes unnecessary
dependencies making it possible, for example, to start working on the assembled block-
columns of a front even if the rest of the front is not yet assembled and, most importantly,
even if the children of the front have not yet been completely factorized.

The execution of the tasks in the DAG is driven by a data-flow model meaning that the
tasks become ready for execution as soon as their input data are available. More details
on how this is actually implemented will be provided in Section 3.1.

1.7.2 Tree pruning

Because the target of this work is a system with only a limited number of cores, the
number of nodes in the elimination tree is commonly much larger than the number of
working threads. It is, thus, unnecessary to partition every front of the tree and factorize
it using a parallel algorithm. For this reason we employ a technique similar to that proposed
by Geist and Ng [54]. As shown in Figure 1.19, we identify a layer in the elimination tree
such that each subtree rooted at this layer is treated in a single task, which we called
do subtree, with a purely sequential code.

Figure 1.19: A graphical representation of how the logical amalgamation and logical prun-
ing may be applied to an assembly tree.

34

1.7. The qr mumps solver

This layer has to be as high as possible in order to reduce the number of potentially
active nodes but low enough to provide a sufficient amount of tree-level parallelism on the
top part of the tree.

This technique has a twofold advantage. First it reduces the number of active fronts
during the factorization and, therefore, the cost of the scheduler as pointed out in Sec-
tion 3.1. Second, it improves the efficiency of operations on those parts of the elimination
tree that are mostly populated with small size fronts and, thus, less performance effective.

1.7.3 Blocking of dense matrix operations

The standard geqrt and gemqrt routines from LAPACK could be used for the corre-
sponding tasks described above. This, however, would imply a (considerable) amount of
extra-flops because these routines cannot benefit from the fact that, due to the fronts
staircase structure, most block-columns are largely populated with zero coefficients. The
above-mentioned LAPACK routines use an internal blocking of size ib . We modified these
routines in such a way that the internal blocking is also used to reduce the flop count by
skipping most of the operations related to the zeros in the bottom-left part of the tiles
lying on the staircase.

It is obviously desirable to use blocked operations that rely on Level-3 BLAS routines in
order to achieve a better use of the memory hierarchy and, thus, better performance. The
use of blocked operations, however, introduces additional fill-in in the Householder vectors
due to the fact that the staircase structure of the frontal matrices cannot be fully exploited.
Therefore, even if the standard geqrt and gemqrt routines from LAPACK could be used
for the corresponding tasks described above, this would imply a (considerable) amount
of extra-flops. It can be safely said that it is always worth paying the extra cost of this
additional fill-in because the overall performance will be drastically improved by the high
efficiency of Level-3 BLAS routines; nonetheless it is important to keep this overhead
under control and reduce it as much as possible. For this reason, qr mumps uses slightly
modified variants of the geqrt and gemrt routines where the size of the internal blocking
ib can be explicitly set by the user and is then used to reduce the flop count by skipping
most of the operations related to the zeros in the bottom-left part of the block-columns
lying on the staircase.

Figure 1.20: The effect of internal blocking on the generated fill-in. The light gray dots
show the frontal matrix structure if no blocking of operations is applied whereas the dark
gray dots show the additional fill-in introduced by blocked operations.

35

1. Introduction

Figure 1.20 shows as dark gray dots the extra fill-in introduced by the blocking of
operations ib with respect to the partitioning size nb on an example frontal matrix. As
a result, these two parameters can be used, respectively, to control the granularity (and
thus the efficiency) of BLAS operations and the granularity of tasks (and thus the amount
of parallelism).

1.7.4 The qr mumps scheduler

The scheduling and execution of tasks in qr mumps is based on the use of a pool of tasks
containing, throughout the execution of the factorization, a list of ready tasks, i.e., those
tasks whose dependencies are all satisfied. This pool of tasks is handled through two other
routines that are in charge of filling up the pool with tasks whenever they become ready
for execution and picking up tasks for threads to execute them whenever they become
idle; these are the fill queues and pick task routines, respectively.

The pseudocode in Figure 1.21 illustrates the main loop executed by all threads; at
each iteration of this loop a thread:

1. checks whether the number of tasks globally available for execution has fallen below
a certain value (which depends, e.g., on the number of threads) and, if it is the case,
it calls the fill queues routine, described below, which searches for ready tasks
and pushes them into the tasks pool.

2. picks a task. This operation consists in popping a task from the tasks pool.

3. executes the selected task if the pick task routine has succeeded.

Most of the complexity of this tasks scheduling mechanism is hidden in the fill queues

which is in charge of finding tasks that are ready for execution and pushing them into the
pool of tasks. The pseudocode for this routine is shown in Figure 1.22. At every moment,
during the factorization there exists a list of active fronts; the fill queues routine goes
through this list looking for ready tasks on each front. Whenever one such task is found,
it is pushed in the pool of tasks. If no task is found related to any of the active fronts, a
new ready front (if any) is scheduled for activation; the search for a front that can be ac-
tivated follows a postorder traversal of the assembly tree, which provides a good memory
consumption and temporal locality of data. Simultaneous access to the same front and the
pool of tasks in the fill queues and pick task routines is prevented through the use of
locks. As explained in Chapter 5, an efficient use of tree-level parallelism makes it hard,
if not impossible, to follow a postorder traversal of the tree which results in increased
memory consumption with respect to the sequential case. It is important to note that the
proposed scheduling method tries to exploit node-level parallelism as much as possible and
dynamically resorts to tree-level parallelism by activating a new node only when no more
tasks are found on already active fronts. This keeps the tree traversal as close as possible
to the one followed in the sequential execution and avoids the memory consumption to
grow out of control.

This whole mechanism is implemented using an extremely limited subset of the OpenMP
features, i.e., the parallel construct, the locks and the mutexes (critical sections).

1.7.4.1 Scheduling policy

In order to improve the efficiency of the code, qr mumps implements a scheduling policy
that aims at reducing the movement of data between the nodes of a NUMA systems and

36

1.7. The qr mumps solver

1 mainloop : do

if(n_ready_tasks < ntmin) then

3 ! if the number of threads falls

! below a certain value , fill -up

5 ! the queues

call fill_queues ()

7 end if

9 task = pick_task ()

11 select case(task%id)

case(geqrt)

13 call execute_geqrt ()

case(gemqrt)

15 call execute_gemqrt ()

case(assemble)

17 call execute_assemble ()

case(activate)

19 call execute_activate ()

case(deactivate)

21 call execute_deactivate ()

case(finish)

23 exit mainloop

end select

25 end do mainloop

Figure 1.21: main execution loop in qr mumps, executed by every thread.

1 found = .false.

forall (front in active fronts)

3 ! for each active front try to schedule

! ready tasks

5 found = found .or. push_geqrt (front)

found = found .or. push_gemqrt (front)

7 found = found .or. push_assemble (front)

found = found .or. push_deactivate (front)

9 end forall

11 if (found) then

! if tasks were pushed in the previous

13 ! loop return

return

15 else

! otherwise schedule the activation of

17 ! the next ready front

call push_activate (next ready front)

19 end if

21 if (factorization over) call push_finish ()

Figure 1.22: fill queue routine in qr mumps, filling thread queues with tasks ready for
execution

37

1. Introduction

at reducing the time for traversing the DAG critical path which defines a lower bound on
the execution time of the task graph.

In the multifrontal method, Level-3 BLAS routines such as gemqrt operations repre-
sent the largest share of computational cost. However there remain a significant amount
of Level-2 BLAS routines as well as symbolic operations such as activate, assemble and
geqrt tasks whose efficiency is limited by the speed of memory. In particular many tasks
on the critical path are memory-bound and the impact of the time spent on this path
becomes more and more important as the number of resources grows. In addition, some
frontal matrices, especially at the bottom of the tree, are too small to achieve asymptotic
performance on Level-3 routines. Therefore to achieve a good scalability of the multi-
frontal factorization, it is important to execute these memory-bound kernels as efficiently
as possible. This can be done by executing the kernels on the threads which are the closest
to the data they manipulate. For this purpose qr mumps introduces a concept of ownership
of a front: the thread that performs the activate operation on a front becomes its owner
and, therefore, becomes the privileged thread to perform all the subsequent tasks related
to that front. This leads to a better performance of tasks because of the first-touch rule
which is implemented in most (if not all) modern operating systems. The task pool is then
implemented as a set of queues, one for each thread. In the fill queue routine, when
a ready task is found, it is pushed in the queue associated with the thread that owns
the related front. An activate task, instead, is pushed on the queue associated with the
thread that executes the fill queues routine because the ownership of the related front
is not set yet. When a thread executes the pick task routine, it first looks for a ready
task in its own queue. In the case where no task is available on the local queue, an archi-
tecture aware work-stealing technique is employed, i.e., the thread will try to steal a task
from queues associated with threads with which it shares some level of memory (caches or
DRAM module on a NUMA machine) and if still no task is found it will attempt to steal a
task from any other queue. The computer’s architecture can be detected using tools such
as hwloc [30]. Experimental results presented by Buttari [32] show that this technique
provides some mild performance improvements.

In order to avoid any delay on the critical path that may increase the makespan and
induce resource starvation, tasks along this path are set with higher priorities over other
tasks. In the case of a dense QR factorization with a 1D block-column partitioning it is
easy to see that panel operations lie on the critical path of the factorization task graph. In
qr mumps only two levels of priority can be used: although tasks are always popped from
the head of each queue, they can be pushed either on the head or on the tail which allows
the prioritisation of certain tasks. The panel operations for example are always pushed on
the head to prioritise them over other tasks.

1.8 Positioning of the thesis

Direct methods, introduced in Section 1.2, constitute a popular approach to find the
solution of large sparse linear systems of equations. They are often preferred for their
robustness over other approaches like iterative methods whose efficiency largely depends
on the numerical properties of the input problem. As presented in Section 1.3, in the
cases of dense and sparse systems, recently developed factorization algorithms generate a
high amount of concurrency and allow the exploitation of efficient kernels, yielding good
performance on modern multicore architectures. The evolution of the hardware, however,
with the increase in the number of cores per chips, the introduction of accelerators and
the diminishing amount of memory per core, face researchers with new challenges that we

38

1.8. Positioning of the thesis

tackle in this study: how to implement complex and irregular algorithms in an efficient yet
portable way? how to make algorithms evolve and improve without being limited or con-
strained by the complexity of their actual implementation? how to achieve the execution of
complex workloads on heterogeneous architectures equipped with multiple execution units
running at different speeds and with memories having different capacities and speeds? How
to profile and analyze the performance of such codes on hybrid architectures?

This thesis attempts to address these issues through an approach which consists in rely-
ing on the use of modern runtime systems in order to achieve a performance and memory
efficient yet portable implementation of the QR multifrontal method for heterogeneous
architectures. Modern runtime systems, presented in Section 1.4.2, provide programming
interfaces complying with DAG-based algorithms that have recently become more and
more popular in the domain of linear algebra as explained for both the dense and sparse
case in Sections 1.5 and 1.6, respectively. The use of runtime systems has been largely
studied in the context of dense linear algebra but still represents a challenge for sparse al-
gorithms such as the multifrontal method. The difficulty associated with the development
of sparse methods on top of runtime systems lies in complexity of the DAG representing
the application with a large amount of tasks, with a great variety of kernels, granularity
and memory consumption.

The first issue we address in Chapter 3 is to validate the pertinence of this approach by
porting qr mumps to StarPU in a new version referred to as qrm starpu. We show that we
achieve good performance with qrm starpu and provide a detailed performance analysis
comparing our new version with the original solver. In Chapter 4 we redesign the previous
implementation using a pure Sequential Task Flow model and improve our solver with the
integration of 2D, communication avoiding front factorization algorithms. Furthermore we
develop a memory-aware algorithm allowing for controlling the memory consumption of
the parallel multifrontal method. As we mention in Section 1.6, few sparse solvers are based
on runtime systems and none of them fully relies on these tools for handling parallelism
and tasks execution, scheduling and data management. In our approach, we separate the
expression of algorithms from low-level details such as dependency management, data
transfer and data consistency that are delegated to the runtime system. In addition we
take advantage of the expressiveness of the programming models that we use to develop
new features.

Exploiting heterogeneous systems is extremely challenging due to the complexity of
these architectures. Current approaches presented in Section 1.6 generally rely on simple
static scheduling strategies and some of the state-of-the-art solvers only exploit the accel-
erator without taking advantage of the other resources on the architectures. In Chapter 6
we address the data partitioning and scheduling issues that are critical to achieve perfor-
mance on these architectures. We extend the 1D block-column partitioning used in the
qr mumps solver (see Section 1.7) to a hierarchical block partitioning allowing to generate
both fine and coarse granularity tasks adapted to the processing unit capabilities. We
show that the simplicity of the STF model facilitates the implementation of this data
partitioning with a complex dependency pattern and gives the ability to dynamically par-
tition data. We develop a scheduling strategy capable of handling the task heterogeneity
in the DAG and the diversity of resources on heterogeneous architectures. Thanks to the
modular approach that we employ, the scheduler implemented in qrm starpu is generic
and totally usable in other StarPU based applications.

The efficiency of the approaches presented above are assessed with a detailed perfor-
mance analysis presented in Chapter 2. This performance analysis approach allows for
measuring and separately analysing several factors playing a role in performance and scal-
ability such as locality issues and task pipelining. It should be noted this analysis requires

39

1. Introduction

the ability to measure times spend in several part of the application. This information
may be easily obtained via the runtime system. Nonetheless, the use of this method is not
restricted to applications based on task parallelism but can be readily applied to any type
of parallel code.

Finally, in Chapter 7 we address several issues related to the studies presented in the
previous chapters. First we propose a PTG-based version of our solver implemented with
PaRSEC. Our work clearly benefits from the features, the robustness and the efficiency of
runtime systems but, at the same time, provides a very valuable feedback to the runtime
developers community. In Sections 7.2 and 7.3 we discuss how qrm starpu has been used
to tune and validate a simulation engine for StarPU-based application and the use of
scheduling contexts for improving the locality of reference to data.

1.9 Experimental settings

1.9.1 Machines

The following computers have been used for the experiments presented in the rest of this
document:

• Dude: this is a shared-memory machine equipped with four AMD Opteron(tm) Pro-
cessor 8431 (six cores) and 72 GB of memory. The cores are clocked an 2.4 GHz and
have a peak performance of 9.6 Gflop/s each and thus a global peak performance
of 230.4 Gflop/s for real, double precision computations. Figure 1.23 shows the ar-
chitecture of one of the four sockets of this system. The compilers available on this
system are the Intel ifort and icc 13.1.0 and the BLAS and LAPACK libraries are
from Intel MKL 11.0.

NUMANode P#1 (20GB)

Socket P#1

L3 (5118KB)

L2 (512KB)

L1d (64KB)

L1i (64KB)

Core P#0

PU P#6

L2 (512KB)

L1d (64KB)

L1i (64KB)

Core P#1

PU P#7

L2 (512KB)

L1d (64KB)

L1i (64KB)

Core P#2

PU P#8

L2 (512KB)

L1d (64KB)

L1i (64KB)

Core P#3

PU P#9

L2 (512KB)

L1d (64KB)

L1i (64KB)

Core P#4

PU P#10

L2 (512KB)

L1d (64KB)

L1i (64KB)

Core P#5

PU P#11

Figure 1.23: The architecture of one of the fours sockets on the Dude computer.

40

1.9. Experimental settings

• Ada: supercomputer installed at the IDRIS French supercomputing center5. This
is an IBM x3750-M4 system equipped with four Intel Sandy Bridge E5-4650 (eight
cores) processors and 128 GB of memory per node. The cores are clocked at 2.7 GHz
and are equipped with Intel AVX SIMD units; the peak performance is of 21.6
Gflop/s per core and thus 691.2 Gflop/s per node for real, double precision compu-
tations. Figure 1.24 shows the architecture of one of the four sockets of this system.
The compilers available on this system are the Intel ifort and icc 15.0.2 and the
BLAS and LAPACK libraries are from Intel MKL 11.2.

NUMANode P#0 (32GB)

Socket P#0

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#6

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#7

Figure 1.24: The architecture of one of the fours sockets on the Ada computer.

• Sirocco: five nodes cluster part of the PlaFRIM center 6. Each nodes is equipped
with two Haswell Intel Xeon E5-2680 (twelve cores) processors and 124 GB of mem-
ory per node. The cores are clocked at 2.5 GHz and are equipped with Intel AVX
SIMD units. In addition, each node is accelerated with four Nvidia K40M GPUs;
the peak performance is of 40.0 Gflop/s per core, 1.4 Tflop/s per GPU and thus
6.0 Tflop/s per node for real, double precision computations. Figure 1.25 shows the
architecture of one of the two sockets of this system. The compiler available on this
system are GNU gcc and gfortran 4.8.4 and the BLAS and LAPACK libraries are
from Intel MKL 11.2.

1.9.2 Problems

The approaches and implementations presented in the following sections where tested and
evaluated on a number of matrices from real life applications publicly available in the
University of Florida Sparse Matrix Collection[43] plus one, the hirlam matrix, from the
HIRLAM7 research program. Table 1.1 shows the main characteristics of these matrices;
the number of floating-point operations, which refers to the matrix factorization, is com-
puted with an internal block size ib of 32 and for a fill-reducing ordering computed with
the tool specified in column #3. Note that the same matrix is assigned a different id
depending on the applied column permutation. The SCOTCH version used was 6.0.

5http://www.idris.fr
6https://plafrim.bordeaux.inria.fr
7http://hirlam.org

41

1. Introduction

Socket P#1

NUMANode P#1 (32GB)

L3 (15MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#3

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#7

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#9

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#11

PCI 10de:1023

card3

cuda2

11 GB

L2 (1536 kB)

15 MP x (192 cores + 48 kB)

PCI 10de:1023

card4

cuda3

11 GB

L2 (1536 kB)

15 MP x (192 cores + 48 kB)

NUMANode P#3 (32GB)

L3 (15MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#13

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#15

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#17

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#19

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#21

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#13

PU P#23

Figure 1.25: The architecture of one of the two sockets on the Sirocco computer.

42

1.9. Experimental settings

id Mat. name Ordering m n nz op. count
(Gflop)

1 tp-6 colamd 142752 1014301 11537419 277
2 karted colamd 46502 133115 1770349 279
3 EternityII E colamd 11077 262144 1572792 566
4 degme colamd 185501 659415 8127528 629
5 cat ears 4 4 colamd 19020 44448 132888 786
6 hirlam colamd 1385270 452200 2713200 2401
7 e18 colamd 24617 38602 156466 3399
8 flower 7 4 colamd 27693 67593 202218 4261
9 Rucci1 colamd 1977885 109900 7791168 12768
10 sls colamd 1748122 62729 6804304 22716
11 TF17 colamd 38132 48630 586218 38209
12 hirlam SCOTCH 1385270 452200 2713200 1384
13 flower 8 4 SCOTCH 55081 125361 375266 2851
14 Rucci1 SCOTCH 1977885 109900 7791168 5671
15 ch8-8-b3 SCOTCH 117600 18816 470400 10709
16 GL7d24 SCOTCH 21074 105054 593892 16467
17 neos2 SCOTCH 132568 134128 685087 20170
18 spal 004 SCOTCH 10203 321696 46168124 30335
19 n4c6-b6 SCOTCH 104115 51813 728805 62245
20 sls SCOTCH 1748122 62729 6804304 65607
21 TF18 SCOTCH 95368 123867 1597545 194472
22 lp nug30 SCOTCH 95368 123867 1597545 221644
23 mk13-b5 SCOTCH 135135 270270 810810 259751
24 TF16 colamd 15437 19321 216173 2884

Table 1.1: The set of matrices used for the experiments.

43

Chapter 2

Performance analysis approach

Performance profiling and analysis is one of the cornerstones of High Performance Com-
puting. Nonetheless, it may be a challenging task to achieve, especially in the case of
complex applications or algorithms and large or complex architectures. Therefore, it is no
surprise that performance profiling has been the object of a very vast amount of literature.

In the case of sequential applications, a rather simple but effective approach consists
in computing the efficiency of the code as a ratio of the attained speed and a reference
performance which depends on the peak capability of the underlying architecture. Because
processing units and memories work at different speeds, this reference performance varies
depending on whether the application is compute bound (i.e., limited by the speed of
the processing unit) or memory bound and to what extent. The Roofline model [115]
is a popular method for computing this performance upper bound as a function of the
operational intensity:

Attainable
Gflop/s

= min

{
Peak Floating-point

Performance
,
Peak Memory
Bandwidth

×
Operational
intensity

}
.

The peak floating-point performance and peak memory bandwidth can be set equal to
the theoretical values of the architecture; these values, however, are commonly unattain-
able and therefore these parameter values are computed using benchmarks like the BLAS
gemm (matrix-matrix multiply) operation, which is commonly considered as the fastest
compute-bound operation, or the STREAM [88] benchmark, respectively. The roofline
model can also be used for shared-memory, parallel applications but cannot be extended
to the case where accelerators are used or to distributed-memory, parallel codes. Moreover,
its use is difficult in the case of complex applications, such as the multifrontal method,
which include both memory and compute-bound operations whose relative weight varies
depending on the input problem.

The performance of a parallel code, either shared or distributed-memory, on a homo-
geneous platform (i.e., where all the processing units are the same) is commonly assessed
measuring its speedup, i.e., the ratio between the sequential and the parallel execution
times t(1)/t(p), or, equivalently, the parallel efficiency

e(p) =
t(1)

t(p) × p

where p is the number of processing units used. The scalability measures the ability of
a parallel code to reduce the execution time as more resources are provided. Amadahl’s
law can be used to define a bound on the achievable speedup (or parallel efficiency or

45

2. Performance analysis approach

scaling) of a parallel code but, again, this is very hard to achieve for complex and irregular
applications.

The emerging heterogeneous architectures represent a challenge for the performance
evaluation of parallel algorithms compared to the uni-processor and parallel, homogeneous
environments. Accelerators, not only process data at different speeds compared to the
CPUs but also have different capabilities, i.e., are more or less suited to different types
of operations, and are attached to their own memory which has different latency and
bandwidth than that on the host. The performance analysis of codes that use accelerators
is often limited to measuring the added performance brought by the accelerators, that is,
a simple speed comparison with the CPU-only execution.

Although the above presented techniques can be used to achieve a rough evaluation of
the performance of a parallel code, none of them provides any insight which can guide the
HPC expert in reformulating or improving his algorithms or the programmer in optimizing
his code in order to achieve better performance. Many factors play an important role in
the performance and scalability of a code; among the others, we can mention the cost of
data transfers and synchronizations, the granularity of operations, the properties of the
algorithm and the amount of concurrency it can deliver. A quantitative evaluation of these
factors can be extremely valuable.

In order to evaluate the effectiveness of the techniques proposed in Chapters 3, 4 and 6
as well as of the software that implements them, we developed a novel performance analysis
approach [S1, C2]. First, we introduce a method for computing a relatively tight upper
bound for the performance attainable by the parallel code, which is not merely a sum
of the peak performance of the available processing units; this performance reference is
computed by not only taking into account the features of the underlying architecture, but
also the properties of the implemented algorithm and allows for evaluating the efficiency
of a parallel code. Then we show how it is possible to factorize this efficiency measure
into a product of terms that allow for assessing, singularly, the effect of several factors
playing a role in the performance and scalability of a code. This analysis requires the
ability to retrieve specific information from the execution that are easy to gather when
using a runtime system.

2.1 General analysis

Consider the problem of evaluating the execution of a parallel application on a target
computing environment composed of p heterogeneous processors such as CPUs and GPUs
workers. Critical factors playing a role on parallel executions must be considered to com-
pute realistic performance bounds and understand to what extent each of these factors
may limit the performance. Idle times and data transfers (communications, in general) for
example represent a major bottleneck for performance of parallel executions. Also we seek
to quantify the cost of the runtime system, if any, compared to the workload in order to
evaluate the effectiveness of these tools and estimate the overhead they induce.

In the proposed performance evaluation approach we perform a detailed analysis of
the execution times by considering the cumulative times spent by all threads in the main
phases of the execution:

• tt(p): The time spent in tasks which represent the workload of the application;

• tr(p): The time spent in the runtime for handling the execution of the application
(in our case, this includes building the DAG and scheduling the tasks);

46

2.1. General analysis

• tc(p): The time spent performing communications that are not overlapped by com-
putations. This corresponds to the time spent by workers waiting for data to be
transferred on their associated memory node before being able to execute a task;

• ti(p): The idle time spent waiting for dependencies between tasks to be satisfied.

The execution time of the factorization t(p), may be expressed, using these cumulative
times, as follows:

t(p) =
tt(p) + tr(p) + tc(p) + ti(p)

p

The efficiency of a parallel code can be defined as

e(p) =
tmin(p)

t(p)

where tmin(p) is a lower bound on the execution time with p processes. A possible way
of computing tmin(p) for a task graph is to measure the execution time associated with
the optimal schedule. However, given the complexity of the task scheduling problem in the
general case it is not reasonable to compute this tmin(p) for any input problem. Instead
we choose to use a looser bound that consists in computing the optimal value of tmin(p)
for a relaxed version of the initial scheduling problem built on the following assumptions:

1. There are no dependencies between tasks which means that we consider an embar-
rassingly parallel problem, i.e., ti(p) = 0;

2. The runtime does not induce any overhead on the execution time, i.e., tr(p) = 0;

3. The cost of all data transfers is equal to zero, i.e., tc(p) = 0;

4. Tasks are moldable meaning that they may be processed by multiple processors.

In order to compute tmin(p) we introduce the following notation: for a set of tasks Ω
running on a set of p resources denoted by R, we define αω

r as the share of work in task
ω processed by resource r and tω

r as the time spent by resource r processing its share of
task ω. Then tmin(p) can be computed as the solution of the following linear program:

Linear Program 1
Minimize T such that, for all r ∈ R and for all ω ∈ Ω:

∑
ω∈Ω

αω
r tω

r = tr ≤ T

|R|∑
r=1

αω
r = 1

where the tω
r can be computed using a performance model. Note that the problem of

finding tmin(p) is equivalent to minimizing the area αω
r tω

r for all ω ∈ Ω and r ∈ R. For this
reason the optimal value tmin(p) is replaced by tarea(p) in the following. We illustrate how
tarea(p) is defined in Figure 2.1 on a simple execution with three resources. On the left of
the figure is represented the trace of the real execution where t(p) is measured. On the
right is represented the optimal schedule for the relaxed version of the original scheduling
problem where tarea(p) is measured.

Note that parallelism is normally achieved by partitioning operations and data; this im-
plies a smaller granularity of tasks and thus, likely, a poorer performance of the operations

47

2. Performance analysis approach

PU2

PU1

PU0

(a) Actual schedule.

PU2

PU1

PU0
area

(b) Area schedule.

Figure 2.1: Illustration on a simple Gantt chart of a parallel execution with three workers.

performed by them. Moreover, parallel algorithms often trade floating-point operations for
concurrency and therefore may perform more operations than the corresponding sequen-
tial ones (this is, for example, the case of 2D communication avoiding QR factorizations,
as explained in Section 1.3.1). Based on these observations, we can further refine the effi-
ciency definition above replacing tarea(p) with t̃area(p) computed as the solution of Linear
Program 1 assuming ω ∈ Ω̃, where Ω̃ is the set of tasks of the sequential algorithm. In
other words, in t̃area(p) we assume that there is no performance loss when working on
partitioned data and that the parallel algorithm has the same cost as the sequential one.
Please note that this also models the fact that in some cases data are inherently of small
granularity and, therefore, tasks that work on them have a poor performance regardless
of the partitioning.

By replacing the term t(p) in the expression of the parallel efficiency using cumulative
times and noting that t̃area

t (p) = p × t̃area(p) from the definition of our lower bound, we
may express the parallel efficiency as as

e(p) =
t̃area(p)

t(p)
=

t̃area(p) × p

tt(p) + tr(p) + tc(p) + ti(p)
=

t̃area
t (p)

tt(p) + tr(p) + tc(p) + ti(p)

=

eg

t̃area
t (p)

tarea
t (p)

·

et

tarea
t (p)

tt(p)
·

er

tt(p)

tt(p) + tr(p)
·

ec

tt(p) + tr(p)

tt(p) + tr(p) + tc(p)
·

ep

tt(p) + tr(p) + tc(p)

tt(p) + tr(p) + tc(p) + ti(p)
.

This expression allows us to decompose the parallel efficiency as the product of five
well identified effects:

• eg: the granularity efficiency, which measures how the overall efficiency is reduced
by the data partitioning and the use of parallel algorithms. This loss of efficiency
is mainly due to the fact that because of the partitioning of data into fine grained
blocks, elementary operations do not run at the same speed as in the purely sequen-
tial code and also to the fact that the parallel algorithm may perform more flops
than the sequential one;

• et: the task efficiency, measures how well the assignment of tasks to processing
units matches the tasks properties to the units capabilities as well as the exploitation
of data locality (more details are provided below);

• er: the runtime efficiency, which measures the cost of the runtime system with
respect to the actual work done;

• ec: the communication efficiency, which measures the cost of communications
with respect to the actual work done due to data transfers between workers;

48

2.1. General analysis

• ep: the pipeline efficiency, which measures how well the tasks have been pipelined.
This includes two effects. First, the quality of the scheduling because if the scheduling
policy takes bad decisions (for example, it delays the execution of tasks along the
critical path) many stalls can be introduced in the pipeline. Second, the shape of
the DAG or, more generally, the amount of concurrency it delivers: for example, in
the extreme case where the DAG is a chain of tasks, any scheduling policy will do
as bad because all the workers except one will be idling at any time.

Analysis for homogeneous multicore systems In the case of an homogeneous archi-
tecture such as a multicore system with p cores, the solution of Linear Program 1 greatly
simplifies and can be easily found.

t̃area(p) and tarea(p) do not have to be computed but can be measured by timing,
respectively, the sequential execution of the sequential algorithm and the sequential exe-
cution of the parallel algorithm (with the corresponding data partitioning), that is

t̃area(p) =
t̃(1)

p
, tarea(p) =

t(1)

p
. (2.1)

Note that in a sequential execution the cost of the communications and of the runtime
as well as the idle times are all identically equal to zero and therefore t(1) = tt(1) and
t̃(1) = t̃t(1).

Replacing t(p) and tarea(p) in the expression of the parallel efficiency using the cumu-
lative times we obtain:

e(p) =
t̃t(1)

tt(p) + tr(p) + ti(p)

=

eg

t̃t(1)

tt(1)
·

et

tt(1)

tt(p)
·

er

tt(p)

tt(p) + tr(p) + tc(p)
·

ep

tt(p) + tr(p)

tt(p) + tr(p) + ti(p)
.

Here we assumed ec = 1 because there are no explicit or measurable data transfers.
These, however, happen implicitly when tasks access data which are remotely located in
the NUMA memory system; this makes the tasks execution time tt(p) increase as the
number of cores p increases. This effect is measured by et.

Analysis for heterogeneous systems Compared to the homogeneous case, computing
t̃area(p) and tarea(p) in the context of heterogeneous systems is more complex because task
execution times depend on the type of resources where they are executed. Therefore we
need need to solve the Linear Program in 1 to determine these values. The first step
consists in gathering the execution times for every task on every possible computational
unit. Then the linear system is built either statically if all tasks are known in advance
or by registering it during an actual execution and finally solved using a linear program
solver.

The tasks efficiency, in this case, still measures the effect of implicit communications
but also, and more importantly, how well the heterogeneity of the processing units is
exploited. In other words, et measures how well tasks have been mapped to computational
units with respect to the optimal mapping computed by solving the linear program. Note
that this efficiency is not necessarily lower than one and it is closely related to the pipeline
efficiency:

49

2. Performance analysis approach

• et < 1: tasks are globally being executed at a lower speed with respect to the optimal.
This may happen because the tasks assigned to the different processing units are not
of the good type; this is, for example, the case where very small granularity tasks
are executed by GPUs;

• et > 1: note that a particularly naive scheduling policy can map all the tasks to faster
units. This would obviously result in a small cumulative tasks execution time tt(p)
but would inevitably lead to the starvation of the slower units and, as a consequence,
to a poor pipeline efficiency ep.

As a result, the quality of the scheduling policy can be measured by the product of
the tasks and pipeline efficiencies et · ep which is always less than one.

2.2 Discussion

As discussed in the previous section, the pipeline efficiency ep may be lowered either
because of a lack of parallelism in the DAG or as a result of bad scheduling decisions
taken during the execution. The distinction between the two phenomena can be made
qualitatively by looking at the execution traces but the analysis is basic and inaccurate.

Section 4.2.3. The analysis of the critical path defined as the longest path in the the
DAG of tasks allows to decide what is the limiting factor for the pipeline efficiency. If
we note CP the set of tasks on the critical path (longest path from an entry task to an
exit task) of the DAG and Lω the workload associated with the task ω, the maximum
achievable speedup is the following:

S∞ =

∑
ω∈Ω Lω∑

ω∈CP Lω

This quantity gives the maximal amount of parallelism available in a DAG, and given
a multicore architecture, one can expect to have at most the speedup given by its value
compared to a sequential execution. In practice, the actual speedup would be much lower
because of the aforementioned effects such as granularity efficiency and locality efficiency.
Therefore, when targeting an architecture such as a multicore machine with p cores, a low
value S∞ (lower than p for example) indicates that the DAG is not suited and will not
deliver enough parallelism to feed all the resources.

In a heterogeneous context the formulation of S∞ becomes more complex as there is no
longer equivalence between the length of a task and its execution time. For this reason the
critical path may not be interpreted as the longest path in the DAG in terms of work load.
In an effort to adapt the definition of S∞ to heterogeneous architecture it is possible to
reformulate it by replacing the length of the critical path with a lower bound on its length.
For example we define CPmin as the critical path of a DAG, considering the minimum
computational cost. Using the previous notations the minimal computational cost of a
task ω on every resources may be expressed as minr∈R tω

r . Then we use this notion to
derive another definition of S∞ as follows:

S∞ =

∑
ω∈Ω minr∈R tω

r∑
ω∈CPmin

minr∈R tω
r

The previous definition of S∞ for homogeneous architectures may be seen as a partic-
ular case of this definition. Note that the denominator in the latter formula does not equal
the length of the critical path because it does not take into account the communication
cost between processors. In addition as we will see later the definition of a critical path is

50

2.2. Discussion

not trivial in an heterogeneous context as it is associated with a choice of metric for the
computational cost of a task that can have several interpretations. For instance the critical
path may be determined by considering the average computation cost of tasks denoted t̄ω.

The second metric we use to evaluate the execution time t(p), commonly referred
to as makespan, is the ratio between this value and the length of the critical path whose
expression is straightforward in a homogeneous case and can be interpreted as the efficiency
of the makespan:

emakepan(p) =
t(p)∑

ω∈CP tω

As for the definition of our previous metric this formula may not be easily generalized
to a heterogeneous context. Using the same methodology as previously we simply replace
the expression of the critical path by a lower bound on the length of the critical path
therefore corresponding to a lower bound on the makespan ensuring that this quantity is
inferior to one.

Another idea to take into account the critical path in the case of a parallel hetero-
geneous execution, suggested by Agullo et al. [6], is to integrate a constraint in Linear
Program 1 corresponding to the lower bound on the length of the critical path that we
use in the previous metrics S∞ and emakepan(p). With this constraint, we express the fact
that the makespan may not be larger than this lower bound:

∑
ω∈CPmin

min
r∈R

tω
r ≤ T

However in the general case the number of variables is important (one variable per
task) and increases with the size of the problem which makes the linear program hard to
solve without constraints and consequently even harder when adding a constraint. Agullo
et al. [6] show that given a problem (Cholesky factorization in their case) it is possible to
reduce the linear program to another one of small size and whose size is independent from
the problem. This is made possible by the regularity of dense linear algebra algorithm that
they tackle. It may be noted that in our study it is not possible to make any assumptions
on the regularity our problems.

To handle the complexity of complex DAGs arising in the case of sparse linear algebra
it is possible to evaluate the impact of scheduling algorithm and communication using
simulations. As presented by Agullo et al. [6] and Stanisic et al. [108] in the case of
dense algorithms and as we show in Chapter 7.2 in the context of qr mumps for sparse
problems, with the help of tools that may be integrated in runtime systems such as StarPU-
SimGrid it is possible to reproduce execution of a DAG on a parallel machine. In addition
some parameters may be changed such as bandwidths and tasks processing speeds (in
order to remove the effect of locality for example) in order to measure the influence of
these parameters on the execution time and evaluate the behavior of scheduling strategies
under some circumstances (for example when the number of processors grows) without
performing the actual execution.

51

Chapter 3

Task-based multifrontal method:
porting on a general purpose
runtime system

The task-based multifrontal QR method implemented in qr mumps and presented in Sec-
tion 1.7 constitutes an extremely irregular workload, with tasks of different granularities
and characteristics and with variable memory consumption. In the qr mumps solver, the
tasks that form this workload are scheduled through a hand-written code which relies on
the knowledge of the algorithm. In this chapter we will first comment on the shortcomings
of the scheduling method implemented in the qr mumps solver described in Section 1.7.
We will then focus on the porting of the qr mumps algorithm on top of a general purpose
runtime system in order to asses the usability of these tools on such large and complex
workloads [C1]. As explained, modern runtime systems provide programming interfaces
that comply with a DAG-based programming paradigm and powerful engines for schedul-
ing the tasks into which the application is decomposed. For these reason, these tools are
very well suited for qr mumps; nonetheless, this porting is not straightforward and requires
some care. The result of this work is a preliminary version of a new code which we refer to
as qrm starpu. This code will be used to run the experiments presented in Section 3.2.3
that show how this migration to a general purpose runtime system leads to a much more
modular and portable code at the cost of a negligible loss of performance.

3.1 Efficiency and scalability of the qr mumps scheduler

A consequence of the design of the qr mumps scheduler presented in Section 1.7.4 is that
the size of the search space for the fill queues routine is proportional to the number of
active fronts, at a given moment, during the factorization. The size of this search space,
however, can grow excessively large and, consequently, the cost of the fill queues routine
may become unbearable. This is the case for example when the the elimination tree is
composed of a large number of nodes. Moreover, when the number working threads grows
we observe the following two effects: first the layer computed for the logical tree pruning
(see Section 1.7.2) in the elimination tree tends to go down the tree which increases the
number of frontal matrices to be activated during the factorization; Second the number
of resources to feed the scheduler becomes higher and the activation of frontal matrices
is triggered sooner during the factorization. In particular, nothing prevents the scheduler
from activating all the frontal matrices as soon as they are ready which can make the
search space arbitrarily large. Two different techniques were presented by Buttari [32] to

53

3. Task-based multifrontal method: porting on a general purpose

runtime system

mitigate this problem. The first is the logical tree pruning discussed in Section 1.7.2 which
essentially reduces the size of the tree although, as explained above, this reduction is less
and less effective as the number of threads grows. The second is a tree reordering method
that aims at computing a postorder traversal which reduces the number of simultaneous
active nodes in a sequential execution; this is essentially a rewriting of the method proposed
by Liu [83] for minimizing the memory consumption (see also Section 5.2.1) but with a
different objective. It must be noted, though, that this method is just a heuristic and does
not provide any mean of controlling the size of the search space; moreover, it prevents us
from using other tree traversal orders that aim, for example, at optimizing performance
of memory consumption.

In addition to this performance and scalability issue, it should be noted that the hand-
coded scheduler in qr mumps relies on the knowledge of the algorithm (specifically in the
fill queues routine) and may have to be modified each time the algorithm is updated.

In the next section we show that it is possible to overcome the limitations of the
original qr mumps scheduler presented above by replacing it with a modern and fully
featured runtime system at basically no performance loss.

3.2 StarPU-based multifrontal method

3.2.1 DAG construction in the runtime system

In order to assess the usability of runtime systems for sparse, direct methods, we achieved,
as a preliminary step, the implementation of the method described in Section 1.7 using
one such tool. Namely, we used the StarPU runtime as a replacement for the hand-coded
scheduler described in Section 1.7.4.1. In order to achieve this proof of concept, we tried
to reproduce as accurately as possible the scheduling policy and the behaviour of the
original qr mumps code. This led to novel software, which we refer to as qrm starpu. In
our study we focus on the factorization phase that we express using the programming
interface provided by StarPU while the analysis and solve phases remain unchanged from
qr mumps.

This novel implementation is structured around the pseudocode shown in Figure 3.1.
This code is executed by the master thread which is not involved in the execution of tasks
(see Section 1.4.2.1) and basically consists in a traversal of the elimination tree, where, at
each node, the following operations are performed:

• Declare to the runtime system the dependencies between the activation of a node
and the activation of its children nodes. In StarPU, this is done by assigning a
identifier, called a TAG, to the corresponding tasks and then using these tags to add
task dependencies through a dedicated routine. This dependency indicates that a
node can only be activated once all of it children are activated;

• Submit the activation task to the runtime system containing the instructions for
processing the current front. A description of this task is given in Figure 3.2.

The return from the blocking wait tasks completion routine in Figure 3.1 ensures
that all the submitted tasks have been executed, i.e., that the factorization of the sparse
matrix is completed.

The activation task has been enriched with respect to what presented in Section 1.7;
not only does this task initialise the front data structure and allocate the corresponding
memory, but it is also in charge of submitting the other tasks related to the activated front,

54

3.2. StarPU-based multifrontal method

1 forall fronts f in topological order

forall children c of f

3 ! declare explicit dependency between node c and f

call declare_dependency (id_f <- id_c)

5 end do

! submit the activation of front f

7 call submit (activation , f, id=id_f)

end do

9

call wait_tasks_completion ()

Figure 3.1: Pseudo-code for the main code with submission of activation tasks

namely the assemble, geqrt and gemqrt tasks. Note that when the block-columns are
allocated, they are also declared to the runtime system. This is done through the use of
dedicated data structures called handles, as described in Section 1.4.2.1 and is a necessary
step for the submission of the tasks that operate on block-columns and for the detection
of their mutual dependencies.

Note that the deactivate task does not appear in the pseudocode given in Fig-
ure 3.1. This task instead, is executed in the call-back (see Section 1.4.2.1) associated
with assemble tasks when assembly operation is complete. This completion is detected
by means of a counter whose access is protected by a lock managed by the application
and not visible by StarPU.

call activate (f)

2

forall children c of f

4 forall blockcolumns j=1...n in c

! assemble column j of c into f

6 call submit (assemble , c(j):R, f:RW)

end do

8 end do

10 forall panels p=1...n in f

! panel reduction of column p

12 call submit (_geqrt , f(p):RW)

forall blockcolumns u=p+1...n in f

14 ! update of column u with panel p

call submit (_gemqrt , f(p):R, f(u):RW)

16 end do

end do

Figure 3.2: Pseudo-code of the activation task.

Using the notation introduced in Section 1.7.1, Figure 1.18 we detail the declaration
of dependencies encountered in our DAGs emerging from the multifrontal factorization:

• The dependency d1 is ensured by the fact that the numerical operations are submit-
ted in the activation tasks after the execution of the activate routine;

• The tasks corresponding to the numerical factorization of the front are submitted in
the right order to express the dependencies d2, d3 and d4. gemqrt tasks related to a

55

3. Task-based multifrontal method: porting on a general purpose

runtime system

panel reduction are submitted after the corresponding geqrt task, which implicitly
defines dependency d2. Similarly the geqrt task on panel i is submitted after the
submission of the gemqrt task from step i − 1 on the same block-column ensuring
d3 dependency. Finally gemqrt operations with respect to panel reduction i are
submitted after the one related to panel reduction i −1 creating the dependency d4;

• Using a topological order to traverse the elimination tree ensures that assembly tasks
for a front are submitted after the submission of factorization tasks of children fronts
which gives the dependency d5 by inference;

• The dependency d6 is expressed by submitting the assemble tasks before numer-
ical tasks. This way no block-column is processed before it has been completely
assembled;

• The dependency d7 is explicitly expressed in the runtime system with the instruction
declare dependency.

In total we used three different ways to declare the dependencies in our DAGs and
ensured the correctness of the numerical factorization: explicitly declared dependencies
for activation tasks, inferred dependencies geqrt, gemqrt and assemble tasks and
callback-based dependencies for the deactivate tasks. It must be noted, however, that
these techniques only allow for expressing precedence relations between tasks but not a
complete data-flow; this means that the runtime system is not fully aware of what data are
needed for a task to execute. For example the dependencies between activation tasks are
not associated with any data and dependencies between assemble and deactivate tasks
are invisible to the runtime system. This is not important in a single-node, shared memory
system because only one copy of each data exists and is never moved. On a system with
multiple memory nodes (like a GPU equipped system or a distributed memory, parallel
computer), however, the runtime would not be able to move the necessary data to the
place where a task is actually executed and would not be able to handle the consistency
between multiple copies of the same data. This is the main reason that led us to abandon
this approach in favor of the STF compliant one described in Chapter 4.

The use of the DAG in the runtime system during the factorization is illustrated in
Figure 3.3 using the DAG previously presented in Figure 1.18:

1. In phase 1, the activate tasks of supernodes 1, 2 and 3 are submitted and their
mutual dependencies explicitly declared to StarPU. In this example the activation
of supernode 3 depends on the activation tasks of supernodes 1 and 2 which are,
therefore, the only two ready for execution;

2. In the case where multiple working threads are available, we can assume that su-
pernodes 1 and 2 are activated at the same time in phase 2. Because these are leaf
nodes their activation does not depend on any other node activations. As a result
of the activation of these two supernodes, the related numerical tasks are submitted
to StarPU;

3. When the execution of the numerical tasks associated with nodes 1 and 2 is termi-
nated, supernode 3 is activated in phase 3; this is possible because the dependencies
with the activations of nodes 1 and 2 are satisfied. Same as for the previous activa-
tions the numerical tasks are submitted in supernode 3, and in addition the assembly
operations from child fronts 1 and 2 to front 3 are submitted;

56

3.2. StarPU-based multifrontal method

Figure 3.3: Dynamic construction of the DAG in qrm starpu.

4. In phase 4 the deactivate tasks are submitted for front 1 and 2 at the end of
assembly operations via callbacks of assembly tasks.

Please note that the activation of supernode 3 becomes ready at the end of step 2 and,
therefore, nothing prevents the runtime system from executing it before the factorization
tasks related to fronts 1 and 2. To some extent, the order of execution of tasks can be
controlled with an appropriate tasks priority policy, as explained below.

In qrm starpu the task submission is done progressively following the traversal of
the elimination tree which depends on the execution of activation tasks. Similarly to the
qr mumps approach, only tasks corresponding to active frontal matrices are visible to the
runtime system. This allows us to reduce the number of tasks in the runtime system
and potentially reduces its memory consumption. We will provide experimental results in
Section 3.2.3 to show how this technique effectively reduces the size of the DAG handled
by the runtime system. The resolution of dependencies in StarPU is local to each task
and is performed upon task completion: whenever a task is finished, the executing worker
checks for potential ready tasks to push in the scheduler only among those which depend

57

3. Task-based multifrontal method: porting on a general purpose

runtime system

on it. As a result, the tracking and updating of dependencies has a much smaller cost than
the method implemented in qr mumps; most importantly, this cost only depends on the
number of outgoing edges of each task and is, therefore, relatively independent of the size
of the input sparse problem.

There is one fundamental difference between qr mumps and qrm starpu. In the mul-
tifrontal QR method, the assembly of a front is an embarrassingly parallel operation
because it simply consists in the copy of coefficients of the contribution blocks from the
child nodes into different locations in the front. This means that any two assembly tasks
can be done in any order and possibly in parallel even though they access the same block-
column. qr mumps can easily take advantage of this fact because the task dependencies
are hard-coded in the fill queues routine based on the knowledge of the algorithm. In
qrm starpu, instead, if two or more assembly tasks access the same block-column, a data-
hazard is detected and thus the tasks are serialized according to the order of submission.
In order to partially address this problem, the StarPU developers implemented a novel ac-
cess mode STARPU COMMUTE which makes it possible to instruct the runtime system about
the possibility of executing two tasks in any order (but not in parallel).

This is an example of how our developments and evaluations provide valuable feedback
to the community of runtime systems developers; we will show other examples of this fruit-
ful collaboration in the next sections. This feature, however, was not yet available at the
moment we implemented qrm starpu and ran the experiments in Section 3.2.3; the com-
mutativity among assembly tasks was instead used in the work described in Chapters 4, 5
and 6.

3.2.2 Dynamic task scheduling and memory consumption

The level of concurrency as well as the memory consumption of the multifrontal method
based on StarPU depend on the path followed in the DAG and the scheduling policy
used. As explained, the numerical tasks (i.e., panel reductions, updates and assemblies)
are submitted by activation tasks which are, therefore, extremely important because they
potentially increase the concurrency level and enhance the scalability. It must be noted,
however, that executing an activation task too early is worthless because the numerical
tasks it submits cannot be executed as they depend on many other, previously submitted
tasks. On the other hand, the activation tasks in charge of allocating fronts increase the
memory consumption. For this reason, during the dynamic construction of the DAG we
need an efficient scheduling policy to have an amount of concurrency suited to the resources
and to save memory from unnecessary allocations.

Maximizing concurrency while limiting the memory consumption is achieved by as-
signing to each type of tasks priority values as follows:

• activate: This tasks increases the memory consumption by allocating frontal matrix
data structures and therefore we assign it a negative priority to prevent the scheduler
from allocating fronts when there is enough parallelism to feed all resources and thus
limit memory consumption;

• assemble: These tasks are critical for concurrency because all numerical tasks from
a front depend on it. They are given the highest priority after deactivate operation
which is 3;

• geqrt: panel operations lie on the critical path of the DAG corresponding to the
dense QR factorization when using a 1D block-column partitioning. They are as-
signed priority 2 which is higher than non-critical update tasks;

58

3.2. StarPU-based multifrontal method

• gemqrt: update operations are given priority 1 which is the lowest for numerical
tasks;

• deactivate: The deactivation is responsible for deallocating the data structure of a
frontal matrix and thus decreases the memory consumption. We therefore give this
task the highest priority which is 4.

Similarly to the strategy employed in qr mumps, activating a new front is only consid-
ered when no other tasks can be executed by a worker. As such, we exploit as much as
possible the node-level parallelism instead of tree-level parallelism and thus take advantage
of a better data locality and a lower memory consumption. In addition the native sched-
uler in qr mumps can only handle two levels of task priority while in our implementation
we consider an arbitrary number of priority.

The order of execution of activation tasks impacts the memory consumption for
the factorization by allocating the front memory and allowing the deallocation of chil-
dren nodes memory for contribution blocks as explained in [60]. In order to minimize as
much as possible the memory footprint of the factorization, the front activation should
follow as much as possible a postorder traversal of the elimination tree which allows us to
minimize this memory consumption in the sequential case. To achieve a good efficiency
of the memory usage it is important to prioritize the activation tasks according to
this postorder traversal and this can be done by modifying the priority associated with
activation tasks as follows: for a node numbered i using a postorder traversal we give
the corresponding activation task a priority equal to −i. As shown in the experimental
results below, this allows a conservative memory behaviour for the scheduling strategy
compared to qr mumps. This ordering of the elimination tree minimizes the number of
active nodes during the factorization and thus maximizes the exploitation of node-level
parallelism. However, for parallel execution, there is no guarantee on the actual execution
of activation tasks and thus control over the memory usage of the factorization.

Although StarPU comes with some predefined scheduling policies, none of them sup-
ports arbitrary priorities. Therefore we choose to implement our own scheduler using the
dedicated API (see Section 1.4.2.1). The implementation of our dynamic scheduler, illus-
trated in Figure 3.4, is based on a central sorted queue where tasks are ordered according
to their priority and can be described by the following two routines:

• the push routine inserts a ready task to the central queue keeping the list sorted
according to the task priorities. Upon termination of a task, the worker that has
completed it checks the status of all the other tasks which depend on it and, if
any of these has become ready for execution, it invokes the push method on it.
This dependency check plus the push method may be seen as the equivalent of the
fill queues routine although it is much cheaper because the search space for ready
tasks is much more restricted;

• the pop routine retrieves the highest priority task from the central queue. It is called
by workers when they become idle and is equivalent to the pick task from qr mumps.

This scheduler is dynamic, generic and capable of taking into account task priorities.
Moreover, it is compatible with every kind of worker supported by the runtime system
including CPU and GPU workers although we do not recommend its use on such architec-
tures where smarter scheduling policies are necessary to achieve acceptable performance
(see Chapter 6). Unlike the qr mumps scheduler, it does not exploit data locality in a
NUMA system; the results presented by Buttari [32], however, show that that the locality

59

3. Task-based multifrontal method: porting on a general purpose

runtime system

WorkersRuntime core

CPU0

CPU2

CPU1

task priority

t tt ...t

Scheduler

t

t

t

t

Figure 3.4: Sorted central queue scheduler in qrm starpu.

aware scheduling proposed therein (see Section 1.7.4.1) only provided mild improvements
and that an interleaved memory allocation policy does a much better job of reducing the
penalty for distant memory accesses on a limited size NUMA machine. A much better
method for dealing with the complexity of large NUMA machines is based on the concept
of contexts which was developed and evaluated by Hugo et al. [71, 70] and which we briefly
describe in Section 7.3. Another drawback of this scheduler lies in the fact that all the
ready tasks are stored in a single queue: in the case were the number of ready tasks and
of working threads is high, this may lead to a costly contention on the locks that prevent
concurrent accesses to this data structure. In Section 4.4 we will describe the design and
implementation of a novel scheduler that aims at overcoming these shortcomings but we
believe that this scheduler provides the necessary features to conduct a fair comparison
with the original qr mumps code.

3.2.3 Experimental results

This section aims at evaluating the effectiveness of the proposed techniques as well as the
performance of the resulting code. For this purpose, the behaviour of the qrm starpu code
will be compared to the original qr mumps and also, briefly, to the SuiteSparseQR package
(referred to as spqr) released by Tim Davis in 2009 [42]. The tests were done on a subset
of the matrices in Table 1.1 on the Dude machine described in Section 1.9.1. Table 3.1
shows the factorization times (in seconds) using qrm starpu, qr mumps and spqr with
different numbers of cores whereas Figure 3.5 presents the speedup achieved by each of
these three solvers on 12 and 24 cores.

Both qr mumps and qrm starpu clearly outperform the spqr package by a factor
greater than two thanks to the powerful programming and execution paradigm based
on DAG parallelism. On the other hand, qrm starpu is consistently but only marginally
less efficient than qr mumps, by a factor below 10% for eight out of eleven matrices and
still only below 20% in the worst case. As a conclusion, the parallelization scheme im-
pacts performance much more than the underlying low-level layer, validating the thesis
that modular approaches based on runtime systems can compete with heavily hand-tuned
codes.

For a better understanding of the behaviour of both qr mumps and qrm starpu, we
conducted on both codes the analysis described in Section 2.1; the results of this analysis
are reported on Figure 3.6. Please note that, for the purpose of this evaluation, the graph
on the top-right corner of the figure reports the product of the granularity and the task
efficiencies eg × et as defined in Section 2.1 because these two metrics are expected to be
equivalent for both codes as the results also prove. The granularity efficiency eg , in fact,
is the same since the same values for the inner and outer blocking parameters (see Fig-
ure 1.20) have been chosen for the two codes and thus exactly the same tasks are executed
on both sides. As for the task efficiency et, it must be noted that all the experiments in

60

3.2. StarPU-based multifrontal method

Factorization time (sec.)

Matrix 1 2 3 4 5 6 7 8 9 10 11

th.

s
p
q
r

1 52.9 49.9 99.5 111.0 123.3 406.3 538.3 687.5 2081.0 4276.0 5361.0
2 34.5 32.1 63.4 69.0 74.1 238.1 290.1 379.1 1154.7 2870.4 2959.2
4 24.8 22.9 44.8 46.5 48.3 148.4 168.9 229.9 737.7 2001.0 1659.2
6 21.5 19.1 36.0 38.2 39.5 116.3 128.4 178.6 598.9 1845.9 1203.2
12 17.0 14.5 26.2 33.0 32.5 85.7 90.5 131.6 468.3 1644.0 769.9
18 15.7 12.7 22.5 28.8 29.1 73.4 78.7 119.1 404.9 1603.0 636.9
24 14.2 12.3 20.7 26.2 27.8 68.6 74.1 114.2 372.7 1389.3 588.6

q
r
m

s
t
a
r
p
u

1 51.8 49.0 97.5 104.8 137.5 417.6 496.1 733.6 1931.0 3572.0 5417.0
2 27.1 25.7 52.9 55.6 72.0 215.4 251.1 386.2 981.0 1813.0 2789.0
4 14.5 14.3 26.3 29.4 38.8 111.4 130.6 209.4 505.0 942.7 1410.0
6 10.6 10.2 18.9 20.8 27.2 77.9 91.6 153.7 349.9 676.0 979.4
12 6.9 6.2 10.9 12.4 16.2 43.4 50.4 92.4 190.3 439.3 525.8
18 6.0 5.0 9.0 9.8 13.1 32.0 38.1 69.1 146.3 363.7 371.1
24 5.7 4.4 8.0 8.5 12.4 28.1 32.9 58.0 122.7 336.3 305.9

q
r

m
u
m
p
s

1 51.5 48.8 96.9 104.6 137.1 410.8 495.2 729.7 1928.0 3571.0 5420.0
2 26.1 24.5 51.1 53.6 69.1 208.4 248.7 368.8 969.4 1793.0 2724.0
4 13.7 12.7 25.0 27.0 35.6 105.1 125.6 189.8 505.0 903.9 1367.0
6 9.6 8.7 17.1 18.4 24.5 71.9 85.8 127.9 333.0 617.6 919.1
12 5.7 5.2 10.2 10.8 14.2 39.5 46.6 69.4 177.9 392.3 479.0
18 4.9 4.3 8.3 8.6 11.7 29.6 34.0 53.3 137.2 342.3 339.0
24 5.0 4.3 7.9 8.0 11.0 26.5 30.5 48.8 120.9 337.0 282.0

Table 3.1: Factorization times, in seconds, on an AMD Istanbul system for qrm starpu

(top), qr mumps (middle) and spqr (bottom). The first row shows the matrix number.

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11

Matrix #

Speedup -- spqr vs qr_starpu vs qr_mumps

spqr 12 threads

qrs 12 threads

qrm 12 threads

spqr 24 threads

qrs 24 threads

qrm 24 threads

Figure 3.5: Speedup for the spqr, qrm starpu and qr mumps factorizations on 12 and 24
cores.

61

3. Task-based multifrontal method: porting on a general purpose

runtime system

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11

Overall efficiency

e qrm

e qrs

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11

Granularity x Task efficiency

et qrm

et qrs

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11

Pipeline efficiency

ep qrm

ep qrs

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11

Runtime efficiency

er qrm

er qrs

Figure 3.6: Efficiency measures for qr mumps (qrm) and qrm starpu (qrs).

62

3.2. StarPU-based multifrontal method

this section, as well as in Chapter 4, have been run with an interleaved memory allocation
policy which basically make the locality aware scheduling policy implemented in qr mumps

worthless; for this reason the two codes are also expected to have the same task efficiency.
As the results in Figure 3.6 show, the performance difference between the two codes has to
be found in the pipeline and and runtime efficiencies. The slightly worse pipeline efficiency
is due to the different choice of priorities for the tasks that was made in qrm starpu in
order to contain the memory consumption (more comments on this below) and to the fact
that assembly operations are not fully parallelized as explained above. The lower runtime
efficiency, instead, can partly be explained by the fact that in qrm starpu all the ready
tasks are stored in a single, sorted central queue. This clearly incurs a relatively high cost
due the contention on the locks used to prevent threads from accessing this data structure
concurrently and due to the sorting of tasks depending on their priority; in Section 4.4 we
will present a novel scheduler that overcomes most of this issues and consistently delivers
better performance. As a result we can conclude that the performance difference between
qrm starpu and qr mumps is merely due to minor, technical issues; the results presented in
Chapter 4 with a much more refined and optimized implementation confirm this intuition.

Memory consumption is an extremely critical point to address when designing a sparse,
direct solver. As the building blocks for designing a scheduling strategy on top of StarPU
differ (and are more advanced) than what is available in qr mumps (which relies on an ad
hoc lightweight scheduler) we could not reproduce exactly the same scheduling strategy.
Therefore we decided to give higher priority to reducing the memory consumption in
qrm starpu. This cannot easily be achieved in qr mumps because its native scheduler
can only handle two levels of task priority; as a result, fronts are activated earlier in
qr mumps, almost consistently leading to a higher memory footprint as shown in Figure 3.7.
The figure also shows that both qrm starpu and qr mumps achieve on average the same
memory consumption as spqr. On three cases out of eleven spqr achieves a significantly
lower memory footprint; in Chapter 5 we will show that it is possible to reliably control
and reduce the memory consumption of qrm starpu and still achieve extremely high
performance (roughly the same as the unconstrained case).

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11

Matrix #

Peak of memory consumption (MB)

qrs 24 threads

qrm 24 threads

spqr 24 threads

Figure 3.7: Memory peak for the factorization of the test matrices on 24 cores.

In the case where the whole DAG is submitted to the runtime system at the beginning
of the execution, the memory needed for storing the task graph is proportional to the

63

3. Task-based multifrontal method: porting on a general purpose

runtime system

problem size. Figure 3.8 shows the maximum number of tasks that the runtime system
handles during the factorization versus the total number of tasks executed. The first
being between 3 and 11 times smaller than the second, these data show that the technique
proposed in Section 3.2 is effective in reducing the runtime system overhead and memory
consumption.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11

Matrix #

Number of tasks (x1000)

max # of tasks

tot # of tasks

Figure 3.8: Maximum DAG size handled by StarPU during the factorization of the test
matrices when using 24 threads.

64

Chapter 4

STF-parallel multifrontal QR
method on multicore architecture

In the previous chapter we proposed a first approach for the implementation of the mul-
tifrontal QR method based on the StarPU runtime system which was mainly meant to
asses the usability of a runtime system for implementing a sparse, direct method. For
this reason we tried to reproduce as accurately as possible the behaviour of the original
qr mumps code. However, as explained at the end of Chapter 3, this implementation has a
number of shortcomings, most importantly the complexity and difficult maintainability of
the code. For this reason, in this chapter, we develop and evaluate experimentally a novel
approach [S1] which implements the same algorithm (described in Section 1.7) in compli-
ance with the Sequential Task Flow (STF) programming model presented in Section 1.4.1.
We particularly emphasize the simplicity of the model for the parallelization of a complex
algorithm such as the multifrontal factorization method and show the effectiveness of the
approach.

We first illustrate the concept of the STF-parallelization of a sequential code with
the implementation of a multifrontal method without dealing with the choice of a front
partitioning scheme. Then, we propose a STF-parallel multifrontal method using a 1D
block-column partitioning and show both the effectiveness of the approach and the lim-
itations arising from the choice of partitioning. Finally, by leveraging the expressiveness
of the programming model, we enhance the exploitation of the node-level parallelism by
introducing dense 2D Communication Avoiding (CA) factorization algorithms of frontal
matrices. We show a substantial performance gain using this strategy with a small impact
on the runtime overhead. It should be noted that the use of such factorization schemes
in the multifrontal method represents a big challenge as it makes the DAG much bigger
with a more complex task dependency pattern. As previously discussed, we show that not
only the model facilitates the implementation of such features but also incurs a negligible
overhead in the runtime system.

4.1 STF-parallel multifrontal QR method

4.1.1 STF-parallelization

In this section we present the STF parallelization of the multifrontal method without using
any specific frontal matrix partitioning. Figure 4.1 shows the main sequential pseudocode
of the factorization using the four basic kernels namely activate, assemble, deactivate

and factorize. This algorithms consists of a topological traversal of the elimination tree

65

4. STF-parallel multifrontal QR method on multicore architecture

where the following operations are done at each node: First the front is allocated in mem-
ory, then it is assembled with respect to its child nodes. As soon as this assembly is done
the child nodes contribution blocks are deallocated. Finally the current front is factor-
ized. The factorize routine in this pseudocode can simply replaced by a geqrt routine
if no front partitioning is applied. Applying a front partitioning consists in modifying
factorize and assemble routines according to the chosen strategy.

1 forall fronts f in topological order

! allocate and initialize front

3 call activate (f)

5 ! front assembly

forall children c of f

7 call assemble (c, f)

! Deactivate child

9 call deactivate (c)

end do

11

! front factorization

13 call factorize (f)

end do

Figure 4.1: Pseudo-code for the sequential multifrontal QR factorization.

Figure 4.2 shows the STF-parallel code for the multifrontal method corresponding to
the sequential one in Figure 4.1. This code is obtained by replacing the routine calls with
the submission of the corresponding tasks to the runtime system. The data referred to as f

and c in the STF pseudo code correspond to symbolic representations of frontal matrices
structures. These symbolic representations, called handles in StarPU terminology (see
Section 1.4.2.1), must be registered before being used, either before the main factorization
loop or in activate task. The memory allocation of actual data represented by a handle
may be delegated to the runtime system via the dedicated memory allocation routine
starpu malloc. As explained in Section 1.4.2.1, once the data is registered in the runtime
system, it may be moved to different memory locations depending on scheduling decisions,
and the memory consistency across the architecture is ensured by the runtime system.

As in the previous case, in order to express task dependencies in the DAG presented in
Section 1.7 it is necessary to specify which data each task uses and how it uses it, whether
for read (R), write (W) or update (i.e., read and write RW). As already mentioned, prompted
by the evaluation we conducted in the work presented in the previous chapter, the StarPU
developers implemented a novel feature which allows the programmer to specify that two
tasks can commute, i.e., can be executed in an order which is different from the submission
order. This feature is useful for improving the concurrency of our implementation as it
allows the runtime system to execute all the assembly operations related to a front in
any order and not necessarily in a sequential fashion according to the submission order,
as would otherwise happen due to the false detection of a data hazard on the assembled
front. This feature can be used specifying the new STARPU COMMUTE (for short, C, in our
pseudocode) data access mode on the assembled front f. It must be noted that, this does
not allow the concurrent execution of assembly operations. Nonetheless, we believe this
is not too much of a penalty since these operations are extremely lightweight and can be
overlapped with other tasks; additionally, it may even be detrimental to execute multiple
assembly operations at the same time as they are particularly prone to false sharing issues.

66

4.1. STF-parallel multifrontal QR method

forall fronts f in topological order

2 ! allocate and initialize front

call submit (activate , f:RW , children (f):R)

4

! front assembly

6 forall children c of f

call submit (assemble , c:R, f:RW|C)

8

call submit (deactivate , c:RW)

10 end do

12 ! front factorization

call submit (factorize , f:RW)

14 end do

16 call wait_tasks_completion ()

Figure 4.2: Pseudo-code for the STF-parallel multifrontal QR factorization

If we use the notation presented in Figure 1.18 to identify the dependencies in the DAG
we have:

• The dependency d1 is guaranteed by submitting the activate task first when pro-
cessing the front and taking as input the front data structure represented by f in a
RW mode. Subsequent tasks working on this front take f in input with either a R, W

or RW, and thus are not going to be executed until activation is done;

• Dependency d5 is expressed by submitting assembly tasks after the submission of
factorization tasks. This is the case because nodes are visited following a topological
order in the elimination tree. The assembly operation consists in copying elements
from children contribution blocks represented by c to the current node denoted by
f. Therefore c is accessed in R mode and f in RW mode;

• The factorize task accesses f in a RW mode ensuring that the front is factorized
only when assembly is done which expresses the dependency d6;

• To compute the structure of the current node, the activate task needs the structure
of child fronts and thus takes as input their data structure in R mode. This ensures
dependency d7 because a front may be activated only when all child nodes have
been activated.

Other dependencies namely d1, d2 and d3 in Figure 1.18 are specific to the 1D par-
titioning and may be modified depending on the choice of data partitioning for frontal
matrices. The choice of data partitioning implies a modification to the assembly opera-
tions line 7 and factorization code line 13 in the pseudocode of Figure 4.2. The use of a
1D partitioning in this STF code is illustrated in Section 4.2 and is enhanced with the use
of 2D partitioning in Section 4.3.

Note that the pseudocode of Figure 4.2 is exactly equivalent to the approach proposed
by Davis [42] and Amestoy et al. [14]: tree parallelism is explicitly handled through the
use of a tasking system whereas node parallelism can be exploited through the use of
multithreaded BLAS routines within the factorize routine.

67

4. STF-parallel multifrontal QR method on multicore architecture

We would like to emphasize that the pseudocode in Figure 4.2 can be translated into
fully functional code using the API of any other runtime system that complies with the
STF programming model such as QUARK [117] and OpenMP [24]. As an example, the
OpenMP-based parallel version of our algorithm is given in Figure 4.3. The tasks are
instantiated using the OpenMPTASK construct and dependencies are declared thanks to
the DEPEND clause used to declare data accesses. It must be noted that with OpenMP it
is not necessary to declare the data to the runtime, as is done in StarPU through the
use of handles; this is because OpenMP does not handle the data (e.g., it does not move
it between different memory nodes nor does it handle the coherency between multiple
copies) but only uses it to infer dependencies between tasks.

!$omp parallel

2

!$omp master

4 forall fronts f in topological order

! allocate and initialize front

6 !$omp task depend (inout:f) depend (in: children (f))

call activate (f)

8 !$omp end task

10 ! front assembly

forall children c of f

12 !$omp task depend (out:f) depend (in:c)

call assemble (c, f)

14 !$omp end task

! Deactivate child

16 !$omp task depend (inout:c)

call deactivate (c)

18 !$omp end task

end do

20

! front factorization

22 !$omp task depend (inout:f)

call factorize (f)

24 !$omp end task

end do

26

!$omp end master

28

!$omp end parallel

Figure 4.3: Pseudo-code for STF-parallel multifrontal QR factorization implemented with
OpenMP.

Despite the wide availability of the OpenMP technology, as explained in Sections 1.4.2
and 1.4.2.1 we have chosen to rely of the StarPU runtime system because of its large panel
of features, most importantly, the possibility of controlling the scheduling, the support for
accelerators and the transparent handling of data.

68

4.2. STF multifrontal QR method 1D

4.2 STF multifrontal QR method 1D

4.2.1 STF parallelization with block-column partitioning

In this section we extend the approach presented in the previous section by integrating a 1D
partitioning of frontal matrices. The sequential factorization, when using this partitioning
scheme, is given in Figure 4.4. This code is obtained by replacing the assemble and
factorize routines in the original sequential code of Figure 4.1 respectively by the block-
column based assembly operation and factorization of a node.

1 forall fronts f in topological order

! allocate and initialize front

3 call activate (f)

5 forall children c of f

forall blockcolumns j=1...n in c

7 ! assemble column j of c into f

call assemble (c(j), f)

9 end do

! Deactivate child

11 call deactivate (c)

end do

13

forall panels p=1...n in f

15 ! panel reduction of column p

call _geqrt (f(p))

17 forall blockcolumns u=p+1...n in f

! update of column u with panel p

19 call _gemqrt (f(p), f(u))

end do

21 end do

end do

Figure 4.4: Pseudo-code for the sequential multifrontal QR factorization with 1D parti-
tioned frontal matrices.

Similarly to the previous STF algorithm, the STF parallel code, presented in Figure 4.5,
is obtained by replacing the routine calls in the sequential code with the submission of
corresponding tasks. In this case, however, special attention must be given to the fact that
the submission of the assembly and factorization tasks of a front can be done only after
its structure is known (most importantly, for the each assembly task we must know which
block-columns of the parent front it touches) and thus, in the pseudocode of Figure 4.4,
upon completion of the activate routine. This prevents us from computing the structure
of the front in a task because the submission of the subsequent tasks would be suspended
until the actual execution of the activation task is achieved. For this reason the activate

routine was redefined into a routine which only computes the structure of the front and
registers the block-column handles to the runtime system; this routine is executed syn-
chronously by the master thread which allows for continuing the task submission without
interruption. The most time consuming operations of the old activate routine, i.e., the
data allocation and initialization and the assembly of the sparse matrix coefficients, are
moved into a new routine called init which can be executed within a specific task. Note
that the activate task is very lightweight and does not induce any relevant delay in the
submission of tasks. Alternatively, the structure of all the fronts could be pre-computed

69

4. STF-parallel multifrontal QR method on multicore architecture

during the analysis phase and stored but, as explained, this would result in excessive
memory consumption.

forall fronts f in topological order

2 ! compute structure and register handles

call activate (f)

4

! allocate and initialize front

6 call submit (init , f:RW , children (f):R)

8 forall children c of f

forall blockcolumns j=1...n in c

10 ! assemble column j of c into f

call submit (assemble , c(j):R, f:RW|C)

12 end do

! Deactivate child

14 call submit (deactivate , c:RW)

end do

16

forall panels p=1...n in f

18 ! panel reduction of column p

call submit (_geqrt , f(p):RW)

20 forall blockcolumns u=p+1...n in f

! update of column u with panel p

22 call submit (_gemqrt , f(p):R, f(u):RW)

end do

24 end do

end do

26

call wait_tasks_completion ()

Figure 4.5: Pseudo-code for the STF-parallel multifrontal QR factorization with 1D par-
titioned frontal matrices.

Using the data access modes and the order of task submission, the runtime system
automatically infers dependencies between tasks and thus builds the DAG, specifically:

• the activation of a node f depends on the activation of its children;

• all the other tasks related to a node f depend on the node activation;

• the assembly of a block-column j of a front c into its parent f depends on all the
geqrt and gemqrt tasks on c(j) and on the activation of f;

• the geqrt task on a block-column p depends on all the assembly and all the previous
update tasks concerning p;

• the gemqrt task on a block-column u with respect to geqrt p depends on all the
assembly and all the previous gemqrt tasks concerning u and the related geqrt

task on block-column p;

• the deactivation of a front c can only be executed once all the related geqrt,
gemqrt and assemble tasks are completed.

70

4.2. STF multifrontal QR method 1D

This STF compliant implementation has a number of obvious advantages over that
presented in the previous chapter. First of all, in this code all the dependencies between
tasks are automatically inferred by the runtime system through data analysis, whereas in
the previous implementation they were either automatically inferred or explicitly defined
through different mechanisms (see Section 3.2). This means that, here, the dataflow is
complete, i.e., the runtime system knows exactly which data is needed by each task and
can take the necessary actions to transfer the data where the task is actually being exe-
cuted. This property is necessary to achieve the porting of our solver on GPU-equipped
architectures, as described in Chapter 6. Second, the master thread is the only one in
charge of submitting the tasks, and it does it in exactly the same order as in a sequential
execution whereas, in the previous code, the submission of some tasks was done, asyn-
chronously, within other tasks. This property give us full control over the submission of
tasks which allows us to develop the efficient technique described in Chapter 5 for control-
ling the memory consumption. Last but not least, this code is much simpler, easier to read,
to develop and maintain because, in essence, it is a sequential code that runs in parallel;
nevertheless, this code is extremely efficient, as the experimental results in the next section
show. Thanks to the simplicity of this programming model and to the modularity of this
code that we could effectively improve its performance and scalability by implementing
more complex parallelization schemes with a relatively contained programming effort, as
we will show in Section 4.3.1.

A minor, but profitable improvement over the original qr mumps solver and the one
described in Chapter 3, is the use of a blocked storage format. In the previous versions
the frontal matrices are allocated as a whole memory area and therefore the partitioning
is logical. In this implementation, instead, each block column is allocated individually;
although this does not bring any improvement to the performance (because Fortran uses
column-major storage), it saves some memory due to the staircase structure of the fronts,
as shown in Figure 4.10.

4.2.2 Experimental results

The implementation presented above was tested and evaluated on a subset of the test
matrices in Table 1.1; the experiments were done on one node of the Ada supercomputer
presented in Section 1.9.1. The purpose of the present experimental study is to assess the
usability and efficiency of runtime systems using a STF parallel programming model for
complex, irregular workloads such as the QR factorization of a sparse matrix. The reference
sequential execution times are obtained with a purely sequential code (no potential runtime
overhead) with no frontal matrix partitioning which ensures that all the LAPACK and
BLAS routines execute at the maximum possible speed (no granularity trade-off).

The performance of the parallel 1D factorization depends on the choice of the values
for a number of different parameters. These are the block-column nb on which the amount
of concurrency depends and the internal block size ib on which the efficiency of elementary
BLAS operations and the global amount of flop depend. As explained in Section 1.7.3, this
parameter defines how well the staircase structure of each front is exploited. The choice
of these values depends on a number of factors, such as the number of working threads,
the size and structure of the matrix, the shape of the elimination tree and of frontal
matrices and the features of the underlying architecture. It has to be noted that these
parameters may be set to different values for each frontal matrix; moreover, it would be
possible to let the software automatically choose values for these parameters. Both these
tasks are very difficult and challenging and are out of the scope of this study. Therefore,
for our experiments we performed a large number of runs with varying values for all these

71

4. STF-parallel multifrontal QR method on multicore architecture

parameters, using the same values for all the fronts in the elimination tree, and selected the
best results (shortest running time) among those. For the sequential runs internal block
sizes ib={32, 40, 64, 80, 128} were used for a total of five runs per matrix. For the
1D parallel STF case, the used values were (nb,ib)={(128,32), (128,64), (128,128),

(160,40), (160,80)} for a total of five runs per matrix.

All of the results presented in this section were produced without storing the fac-
tors in order to extend the tests to the largest matrices in our experimental set that
could not otherwise be factorized (even in sequential) on the target platform. This was
achieved by simply deallocating the block-columns containing the factor coefficients at
each deactivate task rather than keeping them in memory. As confirmed by experiments
that we do not report here for the sake of space and readability, this does not have a
relevant impact on the following performance analysis.

Sequential reference Parallel 1D STF

Mat. ib Time (s.) Gflop/s nb ib Time (s.) Gflop/s
12 40 1.00E+02 14.4 128 64 5.337E+00 272.4
13 32 1.73E+02 17.0 128 128 9.809E+00 312.0
14 80 3.40E+02 17.1 128 128 1.922E+01 309.8
15 128 5.76E+02 19.0 128 128 3.116E+01 352.0
16 80 8.71E+02 19.2 128 128 4.646E+01 362.0
17 80 1.18E+03 17.7 128 32 4.945E+01 407.8
18 128 1.58E+03 19.3 128 128 8.383E+01 365.9
19 128 3.25E+03 19.5 128 128 1.501E+02 422.4
20 128 3.99E+03 16.7 128 64 6.432E+02 102.7
21 128 9.93E+03 19.7 128 128 4.402E+02 446.8
22 128 1.13E+04 19.7 128 128 5.207E+02 430.6
23 128 1.37E+04 19.2 128 128 6.233E+02 422.7

Table 4.1: Sequential reference execution time and optimum performance for the STF 1D
factorization on Ada (32 cores).

Table 4.1 shows for the STF 1D algorithm the parameter values delivering the shortest
execution time along with the corresponding attained factorization time and Gflop rate.
The Gflop rates reported in the table are related to the operation count achieved with
the internal block size ib. The smaller block-column size of 128 always delivers better
performance because it offers a better compromise between concurrency and efficiency of
BLAS operations, whereas a large internal block size is more desirable because it leads to
better BLAS speed despite a worse exploitation of the fronts staircase structure.

Figure 4.6, generated with the timing data in Table 4.1, shows the speedup achieved
by the 1D parallel code with respect to the sequential one when using all the 32 cores
available on the system. This figure shows that the speedup increases with the problem
size and may be extremely low on some problems such as for matrix #20 whose speedup is
less than 7. As we will show below, through a detailed analysis of performance results, the
1D partitioning limits the concurrency in the multifrontal factorization especially in the
case of over-determined frontal matrices which is the common case for our test problems.

Using the performance analysis approach presented in Chapter 2, we evaluated the
performance of our implementation by means of efficiency measures. Here, t̃t(1) and tt(1)
in Equation (2.1), were computed, respectively, by timing the purely sequential code (with
no block-column partitioning) and the 1D code in a sequential fashion. All other timings,

72

4.2. STF multifrontal QR method 1D

0

5

10

15

20

25

30

12 13 14 15 16 17 18 19 20 21 22 23

Matrix #

Speedup 1D -- 32 cores

1D

Figure 4.6: Speedup of the STF 1D algorithm with respect to the sequential case on Ada
(32 cores).

i.e. tr(p), tc(p) and ti(p) are returned by StarPU upon execution of the parallel code with
1D block-column partitioning on p = 32 cores. All these measurements are related to the
parameter settings in Table 4.1.

The 1D partitioning provides a coarse granularity of tasks resulting in a good granular-
ity efficiency with a value greater than 0.8 on the tested problems. However it suffers from
poor cache behaviour in the case of extremely overdetermined frontal matrices because
of the tall-and-skinny shape of block-columns. This phenomenon is accentuated when the
problem grows which explains the decrease of the granularity efficiency when the matrix
size increases. As shown in Figure 4.7, the lowest granularity efficiency is obtained on the
matrix #20 which represents an extreme case for the impact of overdetermined matrices
because most of the flops are done in one front with roughly 1.3 M rows and only 7 K
columns. The performance loss induced by the runtime is extremely small in our case with
an overhead lower than 2% on average showing the efficiency of our scheduling strategy.

The efficiency results in Figure 4.7 show that the most limiting factors for the scal-
ability of the factorization are the impact of data locality and the task pipelining. As
explained for the efficiency of granularity, data locality may not be efficiently exploited
because of the 1D partitioning which does not allows for a good exploitation of low-level
memory resulting in performance loss during parallel execution due to memory contention
and inter-level communications. The relatively poor pipeline efficiency obtained on smaller
matrices is due to the limited amount of concurrency offered by the 1D partitioning espe-
cially for overdetermined matrices. This lack of parallelism is compensated by the tree-level
parallelism and is thus less evident on large problems. As expected the matrix #20 gives
extremely low pipeline efficiency resulting from the low concurrency level provided by the
1D partitioning on a tall-and-skinny matrix.

73

4. STF-parallel multifrontal QR method on multicore architecture

0.2

0.4

0.6

0.8

1.0

12 13 14 15 16 17 18 19 20 21 22 23

Granularity efficiency

eg1D

0.2

0.4

0.6

0.8

1.0

12 13 14 15 16 17 18 19 20 21 22 23

Task efficiency

et1D

0.2

0.4

0.6

0.8

1.0

12 13 14 15 16 17 18 19 20 21 22 23

Pipeline efficiency

ep1D

0.2

0.4

0.6

0.8

1.0

12 13 14 15 16 17 18 19 20 21 22 23

Runtime efficiency

er1D

Figure 4.7: Efficiency measures for the STF 1D algorithm on Ada (32 cores).

74

4.2. STF multifrontal QR method 1D

4.2.3 The effect of inter-level parallelism

As explained in Section 1.7, qr mumps and qrm starpu can take advantage of what we
called inter-level parallelism which allows for working on a block-column of a front as
soon as it becomes fully assembled regardless of the status of the other block-columns
within the same front or within child fronts. As a result, the factorization of a front can be
pipelined with those of the child nodes for an extra source of parallelism. This technique
is rather complex to implement as it requires tracking the assembly status of each column
individually; in qrm starpu this is implicitly and very efficiently done by the runtime
system through the tracking of dependencies between tasks.

Although the elimination tree can be traversed in any topological order, a postorder
is commonly chosen because it has favorable properties in terms of memory consumption.
In a parallel execution the traversal deviates from this postorder in order to use tree
parallelism and achieve better concurrency but, if possible, it is better to stay as close
as possible to the sequential postorder in order to avoid excessive memory consumption.
This can be achieved in a relatively easy way in a share memory context using techniques
like the one presented in Section 3.2.2 but it is much more complex in a distributed
memory parallel setting (see, for example, the work by Agullo et al. [2]). As a result,
in a shared memory parallel multifrontal solver, the factorization can be imagined as
a wavefront which starts from one corner of the elimination tree, say, the bottom left
corner, and sweeps the entire tree moving towards the opposite corner, the top right one.
When this wavefront reaches the last, rightmost branch, all the fronts therein are treated
sequentially, one after the other because no tree parallelism is available anymore. This
lack of concurrency can incur a severe penalty if the inter-level parallelism is not used
because quite a considerable fraction of the total volume of operations is done on these
last fronts. Figure 4.8 shows, on the top part, the execution trace for the factorization
of matrix #5 on the Dude machine when inter-level parallelism is not implemented. This
trace was produced by adding “fake” dependencies to the qrm starpu solver in order to
reproduce the behaviour shown in Figure 1.16 (right). A different color has been used for
all the tasks related to each front. It is seen visible how the lack of tree parallelism on the
last few fronts introduces a heavy penalty stall in the execution traces. On the contrary,
when inter-level parallelism is implemented, the execution trace (see the bottom trace in
Figure 4.8) is relatively densely populated until the end of the execution leading to a gain
in time of around 30%.

Because the runtime controls all the components of the parallel execution of a code,
from the execution of tasks to the handling of their mutual dependencies, it can provide
accurate measurement and data that allow for detailed performance analysis. Specifically,
the StarPU runtime system can produce the DAG that includes all the tasks along with
their dependencies where the tasks can be weighted with either their execution time or
other useful information provided by the programmer. Using these data, we conducted a
critical-path analysis for the factorization of our test matrices using the STF parallel code.
Assuming that the critical path (the longest path in the DAG) is a lower bound on the
execution time, the maximum achievable speedup or average degree of concurrency can
be defined as the ratio between the sum of the weights of all the tasks along the critical
path (i.e., length of the critical path) and the sum of the weights in the whole DAG:

max speedup = avg concurrency =

∑
i∈DAG wi∑
i∈CP wi

where wi is the weight of task i. For each matrix, the DAG used to conduct this
analysis is the one related to the case where 32 working threads are used (remember that

75

4. STF-parallel multifrontal QR method on multicore architecture

Time

Figure 4.8: Execution traces for matrix #5 on the Dude architectures using 24 cores
without (top) and with (bottom) inter-level parallelism.

the DAG changes with the number of threads because of a different choice of the tree-
pruning level as described in Section 1.7.2). The weight of tasks is chosen to be equal to
the execution time measured in an execution with only one working thread. This precise
choice was made because we believe that granularity plays an important role in the critical
path analysis and thus the execution time is a more realistic measure than, for example,
the number of flops (or the amount of data movement for memory-bound tasks); at the
same time, the single-threaded execution was chosen to exclude from the analysis the
effects of data locality (the reader can refer to Figure 4.7 for a measure of those). The
critical path in the DAG is computed through a Depth-First Search. Figure 4.9 shows the
maximum achievable speedup for the factorization of the test matrices using the method
presented above, with or without inter-level parallelism. The figure shows that the inter-
level parallelism is beneficial (considerably, for some problems such as #19 or #22) in all
cases except for matrices #17 and #20. On these two problems the inter-level parallelism
does not bring any benefit for different reasons. In matrix #17 all the largest fronts, except
the root, are largely underdetermined which means that concurrency is abundant within
each front and thus the lack of pipelining between fronts along the last branch is not
penalizing. In matrix #20, instead, most of the flops are performed in a single, huge front
and thus the benefit of inter-level parallelism is only marginal.

4.3 STF multifrontal QR method 2D

With a 1D partitioning of frontal matrices, the node parallelism is achieved because all the
updates related to a panel can be executed concurrently and because panel operations can
be executed at the same time as updates related to previous panels (this technique is well

76

4.3. STF multifrontal QR method 2D

0

20

40

60

80

100

120

140

160

12 13 14 15 16 17 18 19 20 21 22 23

Matrix #

Max degree of concurrency 1D

1D nopipe

1D pipe

Figure 4.9: Maximum degree of concurrency on Ada (32 cores) emerging from the DAG
with and without inter-level parallelism.

known under the name of lookahead). It is clear that when frontal matrices are strongly
overdetermined (i.e., they have many more rows than columns, which is the most common
case in the multifrontal QR method) this approach does not provide much concurrency.
In the multifrontal method this problem is mitigated by the fact that multiple frontal
matrices are factorized at the same time. However, considering that in the multifrontal
factorization most of the computational weight is related to the topmost nodes where
tree parallelism is scarce, a 1D front factorization approach can still seriously limit the
scalability as shown in the previous section.

1D Partitioning 2D Partitioning

nb

mb

nb

Figure 4.10: 1D partitioning of a frontal matrix into block-columns (left), 2D partitioning
into tiles (right) with blocked storage.

This severe limitation can be overcome by employing communication-avoiding algo-
rithms for the factorization of frontal matrices. These methods, discussed in Section 1.3.1,

77

4. STF-parallel multifrontal QR method on multicore architecture

are based on a 2D decomposition of the fronts into blocks of size mb x nb as shown in Fig-
ure 4.10 and allow for increasing the concurrency in both front and inter-level parallelism.
We integrated the flat/binary hybrid approach (see Section 1.3.1 for the details) in our
multifrontal STF parallel code. Lines 17-24 in Figure 4.5 were replaced by the pseudocode
in Figure 4.11 which implements the described 2D factorization algorithm; note that this
code ignores the tiles that lie entirely below the staircase structure of the front represented
by the stair array.

1 do k=1, n

! for all the block - columns in the front

3 do i = k, m, bh

call submit (_geqrt , f(k,i):RW)

5 do j=k+1, n

call submit (_gemqrt , f(k,i):R, f(i,j):RW)

7 end do

! intra - subdomain flat -tree reduction

9 do l=i+1, min(i+bh -1, stair(k))

call submit (_tpqrt , f(i,k):RW , f(l,k):RW)

11 do j=k+1, n

call submit (_tpmqrt , f(l,k):R, f(i,j):RW , f(l,j):RW)

13 end do

end do

15 end do

do while (bh.le.stair(k)-k+1)

17 ! inter - subdomains binary -tree reduction

do i = k, stair(k)-bh , 2*bh

19 l = i+bh

if(l.le.stair(k)) then

21 call submit (_tpqrt , f(i,k):RW , f(l,k):RW)

do j=k+1, n

23 call submit (_tpmqrt , f(l,k):R, f(i,j):RW , f(l,j):RW)

end do

25 end if

end do

27 bh = bh*2

end do

29 end do

Figure 4.11: Pseudo-code showing the implementation of the tiled QR.

The assembly operations have also been parallelized according to the 2D frontal matrix
blocking: lines 9-11 in Figure 4.5 were replaced with a double, nested loop to span all the
tiles lying in the contribution block: each assembly operation reads one tile of a node c

and assembles its coefficients into a subset of the tiles of its parent f. As a consequence,
some tiles of a front can be fully assembled and ready to be processed before others and
before the child nodes are completely factorized. This finer granularity (with respect to
the 1D approach presented in the previous section) leads to more concurrency since a
better pipelining between a front and its children is now enabled.

The development of this version also included a number of other, minor improvements:

• In our implementation tiles do not have to be square but can be rectangular with
more rows than columns. This is only a minor detail from an algorithmic point of

78

4.3. STF multifrontal QR method 2D

view but, as far as we know, it has never been discussed in the literature and, as
described in Section 4.3.1, provides considerable performance benefits for our case;

• As in the 1D case presented in the previous section, block storage is also used in this
case, as shown in Figure 4.10 (right). In addition to the memory savings, which
are the same as in the 1D case, here the block storage also benefits the performance
because of the lower leading dimension of the blocks;

• The tpqrt and tpmqrt LAPACK routines were modified in order to cope as effi-
ciently as possible with the fronts staircase structure. This is done using the approach
described in Section 1.7.3 for the geqrt and gemqrt routines.

This parallelization leads to very large DAGs with tasks that are very heterogeneous,
both in nature and granularity; moreover, not only are intra-fronts task dependencies more
complex because of the 2D front factorization, but also inter-fronts task dependencies due
to the parallelization of the assembly operations. The use of an STF-based runtime system
relieves the developer from the burden of explicitly representing the DAG and achieving
the execution of the included tasks on a parallel machine.

4.3.1 Experimental results

In this section we evaluate the STF parallelization of the multifrontal QR method based
on a 2D partitioning of frontal matrices and compare this approach with the original 1D
partitioning presented in Section 4.2. Using the same settings presented in Section 4.2.2
we experiment with our code on a subset of the matrices presented in Table 1.1 on the
Ada computer equipped with 32 cores.

Parallel 2D STF

Mat. mb nb ib bh Time (s.) Gflop/s
12 576 192 32 4 4.303E+00 321.6
13 480 160 40 8 7.217E+00 397.5
14 480 160 40 12 1.426E+01 399.6
15 480 160 40 20 2.427E+01 442.1
16 480 160 32 16 3.781E+01 435.4
17 640 160 40 4 4.784E+01 424.4
18 480 160 40 24 6.922E+01 439.0
19 480 160 32 ∞ 1.408E+02 441.9
20 576 192 32 24 1.728E+02 379.5
21 576 192 32 ∞ 4.286E+02 453.7
22 576 192 64 ∞ 4.807E+02 462.8
23 576 192 64 20 5.642E+02 462.6

Table 4.2: Optimum performance for the STF 2D factorization on Ada (32 cores).

Table 4.2 parameter values delivering the shortest execution time along with the cor-
responding attained factorization time and Gflop/s rate. As explained in Section 4.2.2 for
the 1D case, the performance of the factorization depends on a combination of several pa-
rameters. For the parallel 2D STF case these parameters are, the size of the tiles (mb,nb),
the type of panel reduction algorithm set by the bh parameter described in Section 1.3.1
and the internal block size ib. Since the optimum values for parameters depends on a
large number of factors it is extremely difficult to choose automatically the best values for

79

4. STF-parallel multifrontal QR method on multicore architecture

every given problems. Moreover we increased the complexity of this problem compared to
the 1D case because the number of parameters is greater for 2D algorithms. Therefore,
using the same experimental protocol as for the previous strategy we performed a large
number of runs for each problem with varying values for all the input parameters, us-
ing the same values for all the fronts in the elimination tree, and selected the best results
(shortest running time) among those. We tested the following values (nb,ib)={(160,32),

(160,40), (192, 32), (192,64)}, mb={nb, nb*2, nb*3, nb*4} and bh={4, 8, 12,

16, 20, 24, ∞} for a total of 112 runs per matrix (bh = ∞ means that a flat reduction
tree was used). Note that compared to the 1D case, concurrency is abundant when using
the 2D partitioning. For this reason we choose bigger values for nb for two reasons: it
increases the granularity of tasks in order to achieve a better BLAS efficiency and it limits
the number of tasks in the DAG which contributes to keeping the runtime overhead small.
The internal block size ib, however, has to be relatively small to keep the flop overhead
(see Section 1.3.1) under control. Finally, as for the experiments in Section 4.2.2, factors
were discarded during the factorization in order to test the the largest matrices from our
problem set.

0

5

10

15

20

25

30

12 13 14 15 16 17 18 19 20 21 22 23

Matrix #

Speedup 2D -- 32 cores

1D

2D

Figure 4.12: Speedup of the 1D and 2D algorithms with respect to the sequential case on
Ada (32 cores).

The speedup achieved by the STF 2D implementation is shown in Figure 4.12 along
with the speedup obtained with the STF 1D implementation previously presented in Sec-
tion 4.2.2. Results show that the 2D algorithm provides better efficiency on all the tested
matrices especially for the smaller ones and those where frontal matrices are extremely
overdetermined, such as matrix #20, where the 1D method does not provide enough con-
currency (as explained in Section 4.2.2, in this problem most of the operations are done
on a frontal matrix which has over a million rows and only a few thousands columns).
The average speedup achieved by the 2D code is 23.61 with a standard deviation of 0.53,
reaching a maximum of 24.71 for matrix #17. For the 1D case, instead, the average is
19.04 with a standard deviation of 4.55. In conclusion, the 2D code achieves better and
more consistent scalability over our set of matrices.

Figure 4.13 shows the efficiency analysis obtained with both the 1D and 2D algorithms.
The 2D algorithms obviously have a lower task efficiency because of the smaller granu-
larity of tasks and because of the extra flops. Note that the 1D code may suffer from a

80

4.3. STF multifrontal QR method 2D

poor cache behaviour in the case of extremely overdetermined frontal matrices because of
the extremely tall-and-skinny shape of block-columns. This explains why the granularity
efficiency for the 2D code on matrix #20 is better than for the 1D code unlike for the other
matrices. 2D algorithms, however, achieve better locality efficiency than 1D most likely
due to the 2D partitioning of frontal matrices into tiles which have a more cache-friendly
shape and size than the extremely tall and skinny block-columns used in the 1D algo-
rithm. Not surprisingly, the 2D code achieves much better scheduling efficiency (i.e., less
idle time) than the 1D code on all matrices: this results from a much higher concurrency,
which is the purpose of the 2D code. As for the runtime efficiency, it is in favor of the
1D implementation due to a much smaller number of tasks with bigger granularity and
simpler dependencies. However the performance loss induced by the runtime is extremely
small in both cases: less than 2% on average and never higher than 4% for the 2D imple-
mentation; this is also due to the efficiency of the scheduler specifically implemented and
used for these experiments (see Section 4.4).

81

4. STF-parallel multifrontal QR method on multicore architecture

0.2

0.4

0.6

0.8

1.0

12 13 14 15 16 17 18 19 20 21 22 23

Granularity efficiency

eg1D

eg2D

0.2

0.4

0.6

0.8

1.0

12 13 14 15 16 17 18 19 20 21 22 23

Task efficiency

et1D

et2D

0.2

0.4

0.6

0.8

1.0

12 13 14 15 16 17 18 19 20 21 22 23

Pipeline efficiency

ep1D

ep2D

0.2

0.4

0.6

0.8

1.0

12 13 14 15 16 17 18 19 20 21 22 23

Runtime efficiency

er1D

er2D

Figure 4.13: Efficiency measures for the STF 1D algorithm on Ada (32 cores).

82

4.3. STF multifrontal QR method 2D

4.3.2 Inter-level parallelism in 1D vs 2D algorithms

First, we computed the average degree of concurrency for the dense QR factorization
using the 1D factorization and the 2D with a flat or binary panel reduction tree with the
following settings

• tiles are square of size nbxnb;

• the weight of tasks is given by their flop count: in units of nb3/3 this is equal to 4 for
geqrt, 6 for gemqrt, 6 and 2 for geqrt with, respectively, a square or triangular
bottom tile, 12 and 6 for gemqrt with, respectively, a square or triangular bottom
tile (see Dongarra et al. [47]);

• matrices are of size m ∗ nb × n ∗ nb with 5 ≤ m ≤ 100 and 5 ≤ n ≤ 50.

These results are plotted in Figure 4.14: the leftmost plot shows the average degree of
concurrency for the 1D algorithm, the center plot shows the benefit brought by the 2D
algorithm with a flat tree over the 1D method and the rightmost shows the added benefit
of the binary panel reduction tree over the flat. Note that the y-axis corresponds to the
number of row tiles and the x-axis represents the number of column tiles in the dense
matrices. A number of interesting conclusions may be drawn from this figure. First, the
1D algorithm provides poor concurrency and its scalability degrades as the number of rows
increases with respect to the number of columns; in the best case the 1D algorithm reaches
an ideal speedup of 22.22. The 2D algorithm with a flat panel reduction tree can clearly
generate much more parallelism and reaches an ideal speedup of 604 although it suffers
from poor scalability when matrices are extremely overdetermined like in the bottom-
left corner of the middle plot. Finally, the 2D algorithm with binary panel reduction
tree improves the scalability of the factorization but only when the matrix is extremely
overdetermined otherwise it is either comparable to the flat tree algorithm or less efficient;
this is due to a worse pipelining of successive panel stages as explained by Dongarra et al.
[47].

Similarly to the 1D case, we computed the maximum degree of parallelism in the DAG
produced by the algorithm. The results compared with the values presented in Section 4.2.3
for the 1D method are given in Figure 4.15.

These experimental results show that, as expected, the 2D front factorization algo-
rithms combined with the assembly operations by blocks provide much higher concurrency
than the 1D version and that the inter-level parallelism can push the available parallelism
to even higher levels.

Figure 4.12 shows that the most significant gains are obtained, through the use of the
2D method, on matrices #12-#16, #18 and #20. Looking at Figure 4.15, it is possible to
observe that, for these matrices, the 1D algorithm provides an average degree of concur-
rency which is barely higher that the number of available threads (or much smaller in the
case of matrix #20); the use of the 2D method combined with the inter-level parallelism,
instead, provides enough concurrency to feed all the working cores. This is confirmed by
the scheduling efficiency measures reported in Figure 4.13. For the remaining matrices the
1D method already provides enough parallelism and thus the benefit of the 2D method is
only marginal and mostly due to a better locality efficiency.

For different reasons, the results related to matrices #17 and #20 are odd, when
compared to the others. As explained in Section 4.2.3, in problem #17 all the largest
fronts, except the root, are underdetermined. In this case 2D algorithms do not bring any
improvement, also because of a longer critical path due to a worse tasks efficiency. The
speedup observed in Figure 4.12 is therefore essentially due to a better locality efficiency.

83

4. STF-parallel multifrontal QR method on multicore architecture

5 50

100

5

1.68

22.22

5 50

100

5

1.94

32.63

5 50

100

5

0.75

5.56

Ideal Speedup
1D

Ideal Speedup
2D flat / 1D

Ideal Speedup
2D bin. / 2D flat

Figure 4.14:

0

50

100

150

200

250

300

350

12 13 14 15 16 17 18 19 20 21 22 23

Matrix #

Max degree of concurrency 1D and 2D

1D nopipe
1D pipe

2D nopipe
2D pipe

Figure 4.15: Maximum degree of concurrency on Ada (32 cores) coming from the DAG
with and without inter-level parallelism for both 1D and 2D partitioning.

As for matrix #20, it has been already explained that the cost of the factorization is
dominated by the factorization of a single extremely over-determined front: in this case
the use of a 2D algorithm with a hybrid panel reduction tree (see Table 4.2) allows a
considerable reduction in the length of the critical path.

84

4.4. Task scheduling with lws

4.4 Task scheduling with lws

As explained in Section 1.4, the scheduler is one component of a runtime system and
is in charge of handling the ready tasks and deciding where and when they have to be
executed. Although in a heterogeneous memory context the scheduler does not have to
take difficult decisions, its efficiency and the policy it implements play an important role
in the performance and scalability of the code. In such a context, the scheduler has to

• be efficient: every time a task is completed the scheduler is used twice. First, to push
all the tasks that have just become ready upon completion of the previous task and
second to pop a task among all the ready ones in order to feed the worker that has
just become idle. The relative weight of these operations becomes more and more
heavy as the number of workers increases, as the number of tasks increases and as
the average duration of tasks decreases. Therefore, the scheduler has to execute in
an extremely efficient way in order not to slow down the working threads.

• handle priorities: it can be extremely beneficial for reducing the overall execution
time to prioritize tasks according to a prescribed policy. For example, giving higher
priority to tasks along the critical path can help reducing the makespan or giving
higher priority to tasks that have higher fan-out may improve the total amount of
available concurrency.

• improve data locality: modern multicore architectures are equipped with very deep
memory hierarchies. Although data transfers among memory levels and among the
memories associated with different cores (caches on NUMA modules) are implicit
they can be quite expensive and be a major limiting factor for the scalability of a
code. It is therefore important to schedule tasks in such a way that both spatial and
temporal locality are improved.

The scheduler presented in Section 3.2.2 aimed mainly at providing the possibility of
assigning arbitrary priorities to tasks. This scheduler, however, has evident flaws, espe-
cially from the efficiency point of view because it led to an excessive contention over the
locks used to prevent simultaneous access to the single queue of tasks. Other predefined
schedulers were available in the StarPU runtime system but each of them was weak in
one of the points mentioned above. For this reason we developed a novel scheduler which
aims at addressing all these issues. This scheduler is based on the use of multiple queues,
namely, one per working thread. Upon termination of a task, a worker gathers from the
runtime all the tasks that have moved into a ready state because of the completion of that
task and pushes them to its own queue. Then, the worker tries to pop one ready task from
its own queue. If it succeeds, it executes the tasks, otherwise a work-stealing mechanism is
put in place where the worker thread tries to pick a ready task from the queues associated
with other threads. The stealing is done following a precise order defined by the system
architecture: a worker will first attempt to steal a task from workers that are closer in the
memory hierarchy and then from those that are further away. Because the worker threads
are bound to cores, this order can be established statically, for each worker, at the moment
when the scheduler is instantiated using a tool such as hwloc (which is already internally
used by StarPU). Within each queue, tasks are sorted according to an arbitrary priority
value assigned by the user. Figure 4.16 depicts the structure of this scheduler which has
been eventually integrated in StarPU under the name of lws (for Locality Work-Stealing)
and is now available to the whole community of users.

The lws scheduler does not suffer from excessive contention because, as long as ready
tasks are numerous and work stealing does not happen, each worker accesses its own queue

85

4. STF-parallel multifrontal QR method on multicore architecture

WorkersRuntime core

LWS Scheduler

Worker queues

CPU0

CPU2

CPU1t

t

t

task priority

t tt ...

t t tt ...

t tt ...

t

Figure 4.16: LWS (Locality Work Stealing) scheduler.

independently from the others. Data locality is better exploited because each ready task
is pushed to the same queue where one of its predecessors was stored and because the
work-stealing is guided by the system architecture. Finally the possibility of assigning an
arbitrary priority to each task, can help making the tree traversal in a parallel execution
closer to the one followed in a sequential execution.

The lws scheduler was compared to some of the predefined schedulers in StarPU (i.e.,
all those designed for shared-memory, homogeneous architectures) namely:

• prio: this scheduler allows assigning tasks a priority between −5 and 5 and uses one
queue per priority value. Therefore it has limited support for handling priorities and
may be subject to scaling problems due to the fixed and limited number of queues.
It does not deal with data locality.

• ws: uses one queue per worker and implements a work-stealing mechanism. Con-
tention is reduced due to the use of multiple queues and data locality is partially
exploited because tasks are pushed to the same queue as their predecessors. The vic-
tims in the work-stealing method are chosen in a round-robin fashion. This scheduler
has no support for priorities.

• eager: this is based on a single, shared pool of tasks with no support for priorities.

Figure 4.17 shows the execution times obtained using the three above schedulers,
relative to the execution time obtained with lws. Although the gains are only marginal,
the figure shows that lws is consistently better that the others. The benefit obtained is
likely to increase with the number of cores or when the granularity of tasks decreases.

86

4.4. Task scheduling with lws

0.8

1.0

1.2

12 13 14 15 16 17 18 19 20 21 22 23

Matrix #

Exection time relative to lws

prio

ws

eager

Figure 4.17: Factorization times obtained with pre-existing schedulers normalized to the
one obtained with lws.

87

Chapter 5

Memory-aware multifrontal
method

In this chapter we tackle the problem of controlling the memory consumption of the mul-
tifrontal QR method and aim at imposing a constraint on the maximum memory usage
during the execution. The algorithm, based on the STF model and presented in the pre-
vious chapter may lead to a large memory consumption as all the frontal matrices could
be allocated immediately after the beginning of the execution. The strategy employed to
reduce the memory consumption consists in trying to keep the traversal of the elimina-
tion tree as close as possible to a postorder that minimizes the memory footprint in a
sequential execution. This approach, however, does not provide any means of controlling
or predicting, in the parallel factorization, the memory consumption which can grow arbi-
trarily. After a brief description of the memory behaviour for the multifrontal method, and
reviewing the existing techniques for controlling its memory footprint, we propose a modi-
fication of the STF algorithm capable of reliably controlling the memory consumption [S1]
of a parallel factorization. Although, in principle, this technique may reduce the amount
of available concurrency by limiting the use of tree parallelism, the experimental results
reported below show that the actual reduction of performance is basically negligible.

5.1 Memory behavior of the multifrontal method

The memory needed to perform the multifrontal factorization (QR as well as LU or other
types) is not statically allocated at once before the factorization begins but is allocated
and deallocated as the frontal matrices are activated and deactivated, as described in
Section 1.2.3. Specifically, each activation task allocates all the memory needed to process
a front; this memory can be split into two parts:

1. a persistent memory: once the frontal matrix is factorized, this part contains the
factor coefficients and, therefore, once allocated it is never freed, unless in an out-
of-core execution (where factors are written on disk)1;

2. a temporary memory: this part contains the contribution block and is freed by the
deactivate task once the coefficients it contains have been assembled into the parent
front.

1In some other cases the factors can also be discarded as, for example, when the factorization is done
for computing the determinant of the matrix.

89

5. Memory-aware multifrontal method

As a result, the memory footprint of the multifrontal method in a sequential execution
varies greatly throughout the factorization. Starting at zero, it grows fast at the beginning
as the first fronts are activated, it then goes up and down as fronts are activated and
deactivated until it reaches a maximum value (we refer to this value as the sequential
peak) and eventually goes down towards the end of the factorization to the point where
the only thing left in memory is the factors. The memory consumption varies depending on
the particular topological order followed for traversing the elimination tree and techniques
exist to determine the memory minimizing traversal for sequential executions as explained
in Section 5.2.

500

1000

1500

2000

2500

3000

3500

4000

50 100 150 200 250

M
e
m
o
r
y

(
M
B
)

Time (sec.)

Sequential

6 threads, no constraint

6 threads, Sequential*2.0

Figure 5.1: The memory profiles for matrix #12 for a sequential (in blue) and 6-threaded
parallel factorization without memory constraint (in red) and with a constraint equal to
2.0 times the sequential peak (in green).

Figure 5.1 shows, in the blue curve, the typical memory consumption profile of a
sequential multifrontal factorization; the data in this figure results from the factorization
of matrix #12. The memory footprint varies considerably throughout the factorization
and presents spikes immediately followed by sharp decreases; each spike corresponds to
the activation of a front whereas the following decrease corresponds to the deactivation of
its children once its assembly is completed.

It has to be noted that the use of tree parallelism normally increases the memory
consumption of the multifrontal method simply because, in order to feed the working
processes, more work has to be generated and thus more fronts have to be activated
concurrently. The memory consumption of the STF parallel code discussed so far can be
considerably higher than the sequential peak (up to 3 times or more). This is due to the
fact that the runtime system tries to execute tasks as soon as they are available and to
the fact that activation tasks are extremely fast and only depend upon each other; as a
result, all the fronts in the elimination tree are almost instantly allocated at the beginning
of the factorization. This behaviour, moreover, is totally unpredictable because of the very
dynamic execution model of the runtime system. This is depicted in Figure 5.1 with the
red curve which shows the memory consumption for the case where our runtime based
STF factorization is run with six threads; in this case the memory consumption is roughly
five times higher than the sequential peak. Figure 5.2 shows the memory consumption
of the STF parallel code relative to the sequential code on a number of matrices when
executed on the Ada computer using 32 threads. As shown, in several cases the memory
increase can be considerable, especially in the case where the factors are discarded due to
the fact that, in this case, the relative weight of the temporary memory is less.

90

5.2. Task scheduling under memory constraint

0

1

2

3

4

5

6

12 13 14 15 16 17 18 19 20 21 22 23

Matrix #

Relative memory consumption: 32 threads vs sequential

Discard factors

Keep factors

Figure 5.2: Memory consumption of the parallel STF code with 32 threads relative to the
sequential memory peak on the Ada computer either discarding or keeping the factors in
memory. Matrices #22 and #23 could only be factorized discarding the factors due to
limited memory availability on the machine.

5.2 Task scheduling under memory constraint

5.2.1 The sequential case

Task scheduling problems generally focus on minimizing the total completion time al-
though in some cases it may be interesting to consider other or additional objectives such
as memory usage. Such problems were originally studied by Sethi et al. [104] for the eval-
uation of arithmetic expressions whose computation consists in the traversal of the tree
representing them. The objective of the aforementioned work is to compute these arith-
metic expressions using the minimal number of registers. The problem may be formulated
as a tree pebble game which has a polynomial complexity for tree-shaped graphs [104] and
is shown to be NP-hard by Sethi [103] for general DAGs if nodes cannot be pebbled more
than once.

The memory-minimizing postorder traversal of the multifrontal tree is given by Liu [83]
where the author notes the relation between the tree pebble game and the memory usage
of the multifrontal method. The proposed algorithm, consists in a bottom-up traversal of
the tree where the traversal is determined as follow:

1. If node k is a leaf, then compute its memory peak Pk = mfrontk where mfrontk is
the memory associated with node k;

2. Otherwise, if node k is not a leaf, the idea is to reorder the child sequence 1, .., nci

such that it minimizes the quantity maxi=1,..,nci
(xi+

∑i−1
j=1 yj) where xi represent the

memory usage to process node i and
∑k−1

j=1 yj the memory remaining after processing
the first i − 1 nodes. Liu proves [83] that this quantity can be minimized by order-
ing the child nodes in descending order of xi − yi. The value associated with “xi”
and “yi” depends on the memory management and assembly scheme as extensively
presented and discussed by L’Excellent [81]. Finally the memory peak associated
with node k may be computed using the new child sequence. In our case we have

91

5. Memory-aware multifrontal method

xi = max(Pi, mfrontk + Fk) and yj = cbj + Fj where cbj represents the memory
size of the contribution block for node j and Fj the size of factors in the subtree
rooted at node j. In the case of an out-of-core execution the previous expressions
are changed into xi = max(Pi, mfrontk) and yj = cbj .

The optimal memory ordering is obtained using a depth-first traversal on the tree using
the rearranged child sequences. The minimal memory usage for the sequential traversal of
the elimination tree is given by the memory peak computed at the root node. Figure 5.3
shows the variation of the memory usage during the factorization. The table on the right
side of the figure shows the memory consumption for a sequential execution where the
tree is traversed in natural order which is a-b-c-d-e; the corresponding sequential peak is
equal to 22 memory units. If we apply the above algorithm to the case of this figure then
we find that the optimal memory traversal is b-c-d-a-e and the corresponding sequential
memory peak is equals to 19 memory units.

a b c

d

e

(1,4)(1,4)

(8,1)

(3,0)

(2,1)

Task Memory
activate(a) 3
activate(b) 8
activate(c) 13
activate(d) 22

deactivate(b) 18
deactivate(c) 14

activate(e) 17
deactivate(a) 16
deactivate(d) 15

Figure 5.3: The memory consumption (right) for a 5-nodes elimination tree (left) assuming
a sequential traversal in natural order. Next to each node of the tree the two values
corresponding to the factors (permanent) and the contribution block (temporary) sizes in
memory units.

Liu [82] observed that the postorder may not give the best memory usage among all
topological orders and proposes an algorithm to find the optimal memory topological order
for a given tree. Motivated by tree structures emerging from the multifrontal factorization,
Jacquelin et al. [74] give an alternative algorithm less costly for computing this memory
optimal topological order. In practice, only postorders are considered because they provide
good locality properties and, as pointed out by Jacquelin et al. [74], they often give optimal
traversal on trees coming from real applications.

5.2.2 The parallel case

The memory-minimization problem, extensively studied in sequential, has received little
attention in the parallel case. In recent work, Eyraud-Dubois et al. [50] show that the
parallel variant of the pebble game is NP-complete and prove that there is no approximation
algorithm that can be designed to tackle the problem. They propose, instead, several
heuristics for scheduling task trees which aim at reducing the memory consumption of a
multifrontal factorization2 in a shared memory, parallel setting. One of these heuristics,
MemBookingInnerFirst is such that the parallel processing of the elimination tree

2Note that the problem is presented in a much more general form in their paper and not necessarily
related to the multifrontal factorization.

92

5.3. STF Memory-aware multifrontal method

can be achieved while respecting a prescribed memory bound. This is achieved through a
memory reservation system; roughly speaking, when a tree node is activated not only is the
memory needed for its processing allocated but the memory needed to process its parent
is reserved. This reservation ensures that, when the parent node becomes ready, enough
memory is available to process it; this prevents memory deadlocks (see the next section for
an explanation of this issue). The authors validated experimentally this heuristic, as well
as the others, by simulating a rather simplistic shared memory parallelization scheme.

In the distributed memory parallel case, the memory issue is much harder to tackle
because, not only has the memory consumption to be minimized but also it must be
balanced among the various nodes participating in the factorization. Sparse direct solvers
commonly rely on the Proportional Mapping [92] method for distributing the work and
memory loads across the computer nodes. In this method all the resources assigned to a
node of the elimination tree are partitioned into subsets whose size is relative to the weight
(either in terms of memory or flops) of the child subtrees and each subset assigned to the
root of the corresponding child subtree. All the available resources are first mapped on the
root node and then the method works recursively until all the nodes of the tree have been
assigned some resources. The proportional mapping method mostly aims at balancing the
(memory or computational) load of the processes but does not offer any guarantee on the
overall memory consumption. Indeed Rouet [97] proved that this method leads to a poor
memory efficiency and scalability. A radically different approach, sometimes referred to
as tree sequential mapping, consists in mapping all the available resources on every single
node of the eliminations tree: as a result, the nodes of the tree are traversed sequentially
and each node is processed in parallel using all the available resources. This approach
achieves exactly the same memory consumption as in a sequential execution but suffers
from very poor performance because tree parallelism is not used and because an excessive
amount of resources is allocated to fronts of potentially small size. In his PhD thesis, Rouet
[97] refines a memory aware method that was first introduced by Agullo [1] and which maps
the computational resources aiming at a good load balance under a prescribed memory
constraint. The method attempts to apply the proportional mapping method but every
time a proportional mapping step is applied to a set of siblings it also checks whether the
imposed memory constraint is respected within the corresponding subtrees. If it is not the
case, the method serializes the processing of the sibling subtrees by enforcing precedence
constraints. Roughly speaking, the method tries to apply proportional mapping as much
as possible but whenever this leads to a violation of the memory constraints it locally
reverts to tree sequential mapping.

5.3 STF Memory-aware multifrontal method

This section proposes a method for limiting the memory consumption of parallel executions
of our STF code by forcing it to respect a prescribed memory constraint which has to be
equal to or bigger than the sequential peak. This technique shares commonalities with
the MemBookingInnerFirst heuristic proposed by Eyraud-Dubois et al. [50]. On the
other hand, whereas Eyraud-Dubois et al. [51] only consider the theoretical problem, the
present study proposes a new and robust algorithm to ensure that the imposed memory
constraint is guaranteed while allowing a maximum amount of concurrency on shared-
memory multicore architectures. In the remainder of this section we assume that the tree
traversal order is fixed and we do not tackle the problem of finding a different traversal
that minimizes the memory footprint.

We rely on the STF model to achieve this objective with a relatively simple algorithm.

93

5. Memory-aware multifrontal method

In essence, the proposed technique amounts to subordinating the submission of tasks to
the availability of memory. This is done by suspending the execution of the outer loop in
Figure 4.2 if not enough memory is available to activate a new front until the required
memory amount is freed by already submitted deactivate tasks. Special attention has
to be devoted to avoiding memory deadlocks, though. A memory deadlock may happen
because the execution of a front deactivation task depends (indirectly, through the assem-
bly tasks) on the activation of its parent front; therefore the execution may end up in a
situation where no more fronts can be activated due to the unavailability of memory and
no more deactivation tasks can be executed because they depend on activation tasks that
cannot be submitted. An example of memory deadlock may be shown using Figure 5.3.
We remember that, as explained in Section 5.2.1, the memory-minimizing traversal for the
tree in this figure is b-c-d-a-e, which leads to a memory consumption of 19 units. Assume a
parallel execution with a memory constraint equal to the sequential peak. If no particular
care is taken, nothing prevents the runtime system from activating nodes a, b and c at
once thus consuming 13 memory units; this would result in a deadlock because no other
front can be activated nor deactivated without violating the constraint.

This problem can be addressed by ensuring that the fronts are allocated in exactly
the same order as in a sequential execution: this condition guarantees that, if the tasks
submission is suspended due to low memory, it will be possible to execute the deactivation
tasks to free the memory required to resume the execution. Note that this only imposes
an order in the allocation operations and that all the submitted tasks related to activated
fronts can still be executed in any order provided that their mutual dependencies are
satisfied. This strategy is related to the Banker’s Algorithm proposed by Dijkstra in the
early 60’s [45, 46].

1 forall fronts f in topological order

do while (size(f) > avail_mem) wait

3 ! allocate and initialize front: avail_mem -= size(f)

call activate (f)

5

! initialize the front structure

7 call submit (init , f:RW , children (f):R)

9 ! front assembly

forall children c of f

11 ...

! Deactivate child: avail_mem += size(cb(f))

13 call submit (deactivate , c:RW)

end do

15

! front factorization

17 ...

19 end do

call wait_tasks_completion ()

Figure 5.4: Pseudo-code showing the implementation of the memory-aware task submis-
sion.

In our implementation this was achieved as shown in Figure 5.4. Before perform-
ing a front activation (line 4), the master thread, in charge of the submission of tasks,
checks if enough memory is available to perform the corresponding allocations (line 2);

94

5.4. Experimental results

if this is the case, the allocation of the frontal matrix (and the other associated data)
is performed within the activate routine. This activation is a very lightweight oper-
ation which consists in simple memory bookkeeping (due to the first-touch rule) and
therefore does not substantially slow down the task submission. The front initialization
is done in the init task (line 7) submitted to the runtime system which can poten-
tially execute it on any worker thread, as described in Section 4.2. If the memory is
not available, the master thread suspends the submission of tasks until enough mem-
ory is freed to continue. In order not to waste resources, the master thread is actu-
ally put to sleep rather than leaving it to sit on active wait. This was manually im-
plemented through the use of POSIX thread locks and condition variables: the master
thread goes to sleep waiting for a condition which is signaled by any worker thread that
frees memory by executing a deactivate task. When woken up, the master checks again
for the availability of memory. This work has prompted the StarPU developers to ex-
tend the runtime API with routines (the starpu memory allocate/deallocate() and
starpu memory wait available()) that implement this mechanism and easily allow for
implementing memory-aware algorithms.

5.4 Experimental results

This section describes and analyses experiments that aim at assessing the effectiveness
of the memory aware scheduling presented in Section 5.3. Here we are interested in two
scenarios:

1. In-Core (IC) execution: this is the most common case where the computed factors
are kept in memory. In this case matrices #22 and #23 could not be used because
of the excessive memory consumption;

2. Out-Of-Core (OOC) execution: in this scenario the factors are written to disk as
they are computed in order to save memory. In this case the memory consumption
is more irregular and more considerably increased by parallelism. We simulate this
scenario by discarding the factors as we did in Sections 4.2.2 and 4.3.1; note that by
doing so we are assuming that the overhead of writing data to disk has a negligible
effect on the experimental analysis reported here.

These experiments measure the performance of both the 1D and 2D factorization
(with the parameter values in Table 4.1 and Table 4.2) within an imposed memory
footprint. Experiments were performed using 32 cores with memory constraints equal
to {1.0, 1.2, 1.4, 1.6, 1.8, 2.0} × sequential peak both when the factors are kept in memory
and when they are discarded. The parameter settings used for these experiments are those
reported in Tables 4.1 and 4.2.

For almost all 1D and 2D IC tests as well as all 2D OOC tests, a performance as high as
the non constrained case (presented in Section 4.2.2 and Section 4.3.1) could be achieved
with a memory exactly equal to the sequential peak, which is the lower bound that a
parallel execution can achieve. This shows the extreme efficiency of the memory-aware
mechanism for achieving high-performance within a limited memory footprint. Combined
with the 2D numerical scheme, which delivers abundant node parallelism, the memory-
aware algorithm is thus extremely robust since it could process all considered matrices at
maximum speed with the minimum possible memory consumption. In a few cases a slight
increase (always lower than 20%) in the factorization time can be observed (especially
when the constraint is set equal to the sequential peak). In only three cases it is possible

95

5. Memory-aware multifrontal method

to observe a smooth decrease of the factorization time as the constraint on the memory
consumption is relaxed: these are the OOC, 1D factorization of matrices #12, #14 and
#18.

To explain this extreme efficiency, we performed the following analysis. As explained in
Section 5.3, prior to activating a front, the master thread checks whether enough memory
is available to achieve this operation. If it is not the case, the master thread is put to
sleep and later woken up as soon as one deactivate task is executed; at this time the
master thread checks again for the availability of memory. The master thread stays in this
loop until enough deactivation tasks have been executed to free up the memory needed
to proceed with the next front activation. Every time the master thread was suspended
or resumed we recorded the time stamp and the number of ready tasks (i.e., those whose
dependencies were all satisfied).

Figure 5.6 shows the collected data for matrix #12 with an imposed memory consump-
tion equal to the sequential peak, in the OOC case using both the 1D (left) and 2D (right)
methods. In this figure, each (x, y) point means that at time x the master thread was
suspended or resumed and that, at that time, y tasks where ready for execution or being
executed. The width of each graph shows the execution time of the memory constrained
factorization whereas the vertical dashed line shows the execution time when no limit on
the memory consumption is imposed. The figure leads to the following observations:

• in both the 1D and 2D factorizations, the number of ready tasks falls, at some point,
below the number of available cores (the horizontal, solid line); this lack of tasks is
responsible for a longer execution time with respect to the unconstrained case.

• in the 1D factorization this lack of tasks is more evident; this can be explained
by the fact that the 1D method delivers much lower concurrency than the 2D one
and therefore, suspending the submission of tasks may lead more quickly to thread
starvation. As a result, the difference in the execution times of the constrained and
unconstrained executions is more evident in the 1D factorization.

For all other tests, either the number of tasks is always (much) higher than the number
of workers or the tasks submission is never (or almost never) interrupted due to the lack
of memory; as a result, no relevant performance degradation was observed with respect to
the case where no memory constraint is imposed. This behavior mainly results from two
properties of the multifrontal QR factorization:

1. the size of the contribution blocks is normally very small compared to the size of
factors, especially in the case where frontal matrices are overdetermined;

2. the size of a front is always greater than or equal to the sum of the sizes of all the
contribution blocks associated with its children (because in the assembly operation,
contribution blocks are not summed to each other but stacked).

As a result, in the sequential multifrontal QR factorization, the memory consumption
grows almost monotonically and in most cases the sequential peak is achieved on the root
node or very close to it. For this reason, when the tasks submission is interrupted in a
memory-constrained execution, a large portion of the elimination tree has already been
submitted and the number of available tasks is considerably larger than the number of
working threads. Other types of multifrontal factorizations (LU , for instance) are likely to
be more sensitive to the memory constraint because they do not possess the two properties
described above. By the same token, it is reasonable to expect that imposing a memory

96

5.4. Experimental results

0.8

1.0

1.2

1.4

1.6

12 13 14 15 16 17 18 19 20 21 22 23

Matrix #

Relative time constrained vs not. 2D, discard

1.0

1.2

1.4

1.6

1.8

2.0

0.8

1.0

1.2

1.4

1.6

12 13 14 15 16 17 18 19 20 21 22 23

Matrix #

Relative time constrained vs not. 2D, keep

1.0

1.2

1.4

1.6

1.8

2.0

0.8

1.0

1.2

1.4

1.6

12 13 14 15 16 17 18 19 20 21 22 23

Matrix #

Relative time constrained vs not. 1D, discard

1.0

1.2

1.4

1.6

1.8

2.0

0.8

1.0

1.2

1.4

1.6

12 13 14 15 16 17 18 19 20 21 22 23

Matrix #

Relative time constrained vs not. 1D, keep

1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.5: Memory-constrained factorization times relative to the unconstrained execu-
tion for the 2D and 1D methods either discarding (OOC) or keeping (IC) the factors in
memory. Matrices #22 and #23 could only be factorized discarding the factors (OOC)
due to limited memory availability on the machine.

97

5. Memory-aware multifrontal method

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6

#

o
f

r
e
a
d
y

t
a
s
k
s

Time (sec.)

1D Factorization of the Hirlam matrix on 32 cores

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

#

o
f

r
e
a
d
y

t
a
s
k
s

Time (sec.)

2D Factorization of the Hirlam matrix on 32 cores

Figure 5.6: Concurrency under a memory constraint for the Hirlam matrix on Ada (32
cores).

constraint could more adversely affect performance when larger numbers of threads are
used.

98

Chapter 6

STF-parallel multifronatal QR
method on heterogeneous
architecture

In this chapter we present the implementation of a multifrontal method for heterogeneous
architectures such as GPU-accelerated multicore systems. The implementation presented
in Chapter 4 constitutes the basis for this work and as we showed in the multicore case,
the runtime system facilitates the development of such algorithms in the context of hetero-
geneous systems. First of all, the runtime system is capable of handling the data transfers
and managing the data consistency across the architecture then, by providing kernels spe-
cific to accelerators, it is able to execute tasks on accelerators following a given scheduling
strategy. We show in this chapter that solely providing the kernels for accelerator is not
sufficient to efficiently exploit the potential performance of accelerator based systems and
we propose frontal matrix partitioning and scheduling strategies to attain good perfor-
mance on such machines. In addition using the performance analysis approach presented
in Chapter 2 we are capable of evaluating how well we are exploiting the accelerated
architectures on which we performed our experiments.

6.1 Frontal matrices partitioning schemes

Finding frontal matrix partitioning strategies that allows an efficient exploitation of both
CPU and GPU resources constitutes one of the main challenges in implementing a mul-
tifrontal method for GPU-accelerated multicore systems. This results from the fact that
GPUs, which are potentially able to deliver much higher performance than CPUs, re-
quire coarse granularity operations to achieve peak performance while a CPU reaches its
peak with relatively small granularity tasks. The approach presented in Section 4.2, where
frontal matrices are uniformly partitioned into small size block-columns, could be readily
ported to GPU-accelerated platforms by simply providing GPU implementations for the
various tasks to the StarPU runtime system. This, however, would result in an unsatis-
factory performance because, due to the fine granularity of tasks, only a small fraction of
the GPU performance could be used. This front partitioning strategy, which we refer to
as fine-grain partitioning, shown in Figure 6.1(a), is not suited to heterogeneous architec-
tures despite being able to deliver sufficient concurrency to feed both the CPU cores and
the GPU and reduce idle times on all the resources. A radically different approach is what
we refer to as coarse-grain partitioning (Figure 6.1(b)), where fine-grained panel tasks are
executed on CPU and large-grain (as large as possible) update tasks are performed on

99

6. STF-parallel multifronatal QR method on heterogeneous

architecture

GPU. This corresponds to the algorithm used in the MAGMA package [9] and aims at
obtaining the best acceleration of computationally intensive tasks on the GPU. In order
to keep the GPU constantly busy, static scheduling is used that allows the overlapping of
GPU and CPU computation thanks to a depth-1 lookahead technique; this is achieved by
splitting the trailing submatrix update into two separate tasks of, respectively, fine and
coarse granularity. This second approach clearly incurs the opposite problem than the one
we face with the fine-grain partitioning: despite being able to maximize the efficiency of
GPU operations with respect to the problem size, it severely limits the amount of node
parallelism as well as of inter-level parallelism (see Section 1.7.1 and 4.2.3) and therefore
leads to resource (especially CPUs) starvation.

Panel

Update

nb
cpu

(a) Fine-grain parti-
tioning.

Panel

Update

nb
cpu

(b) Coarse-grain parti-
tioning.

nb
gpu

nb
cpu

(c) Hierarchical-grain
partitioning.

Figure 6.1: Partitioning schemes.

In order to take advantage of the fine and coarse-grain approaches and to overcome
the limitations of both, we developed a hierarchical partitioning of fronts (Figure 6.1(c))
which is similar to the approach proposed by Wu et al. [116] and corresponds to a trade-off
between parallelism and GPU kernel efficiency with task granularity suited for both types
of resources. The front is first partitioned into coarse grain block-columns, referred to as
outer block-columns, of width nbGPU suitable for GPU computation (this happens at the
moment when the front is activated) and then each outer block-column is dynamically
re-partitioned into inner block-columns of width nbCPU appropriate for the CPU only im-
mediately before being factorized. This is achieved through dedicated partitioning tasks
which are subject to dependencies with respect to the other, previously submitted, tasks
that operate on the same data. When these dependencies are satisfied, StarPU ensures
that the block being re-partitioned is in a consistent state, in case there are multiple copies
of it. Furthermore, StarPU ensures that the partitioning is performed in a logical fashion:
no actual copy is performed and there is no extra data allocated. The partitioning is done
using two tasks: partition and unpartition. In order to partition a data i represented
by the handle f(i) into n pieces, it is necessary to declare the handles associated with the
sub-data f(i,1)..f(i,n). The partition task takes as input the data to be partitioned

100

6.1. Frontal matrices partitioning schemes

forall outer panels o_p =1... o_n in f

2 ! partition (outer) block column f(o_p) into

! i_n inner block columns f(o_p ,1) .. f(o_p ,i_n)

4 call submit (partition , f(o_p):R, f(o_p ,1):W... f(o_p ,i_n):W)

6 forall inner panels i_p =1.. i_n

! panel reduction of inner block column i_p

8 call submit (_geqrt , f(i_p):RW)

forall inner blockcolumns i_u=i_p +1.. i_n in f(o_p)

10 ! update (inner) column in_u with panel i_p

call submit (_gemqrt , f(i_p):R, f(i_u):RW)

12 end do

14 forall outer blockcolumns o_u=o_p +1.. o_n

! update outer block column o_u with panel i_p

16 call submit (_gemqrt , f(i_p):R,f(o_u):RW)

end do

18 end do

20 ! unpartition (outer) block column

call submit (unpartition , f(o_p ,1):R...f(o_p ,i_n):R, f(o_p):W)

22 end do

Figure 6.2: STF code for the hierarchical QR factorization of frontal matrices.

forall panels p=1...n in f

2

! partition trailing submatrix

4 call submit (partition , f(p,tr):R, f(p,bc):W, f(p+1,tr):W)

6 ! panel reduction of block column p

call submit (_geqrt , f(p,bc):RW)

8

! update trailing submatrix p+1 with panel p

10 call submit (_gemqrt , f(p+1,tr):RW)

12 ! unpartition trailing submatrix

call submit (unpartition , f(p,bc):R, f(p+1,tr):R, f(p,tr):W)

14

end do

Figure 6.3: STF code for the coarse QR factorization of frontal matrices.

101

6. STF-parallel multifronatal QR method on heterogeneous

architecture

with a Read access mode and the resulting sub-data with a Write. The unpartition tasks
take as input the sub-data with a Read access mode and the original data with a Write

access mode. In the STF code, as long as all tasks working on sub-data are submitted
between the partition and unpartition tasks and no tasks working on the partitioned
data are submitted, the data consistency between data and sub-data is ensured. It should
be noted that in order to avoid memory copy, both partition and unpartition tasks
should be executed on the node where the data is allocated and in this case these tasks
are associated with an empty function.

In order to use the hierarchical-grain partitioning in the multifrontal factorization,
the initial STF code corresponding to the QR factorization of a front using a fine-grain
partitioning (lines 14-21 in Figure 4.5) is turned into the one proposed in Figure 6.2 for
hierarchically partitioned fronts. We define inner and outer tasks depending on whether
these tasks are executed on inner or outer block-columns. In order to ease the under-
standing we use different names for inner and outer updates although both types of tasks
perform exactly the same operation and thus employ the same code.

Note that the partition and unpartition tasks allow us to easily implement of the
coarse-grain partitioning approach as shown in Figure 6.3. For this partitioning we need
to define two handles per panel p: f(p,bc) corresponding to the block-column whose size
is defined by the parameter nbCPU and f(p,tr) corresponding to the trailing submatrix in-
cluding the current block-column p. This scheme will only be used for evaluation purposes
in Section 6.4.1 for the computation of performance bounds.

The work described above has prompted the StarPU developers to implement the dy-
namic partition and unpartition capability in the runtime system. As a result, the StarPU
API now includes the starpu data partition plan, starpu data partition submit and
starpu data unpartition submit which allow for, associating a partitioning scheme with
some data handle and submitting a partition and an unpartition task respectively.

6.2 Scheduling strategies

Along with the fronts partitioning strategies discussed in the previous section, task schedul-
ing is a key factor for archiving reasonable performance on heterogeneous systems. One
strategy to schedule the tasks resulting from the partitioning is to statically assign the
coarse granularity tasks to GPUs and fine granularity tasks to CPU cores. This is the
strategy adopted in the work by Lacoste [80] presented in Section 1.6 where the GPU
kernels are statically mapped onto the devices. However, in our problem, the variety of
front shapes and staircase structures combined with this hierarchical partitioning induces
an important workload heterogeneity, making load balancing extremely hard to anticipate.
For this reason, we chose to rely on a dynamic scheduling strategy.

In the context of a heterogeneous architecture, the scheduler should be able to handle
the workload heterogeneity and distribute the tasks taking into account a number of factors
including resource capabilities or memory transfers while ensuring a good load balance
between the workers. Dynamic scheduling allows for dealing with the complexity of the
workload and limits load imbalance between resources.

Algorithms based on the Heterogeneous Earliest Finish Time (HEFT) scheduling strat-
egy by Topcuouglu et al. [111] represent a commonly used and well known solution to
scheduling task graphs on heterogeneous systems. Figure 6.4 illustrates, in the context of
runtime based applications, an implementation of a HEFT-like scheduling strategy. These
methods consist in first ranking tasks (typically according to their position with respect
to the critical path) and then assigning them to resources using a minimum completion

102

6.2. Scheduling strategies

time criterion. Despite the fact that GPUs can accelerate the execution of most (if not
all) tasks, not all tasks are accelerated by the same amount, depending on their type (e.g.,
compute or memory bound, regular or irregular memory access pattern) or granularity:
therefore we say that some tasks have a better acceleration factor on the GPU than oth-
ers. The main drawback of HEFT-like methods lies in the fact that the acceleration factor
of tasks is ignored during the worker selection phase, i.e., these methods do not attempt
to schedule a task on the unit which is best suited for its execution. In addition, the
centralized decision during the worker selection potentially imposes a significant runtime
overhead during the execution. A performance analysis conducted with the so-called dmdas

StarPU built-in implementation of HEFT showed that these drawbacks are too severe for
designing a high-performance multifrontal method.

WorkersRuntime core

CPU0

CPU2

CPU1

tt

t

tt t

DMDA Scheduler

Worker

queues

t

MCT

criterion

t

t

t

t

Figure 6.4: DMDA (Deque Model Data Aware) scheduler.

Instead, we implemented and extended a scheduling technique known as heteroprio,
first introduced by Agullo et al. [7] in the context of Fast Multipole Methods (FMM). This
technique is inspired by the observation that a DAG of tasks may be extremely irregular
with some part where concurrency is abundant and others where it is scarce as shown in
Figure 6.5. In the first case we can perform tasks on the units where they are executed
the most effectively without any risk of incurring resource starvation because parallelism
is plentiful. In the second case, however, what counts most is to prioritize tasks which
lie along the critical path because delaying their execution would result in penalizing
stalls in the execution pipeline. As a result, in the heteroprio scheduler the execution
is characterized by two states: a steady-state when the number of tasks is large compared
to the number of resources and a critical-state in the opposite case. The scheduler can
automatically switch from one state to another depending on a configurable criterion which
mostly depends on the amount of ready tasks and of computational resources.

A complex, irregular workload, such as a sparse factorization, is typically a succession
of steady and critical state phases, where the steady-state corresponds to rich concurrency
regions in the DAG whereas the critical-state corresponds to scarce concurrency regions.
During a steady-state phase, tasks are pushed to different scheduling queues depending
on their expected acceleration factor (see Figure 6.6). In our current implementation,
we have defined one scheduling queue per type of tasks (eight in total as listed in col-
umn 1 of Table 6.1). When they pop tasks, CPU and GPU workers poll the scheduling
queues in different orders. The GPU worker first polls scheduling queues corresponding to
coarse-grain tasks such as outer updates (priority 0 on GPU in Table 6.1) because their
acceleration factor is higher. On the contrary, CPU workers first poll scheduling queues of

103

6. STF-parallel multifronatal QR method on heterogeneous

architecture

Steady State Critical State Steady State

Figure 6.5: Example of a DAG with a succession of steady and critical states corresponding
to rich and poor concurrency regions respectively as defined in the heteroprio scheduler.

small granularity such as subtree factorizations or inner panels (as well as tasks perform-
ing symbolic work such as activation that are critical to ensure progress). Consequently,
during a steady-state, workers process tasks that are best suited for their capabilities. The
detailed polling orders are provided in Table 6.1. Furthermore, to ensure fairness in the
progress of the different paths of the elimination tree, tasks within each scheduling queue
are sorted according to the distance (in terms of flop) between the corresponding front
and root node of the elimination tree.

WorkersRuntime core

CPU0

CPU2

CPU1

t

HeteroPrio Scheduler

ttt

t t t

...

...

Scheduling

queues

CPU prio GPU prio

Steady state

t

t

t

Figure 6.6: HeteroPrio steady-state policy.

In the original heteroprio scheduler [7], the worker selection is performed right before
popping the task in a scheduling queue following the previously presented rules. If data
associated to the task are not present on the memory node corresponding to the selected
worker then the task completion time is increased by the memory transfers. While the
associated penalty is usually limited in the FMM case [7], preliminary experiments (not
reported here for a matter of conciseness) showed that it may be a severe drawback for the
multifrontal method. For the purpose of the present study, we have therefore extended
the original scheduler by adding worker queues (one queue per worker) along with the
scheduling queues as shown in Figure 6.6. When it becomes idle, a worker pops a task

104

6.3. Implementation details

from its worker queue and then fills it up again by picking a new task from the scheduling
queues through the polling procedure described above. The data associated with tasks in
a worker queue can be automatically prefetched on the corresponding memory node while
the corresponding worker is executing other tasks. If the size of the worker queues is too
high, a task may be assigned to a worker much earlier than its actual execution, which
may result in a sub-optimal choice. Therefore, because no additional benefit was observed
beyond this value, we set this size to two in our experiments.

Scheduling queues Steady-state Critical-state
CPU GPU CPU GPU

activate 0 - 0 -
assemble 7 - 5 -
deactivate 1 - 1 -
do subtree 2 2 2 0
part./unpart. 3 - 3 -
inner panel 4 - 4 -
inner update 5 1 6 1
outer update 6 0 7 2

Table 6.1: Scheduling queues and polling orders in HeteroPrio.

When the number of tasks becomes low (with respect to a fixed threshold which is
set depending on the amount of computational power of the platform), the scheduling
algorithm switches to critical-state. CPU and GPU workers cooperate to process critical
tasks as early as possible in order to produce new ready tasks quickly. For instance, because
outer updates are less likely to be on the critical path, the GPU worker will select them
last in spite of their high acceleration factor. The last two columns of Table 6.1 provide the
corresponding polling order. Additionally, in this state, CPU workers are allowed to select
a task only if its expected completion time does not exceed the total completion time
of the tasks remaining in the GPU worker queue. This extra rule prevents CPU workers
from selecting all the few available tasks and leaving the GPU idle whereas it could have
finished processing them all quickly.

6.3 Implementation details

In the proposed implementation we use, in addition to the CPU kernels, two GPU kernels:
the gemqrt kernel corresponding to the update operation and the do subtree kernel for
the factorization of subtrees whose root node is on the layer resulting from the logical
tree pruning as explained in section 1.7.2. The gemqrt on GPU is performed using the
magma {s,d,z,c}larfb gpu routine from the MAGMA package [9] which is the equivalent
to the larfb kernel for CPUs. In order to exploit computationally intensive kernels and
avoid irregularities in the memory access pattern of the factors V that are applied to
a block-column, this kernel performs extra computations on the elements on the upper-
right corner of the matrix V . This strategy allows us to obtain better kernel performance
at the cost of additional flops for this operation. Note, also, that this routine is not
capable of exploiting, internally, the staircase structure of the panel. The do subtree on
a GPU consists in a sequential tree traversal where fronts are initialized and assembled
on the CPU and factorized on the GPU. For this factorization operation, a coarse-grain
partitioning is used similarly to the magma {s,d,c,z}geqrf routine from MAGMA. This

105

6. STF-parallel multifronatal QR method on heterogeneous

architecture

routine however cannot be used is our case because of the staircase structure of frontal
matrices. Instead, we developed a routine called {s,d,c,z}geqrf stair gpu performing
coarse-grain factorization of a front using the same mapping of tasks as the MAGMA
routine magma {s,d,z,c}geqrf and capable of exploiting the frontal matrices staircase
structure.

As explained in Section 1.4.2.1, when tasks are scheduled on a GPU worker StarPU
automatically handles the memory transfers of associated data on the GPU memory node.
For the gemqrt tasks with respect to a panel operation, the V and T matrix resulting from
the panel and the C block-column to be updated are associated with the tasks and thus will
be automatically transferred to the GPU if necessary. In the case of a do subtree the CPU-
GPU memory transfers are performed by {s,d,c,z}geqrf stair gpu kernels. The data
manipulated in the task are not associated with the task in order to prevent the runtime
system from transferring the whole subtree to the GPU before the execution of a task.
Instead, the data manipulated in a do subtree task are represented by a symbolic handle
allowing a declaration of the dependencies with the tasks depending on the do subtree

tasks.

6.4 Experimental results

6.4.1 Performance and analysis

We tested the previously presented implementation on a subset of the test matrices in
Table 1.1; the experiments were done on one node of the Sirocco cluster presented in
Section 1.9.1. In this experimental study we evaluate the performance of the STF par-
allel multifrontal QR method on heterogeneous architectures using the frontal matrices
partitioning and scheduling strategies described above. We first tested the parallel code
using CPU workers only and then we added one GPU worker. For the CPU only ex-
periments we use the fine-grain (i.e. block-column) partitioning presented above and in
Section 4.2. As explained in Section 4.2.2 the performance of the parallel factorization
using a block-column partitioning depends on several parameters. In the fine-grain case
these parameters are nb which impacts the concurrency generated in the DAG and the
inner block size ib which affects the efficiency of elementary BLAS kernels and determines
the global amount of flop performed during the factorization. Finding the optimal param-
eters for this is extremely difficult because it depends on a great number of factors such
as the number of workers, size and structure of the matrix. For this reason we performed
a large test with several combinations for ib and nb and selected the best results in terms
of factorization time. The values used for the experiments were (nb,ib)={(128,64),

(128,128), (192,64), (192,192), (256,64), (256,128), (256,256)}. Similarly to
the experimental setting presented in Section 4.2.2 the factors are discarded during the
execution. The scheduling used for the experiments in a multicore context is lws presented
in Section 4.4.

The performance of the code in the multicore case using a fine-grain partitioning is
reported in Table 6.2 with two configurations: the first using the twelve cores of a E5-
2680 processor and the second using the twenty-four cores of two E5-2680 processors
available on the machine. The table shows the shortest execution time along with the
corresponding Gflop/s rates obtained for the factorization of the tested matrices and the
optimal parameters ib and nb for which this performance was attained.

For the heterogeneous experiments, we use the hierarchical-grain partitioning pre-
sented in section 6.1. The parameters defining a hierarchical block column partitioning
are the size of the outer block column nbgpu and the size of the inner block column nbgpu.

106

6.4. Experimental results

12 CPUs (1×E5-2680) 24 CPUs (2×E5-2680)

Mat. nb ib Time (s.) Gflop/s nb ib Time (s.) Gflop/s
12 192 64 8.892E+00 138.667 128 128 4.922E+00 275.329
13 128 128 1.188E+01 226.780 128 128 8.525E+00 316.029
14 192 192 2.364E+01 221.062 128 128 1.444E+01 351.824
15 128 128 4.151E+01 252.123 128 128 2.468E+01 424.054
16 192 192 5.849E+01 272.335 128 128 3.734E+01 421.033
17 128 64 7.181E+01 271.779 128 64 4.270E+01 457.060
18 128 128 1.104E+02 248.881 128 128 6.209E+01 442.527
19 192 192 2.212E+02 284.040 128 128 1.269E+02 489.390
21 192 192 6.318E+02 294.604 192 192 3.352E+02 555.283

Table 6.2: Optimum performance for the STF fine-grain 1D factorization on Sirocco in
homogeneous case with both configurations 12 CPUs (1×E5-2680) and 24 CPUs (2×E5-
2680).

The value ib is fixed such that ib = nbcpu because, as explained above the gemqrt op-
eration on the GPU cannot take advantage of the staircase structure and because, as
seen in Section 4.2.2, this is commonly the choice which yields the best performance. As
for the multicore case, we performed a large set of tests with several combinations for
nbcpu and nbgpu and selected the best results in terms of factorization time. The val-
ues used for the experiments were (nbgpu,nbcpu)={(256,128), (256,256), (384,128),

(384,384), (512,128), (512,256), (512,512) (768,128), (768,256), (768,384),

(896,128), (1024,128), (1024,256), (1024,512) }. The scheduler used for the ex-
periments in an heterogeneous context is heteroprio presented in Section 6.2.

The performance of the code in the heterogeneous case using a hierarchical parti-
tioning is reported in Table 6.2 with two configurations: first using the twelve cores of a
E5-2680 processor plus one GPU K40M and second using the twenty-four cores of two
E5-2680 processors available on the machine plus one GPU K40M. The table shows the
shortest execution time along with the corresponding Gflop/s rates obtained for the fac-
torization of the tested matrices and the optimal parameters nbgpu and nbcpu for which
these performance were attained. Note that in the case were nbgpu = nbcpu, then the
hierarchical-grain partitioning is equivalent to the fine-grain partitioning. Figure 6.7 plots
the data in Tables 6.2 and 6.3 along with the performance obtained with a coarse-grain
partitioning approach; note that matrices #22 and #23 cannot be factorized with this ap-
proach because it requires the entire trailing submatrix to be on the GPU for an update
operation.

While the results presented in this section show the interest of the hierarchical scheme
with respect to the other proposed partitioning strategies, one may wonder how this
scheme behaves in terms of absolute performance. The most straightforward reference
would be the cumulative peak performance over all computational units. However, as
explained in Chapter 2, this choice does not take into account the fact that, due to their
nature (because of their granularity or the nature of operations they perform), tasks
cannot be executed at the peak speed and may result in an excessively loose bound on
achievable performance. For this reason we perform the performance analysis proposed
in Chapter 2 to evaluate the obtained results. We compute t̃area(p) as an upper bound
on the performance of our application and the efficiency measures eg, et, ep, ec and er to
identify the main factors limiting the performance of the execution with respect to this

107

6. STF-parallel multifronatal QR method on heterogeneous

architecture

12 CPUs (1×E5-2680) 24 CPUs (2×E5-2680)
+ 1 GPU (1×K40M) + 1 GPU (1×K40M)

Mat. nbgpu nbcpu Time (s.) Gflop/s nbgpu nbcpu Time (s.) Gflop/s
12 384 384 8.302E+00 214.172 384 384 6.960E+00 255.468
13 384 384 1.014E+01 309.913 256 256 9.731E+00 304.155
14 384 384 1.803E+01 311.883 256 256 1.404E+01 382.014
15 768 256 2.051E+01 525.130 512 256 2.026E+01 531.609
16 896 128 2.810E+01 559.479 896 128 2.866E+01 548.547
17 192 192 8.700E+01 246.755 256 256 6.797E+01 329.905
18 512 256 4.918E+01 560.600 768 256 4.882E+01 564.733
19 768 256 1.039E+02 611.656 796 384 8.763E+01 741.399
21 768 256 2.792E+02 671.463 1024 256 2.403E+02 780.160

Table 6.3: Optimum performance for the STF hierarchical-grain 1D factorization on
Sirocco in heterogeneous case with both configurations 12 CPUs (1×E5-2680) + 1 GPU
(1×K40M) and 24 CPUs (2×E5-2680) + 1 GPU (1×K40M).

0

200

400

600

800

1000

12 13 14 15 16 17 18 19 21

G
F
l
o
p
/
s

Matrix #

Performance -- Sirocco

 1 GPU -- coarse
 12 CPUs -- fine
12 CPUs + 1 GPU -- hierarchical
 24 CPUs -- fine
24 CPUs + 1 GPU -- hierarchical

Figure 6.7: Performance with heterogeneous vs multicore algorithms on Sirocco platform.

upper bound. Technically, t̃area(p) and tarea(p) are computed by running two instances of
the code, respectively, one with coarse grain partitioning and the other with hierarchical
partitioning and solving, in both cases, the Linear Program 1 defined in Chapter 2. Note
that in order to generate the linear problem, it is necessary to run the code multiple times
so that StarPU can build accurate performance profiles.

Figure 6.8 shows the efficiency analysis for our code on the test matrices. With a
runtime efficiency er greater than 0.9 for the tested matrices we see that the cost of the
runtime system is negligible compared to the workload. In addition, the runtime overhead
becomes relatively smaller and smaller as the size of the problems increases. These results

108

6.4. Experimental results

0.2

0.4

0.6

0.8

1.0

1.2

1.4

12 13 14 15 16 18 19 21

Matrix #

Granularity efficiency

e_g 12 CPUs + 1 GPU
e_g 24 CPUs + 1 GPU

0.2

0.4

0.6

0.8

1.0

1.2

1.4

12 13 14 15 16 18 19 21

Matrix #

Task efficiency

e_t 12 CPUs + 1 GPU
e_t 24 CPUs + 1 GPU

0.2

0.4

0.6

0.8

1.0

1.2

1.4

12 13 14 15 16 18 19 21

Matrix #

Pipeline efficiency

e_p 12 CPUs + 1 GPU
e_p 24 CPUs + 1 GPU

0.2

0.4

0.6

0.8

1.0

1.2

1.4

12 13 14 15 16 18 19 21

Matrix #

Communication efficiency

e_c 12 CPUs + 1 GPU
e_c 24 CPUs + 1 GPU

0.2

0.4

0.6

0.8

1.0

1.2

1.4

12 13 14 15 16 18 19 21

Matrix #

Runtime efficiency

e_r 12 CPUs + 1 GPU
e_r 24 CPUs + 1 GPU

0.2

0.4

0.6

0.8

1.0

1.2

1.4

12 13 14 15 16 18 19 21

Matrix #

Efficiency

e 12 CPUs + 1 GPU
e 24 CPUs + 1 GPU

Figure 6.8: Efficiency measures for the STF heterogeneous algorithm on Sirocco with both
configurations 12 CPUs (1×E5-2680) + 1 GPU (1×K40M) and 24 CPUs (2×E5-2680) +
1 GPU (1×K40M). Note that due to technical issues in StarPU, we are currently unable
to obtain the efficiency measures for matrix # 17.

also show that our scheduling policy makes a good job in assigning tasks to the units where
they can be executed more efficiently. The task efficiency et, lies between 0.8 and 1.2 for
all tested matrices except for matrix #15, denotes a good load balancing of the workload
between the CPUs and the GPU. We observe in our experiments that the task efficiency
may be greater than one as for matrix #15, #16 and #18. As explained in Chapter 2, this
is simply due to the fact that too many tasks are affected to faster units, e.g., GPUs; this
implies starvation of the slower units which translates into a weaker pipeline efficiency,

109

6. STF-parallel multifronatal QR method on heterogeneous

architecture

as shown in Figure 6.8. The most penalizing effect on the global efficiency is the pipeline
efficiency ep. In addition, for all tested matrices except matrix #21 the pipeline efficiency
decreases when the number of cores goes from twelve to twenty-four. This is mainly due to
a lack of concurrency resulting from the choice of partitioning. This choice aims at achiev-
ing the best compromise between the efficiency of kernels and the amount of concurrency;
it must be noted that ep could certainly be improved by using a finer grain partitioning
but this would imply a worse efficiency of the tasks and thus, as a consequence, higher
values for both tt(p) and tarea(p). In addition, smaller matrices do not deliver enough
parallelism to feed all the resources which explains that the pipeline efficiency is greater
on the biggest problems. Similarly to the runtime efficiency, the communication efficiency
is rather good with values greater than 0.85. This shows that the scheduler is capable of
efficiently overlapping task execution with communications thanks to the data prefetch-
ing capability enabled by the use of worker threads. All in all, we can observe that the
parallelization efficiency is satisfactory especially on the biggest problems.

6.4.2 Multi-streaming

0

200

400

600

800

1000

12 13 14 15 16 17 18 19 21

G
F
l
o
p
/
s

Matrix #

Performance -- Sirocco

12 CPUs + 1 GPU (mono-stream) -- hierarchical
12 CPUs + 1 GPU (multi-stream) -- hierarchical
24 CPUs + 1 GPU (mono-stream) -- hierarchical
24 CPUs + 1 GPU (multi-stream) -- hierarchical

Figure 6.9: Performance with heterogeneous multi-stream vs mono-stream configurations
on Sirocco platform.

On a GPU, a stream is defined as a sequence of commands that execute in order and
is a feature available on relatively recent GPUs 1. The use of multiple streams allows the
execution of concurrent kernels on the device thus increasing the occupancy of the GPU
when executing small grain tasks that are unable to feed all the available resources. This
allows us to use smaller values for the parameters nbcpu and nbgpu leading to a greater
concurrency in the DAG and thus potentially better performance. In addition, it allows us

1Available on compute capability 2.x and higher devices but exploitable since compute capability 3.5
with the introduction of Hyper-Q technology.

110

6.4. Experimental results

to exploit tree parallelism on the GPU with the possible execution of tasks from different
frontal matrices in the elimination tree. However, it should be noted that in some cases the
parallel execution of several kernels in different streams cannot be completely overlapped
if these kernels achieve a high occupancy of GPU resources. In StarPU we recall that
each stream is viewed as a CUDA worker and is unable to detect whether the GPU is
fully occupied or not. For this reason, the use of multiple streams can limit the pipelining
of tasks and lower the performance. In Table 6.4 we report on the performance results
of our solver when using multiple streams along with the corresponding parameters used
to obtain these values. For the experiments, we performed several runs using the same
combinations for the parameters nbcpu and nbgpu as in the previously presented mono-
stream case. We tested {1,2,4} streams on the GPU referred to as #s in the Table.
Finally we selected the values resulting in the lowest times for the factorization.

12 CPUs (1×E5-2680)
+ 1 GPU (1×K40M) multistream

Mat. nbgpu nbcpu # s Time (s.) Gflop/s
12 256 256 4 7.683E+00 205.349
13 512 256 4 7.935E+00 368.321
14 384 384 4 1.539E+01 365.383
15 768 256 4 1.748E+01 616.156
16 896 128 2 2.470E+01 636.492
17 256 256 2 9.766E+01 229.609
18 512 256 4 3.882E+01 710.208
19 768 256 4 9.610E+01 661.302
21 512 256 2 3.024E+02 619.949

24 CPUs (2×E5-2680)
+ 1 GPU (1×K40M) multistream

Mat. nbgpu nbcpu # s Time (s.) Gflop/s
12 192 192 4 6.206E+00 236.649
13 256 256 4 8.117E+00 360.062
14 512 256 2 1.434E+01 374.022
15 768 128 2 1.839E+01 569.094
16 896 128 4 2.558E+01 614.596
17 256 256 2 7.326E+01 306.083
18 512 256 4 3.838E+01 718.350
19 768 384 2 8.142E+01 797.947
21 768 384 2 2.466E+02 770.882

Table 6.4: Optimum performance for the STF hierarchical-grain 1D factorization on
Sirocco in heterogeneous case with both configurations 12 CPUs (1×E5-2680) + 1 GPU
(1×K40M) and 24 CPUs (2×E5-2680) + 1 GPU (1×K40M).

A comparison of the optimal parameters in both mono-stream and multi-stream cases
shows that when using multiple streams, the best results are generally obtained for smaller
values of nbcpu and nbgpu than in the mono-stream case. For example for matrix #12
with a 24 CPUs and 1 GPU, the optimal parameters nbgpu = nbcpu = 384 become
nbgpu = nbcpu = 192 when using multiple stream on the GPU. Similarly for matrix #14
the optimal parameters (nbgpu, nbcpu) = (768,256) become (nbgpu, nbcpu) = (512,256)

111

6. STF-parallel multifronatal QR method on heterogeneous

architecture

when using multiple stream on the GPU. This happens because the smaller block sizes
deliver better concurrency and, despite the smaller granularity of tasks, a good GPU occu-
pancy is achieved thanks to the use of multiple streams. Using the Gflop/s rates presented
in Table 6.4 for the and in Table 6.3, we compare in Figure 6.9 performance obtained
between the mono-stream and multi-stream configurations.

6.4.3 Comparison with a state-of-the-art GPU solver

In this section we provide a comparison of our solver with the GPU-enabled version of the
spqr solver [118] briefly discussed in Section 1.6. This solver is specifically designed for a
GPU-only execution where all the operations (linear algebra kernels as well as assemblies)
are executed on the GPU and one core is used to drive the activity of the GPU through
a technique referred to as bucket scheduling.

Factorize time (s)
qr mumps spqr

2 1.661E+00 3.210E+00
5 4.164E+00 5.469E+00
6 9.084E+00 ∗
24 8.893E+00 1.493E+01
7 8.585E+00 1.874E+01
8 1.652E+01 2.254E+01
9 2.834E+01 ∗
11 6.001E+01 ∗∗

Table 6.5: Factorization time for the test matrices with qr mumps (24 CPU cores and 1
GPU) using multiple streams. On the last column, the factorization times for the spqr

solver. ∗ means that the solver returned an erroneous solution and ∗∗ means that the
memory requirement for these matrices exceeded the GPU memory size.

A comparison of the execution time of qr mumps and spqr is shown in Table 6.5. In
both cases a COLAMD ordering is applied resulting in the same amount of flop during
factorization. The performance results show that, despite the additional logic needed to
exploit both the GPU and the CPUs and to processes problems that require higher memory
than available on the GPU, our solver achieves a better performance than spqr on tested
problems. This is essentially due to the extra power provided by the CPUs that qrm starpu

is capable of using. It must be noted that spqr could not factorize matrix #11 because of
memory consumption issues. As explained in Section 1.6, spqr-GPU is a GPU-only code
and, in its current implementation, all the data is allocated on the GPU memory. Because
the memory needed to process the entire elimination tree may greatly exceed the memory
available on the GPU, the elimination tree is statically split into stages so that each stage
fits in the GPU memory. The minimum size of a stage, however, is a family, i.e., a front
and the contribution blocks from its children. In the tree of large size problems, there may
be one or more families whose size exceeds the GPU memory; the current implementation
of spqr-GPU is thus not capable of solving these problems. Our solver, instead, always
runs to completion as long as enough memory is available on the host and will be capable
of using the GPU for all tasks whose memory footprint does not exceed the GPU memory
size. Note that the memory footprint for inner updates is two inner block-columns and
for outer updates is one inner and one outer block-columns and therefore we expect that

112

6.5. Possible minor, technical improvements

most of the tasks will fit in the GPU memory unless the size of the frontal matrices is
extremely high.

In two cases (matrices #6 and #9) the spqr solver returned an erroneous solution.

6.5 Possible minor, technical improvements

The code we implemented and that was used to produce the experimental results pre-
sented above was principally developed with the objective of validating and assessing the
effectiveness of the front partitioning and tasks scheduling methods discussed in the previ-
ous sections. There are, nonetheless, a number of minor technical improvements that can
be applied to the code and that are likely to bring substantial benefits to its performance
and scalability. Although we plan to pursue these developments in future work, we briefly
discuss them in this section.

• GPU memory allocation. In our current implementation, frontal matrices are
always allocated on the host memory, which implies that the data has to be trans-
ferred to the GPU before being processed by GPU tasks. In some specific cases it
should be possible to allocate the memory directly on the device which allows for
saving communications. This is, for example, the case when do subtree tasks are
executed on the GPU.

• Memory pinning. Memory pinning enables faster data transfers between the host
and the device. Although pinned memory allocations have a higher latency, this is
proven to be extremely beneficial for the factorization of a large dense matrix. How-
ever, in the case of our code, which uses block storage, many, small size allocations
are executed for each frontal matrix, which renders the pinning overhead unbearable.
Moreover, because all the allocations are done by the master thread, this overhead
slows down the submission of tasks. It should be possible to perform pinned alloca-
tions selectively only on those fronts which are more likely to be processed on the
GPU, or to defer the allocation to the init task in order to prevent the overhead
from slowing down the submission of tasks.

• Staircase-aware GPU kernels. As explained in Section 6.3, qrm starpu currently
relies on MAGMA routines for performing inner and outer updates. As a result, we
are not fully capable of taking advantage of the fronts staircase structure. Imple-
menting kernels that can exploit the staircase would readily result in a performance
improvement.

• GPU panel factorization and assemblies. At the moment we do not have a GPU
implementation for the geqrt and assembly tasks. Although these operations are
likely to have small acceleration factors relative to the updates, they can still be run
faster on the GPU and, moreover, being capable of computing them on the device
would allow us to save some data transfers.

• Efficient subtrees. The performance of GPU do subtree tasks can be improved
by employing approaches like the one used for spqr-GPU or SSIDS (see Section 1.6).

113

Chapter 7

Associated work

7.1 PTG multifrontal QR method

In the previous chapters we presented the parallelization of a multifrontal method based
on an STF model and implemented with the StarPU runtime system. In this section we
propose an alternative approach using a PTG model presented in Section 1.4.1. This par-
allel version of the multifrontal method is implemented with the PaRSEC runtime system
introduced in Section 1.4 and referred to as qrm parsec. As explained in Section 1.4.1,
contrary to the STF model where task dependencies are inferred by the runtime system,
the PTG model requires the explicit declaration of all the dependencies in the DAG to the
runtime system. In the PaRSEC runtime system, this is done through a specific language
called JDF. This property allows great flexibility in the expression of dependencies and
prevents the occurrence of unnecessary dependencies in the computed DAG as is the case
for the assembly tasks in the implementation described in Chapters 3, 4, 5 and 6. On the
other hand, the expression of the DAG for the multifrontal QR factorization represents a
challenge due to the complexity of its dependency pattern and because it is only known
dynamically at runtime.

A simple approach for the implementation of the PTG-parallel factorization consists in
expressing the whole DAG in a single JDF. This solution however raises several problems.
First the dependency pattern associated with the factorization of the frontal matrices
and the assembly operations is dynamically known during the tree traversal and PaRSEC
does not currently support this property. This approach is therefore not suited and as a
consequence prevents us from using inter-level parallelism as we show below. It should be
noted that this is only a technical limitation of the runtime system and not of the pro-
gramming model. Regarding the PTG model, it is conceivable to represent a DAG which
is dynamically built as it is unrolled during execution. The second reason for choosing
another approach is that the complexity of the dependency pattern increases with the
amount of tasks in the DAG. In the proposed implementation of qrm parsec we use a
simpler approach based on hierarchical DAGs. We consider a two-level hierarchy with an
outer DAG and multiple inner DAGs spawned by the tasks of the higher level DAG: the
outer DAG contains tasks related to the activation, deactivation, initialization and assem-
bly of the nodes of the elimination tree whereas each inner DAG contains all the tasks
for factorizing the related front. This approach is illustrated in Figure 7.1 where three
different DAGs denoted by 1, 2 and 3 are spawned by tasks in the outer DAG. Note that
this approach is equivalent to the one used in the UHM solvers presented in Section 1.6.

The PaRSEC implementation of the multifrontal QR factorization in our solver is split
into several JDF files:

115

7. Associated work

1
2

3

Figure 7.1: Two levels hierarchical DAGs implemented in PaRSEC. The inner DAGs are
spawned by tasks contained in the top level DAG.

• factorization.jdf: the JDF representing the factorization DAG operating at the
elimination tree level. This file regroups the tasks applied on the nodes of the elimi-
nation tree which are do subtree, activate, init, deactivate and assemble. The
init task is responsible for the initialization of a node and for instantiating the
DAG for the factorization of this node whose definition is contained in another JDF.
Similarly the assembly task is only responsible for the creation of the DAG for the
assembly operations. The completion of these two tasks is achieved only when all
the tasks in the DAG they instantiated have been executed;

• qr 1d.jdf, qr 2d.jdf: the JDF files for the frontal matrix factorization with 1D,
block-column and 2D, tile partitioning, respectively. These implementations are
based on the one found in the DPLASMA library [28] which provide dense linear
algebra kernels routine for distributed systems built on top of the PaRSEC run-
time systems. We adapted these kernels to the specific staircase structure of frontal
matrices presented in Section 1.2.3;

• assembly.jdf: the JDF for the assembly operations. In the DAG instantiated by
this JDF, each task corresponds to the assembly of a block from all the blocks in
children frontal matrices contributing to it. Note that in order to express the data-
flow for these assemblies, we need to compute, for every block in a frontal matrix,
a list of contributing blocks in children node. This mapping is computed upon front
activation and is not required when using a STF model.

Note that this approach does not allows us to finely express the dependencies between
the tasks contained in inner DAGs. As shown in Figure 7.1 with dependencies between
DAGs 1 and 3, and, 2 and 3, this approach limits the task pipelining because tasks in
DAG 3 wait for the completion of all tasks in DAGs 1 and 2. Therefore, it is not possible
to exploit inter-level parallelism with this strategy. As highlighted in Section 1.7.1 and
in the context of qrm starpu in Section 4.2.3 and Section 4.3.2 the exploitation of inter-
level parallelism concurrency plays an important role in the scalability of the multifrontal
method.

116

7.1. PTG multifrontal QR method

The JDF representation of a QR factorization with a 1D block-column partitioning
is presented in Figure 7.2. This JDF is similar to the DPLASMA implementation except
that we used the geqrt and gemqrt kernels described in Section 1.7, respectively for
the panel and update operations, capable of exploiting the staircase structure of block-
columns. The task types for the panel and update operations are respectively GEQRT and
GEMQRT. The GEQRT tasks are associated with the parameter p corresponding to the panel
index. This parameter has values in the range 0..NP-1 where NP represents the number
of panel operations in the front. The GEMQRT task is defined by two parameters. The
first represents the panel operations and the second represents the subsequent update
operations depending on each panel operation. For each panel operation p we perform
update operations on block-columns p+1..NC-1. The GEQRT tasks produce the data V

and T which are matrices resulting from the panel factorization. These data are sent
to the corresponding update tasks which are GEMQRT(p, p+1..NC-1) for a given panel p.
Concerning the GEMQRT tasks, for a given a block-column u, it retrieves the V and T matrices
of the corresponding panel p along with the block-column issued by the update with
respect to the previous panel task denoted GEMQRT(p-1,u). Once the update operation
has been executed, the block-column is sent either to the next update operation denoted
GEMQRT(p+1,u) or to the panel operation denoted GEQRT(u) if the block-column is up-to-
date.

Figure 7.3 shows a portion of the JDF code for the frontal matrix factorization with
2D partitioning with the description of task type GEQRT. For the sake of clarity, the de-
scription of other task types is not presented. Similarly to the 1D case, the proposed
implementation is based on the JDFs implemented in DPLASMA. However, because of
the staircase structure of frontal matrices and the 2D partitioning, the data-flow is sig-
nificantly modified compared to the original implementation. As opposed to the 1D case,
the data-flow associated with GEQRT tasks depend on the frontal matrix staircase struc-
tures. In addition, as pointed out in Section 4.3, the blocks we consider are not necessarily
square and this flexibility that we allow increases the number of cases to take into account
in the expression of the data-flow. As we already discussed in Section 1.3.1, in the 2D
QR factorization, the upper triangular part of the diagonal tile is used to annihilate the
other tiles in the same column. Therefore after the kth GEQRT, the tile is sent to a TPQRT

task associated with the sub-diagonal task in row i. However it is possible that this tile
does not exist because of the staircase structure of the frontal matrix. For this reason
the data-flow edge associated with the upper triangular part of the tile denoted R kk is
conditioned with (i < lct) ? R kk TPQRT(i+1,k).

The experimental results for the PaRSEC version of our solver are presented in Fig-
ure 7.4. These results show the scalability of qr parsec and qr starpu on the Dude
system equipped with 24 cores using both the 1D and 2D factorization algorithms. These
results illustrate the efficiency of the 2D algorithm compared to the 1D algorithm already
observed in Chapter 4. Although qr parsec offers good scalability, for every tested matri-
ces it is lower than the scalability obtained with qrm starpu. As we mentioned above this
difference lies in the fact that we are unable to exploit inter-level parallelism in qr parsec.
The importance of this on the amount of concurrency in the factorization is detailed in
Section 4.3.2.

117

7. Associated work

1 GEQRT (p)

3 p = 0 .. (NP -1)

5 : A(0,p)

7 RW A_p <- (p==0) ? A(0,p) : C_u GEMQRT (p-1, p)
-> (p < NC -1) ? V_p GEMQRT (p, (p+1) ..(NC -1))

9 -> A(0,p)

11 RW T_p <- T(0, p) [type = LITTLE_T]
-> (p < NC -1) ? T_p GEMQRT (p, (p+1) ..(NC -1)) [type = LITTLE_T]

13 -> T(0,p)

15 ;NC

17 BODY
{

19

_geqrt_stair (&m, &n, &ib ,
21 & stair [off], &off ,

A_p + off , &lda ,
23 T_p , &ldt ,

work , &info);
25

}
27 END

29 GEMQRT (p, u)

31 p = 0..(NP -1)
u = (p+1) ..(NC -1)

33

: A(0,u)
35

READ V_p <- A_p GEQRT (p)
37 READ T_p <- T_p GEQRT (p) [type = LITTLE_T]

RW C_u <- (p==0) ? A(0,u) : C_u GEMQRT (p-1, u)
39 -> ((u == p+1) && (u <= (NP -1))) ? A_p GEQRT (u)

-> ((u > p+1) && (p < (NP -1))) ? C_u GEMQRT (p+1, u)
41

; (NC -u)
43

BODY
45 {

47 _gemqrt_stair ("l", "t",
&m, &j, &k, &ib ,

49 & stair [off], &off ,
V_p + off , &ldv ,

51 T_p , &ldt ,
C_u + off , &ldc ,

53 work , &info);

55 }

57 END

Figure 7.2: Code for the 1D block-column dense QR factorization with PaRSEC.

118

7.1. PTG multifrontal QR method

1 GEQRT (k)

3 lt = inline_c %{ return ((MIN(M,N) -1) / NB); %}

5 k = 0 .. lt

7 /* row index of the last tile in the previous column */
lctp = inline_c %{ lct_f90 (front , k -1) ; %}

9 /* row index of the last tile in the current column */
lct = inline_c %{ lct_f90 (front , k) ; %}

11

/* row index of the first tile in the current column */
13 ft = inline_c %{ return (k*NB) / MB; %}

ftp = inline_c %{ return ((k -1)*NB) / MB; %}
15

i = ft
17

: A(i, k, front , qrm_mat)
19

RW A_kk <- (k == 0) ? A(i, k, front , qrm_mat)
21 <- ((k > 0) & (ft == ftp) & (i == lctp)) ? A_kj GEMQRT (k-1, k)

<- ((k > 0) & (ft == ftp) & (i < lctp)) ? A_kj GEMQRT (k-1, k)
23 <- ((k > 0) & (ft > ftp) & (i <= lctp)) ? A_ij TPMQRT (k-1, i, k)

<- ((k > 0) & (ft > ftp) & (i > lctp)) ? A(i, k, front , qrm_mat)
25 -> (i < lct) ? R_kk TPQRT (i+1, k) : A(i, k, front , qrm_mat)

-> V_kk pnl_kk_typechange (k)
27 -> (i == lct) ? A(i, k, front , qrm_mat)

29 RW T_kk <- T(i, k, front , qrm_mat) [type = LITTLE_T]
-> T(i, k, front , qrm_mat) [type = LITTLE_T]

31 -> (k < (NC -1)) ? T_kk upd_kj (k, (k+1) ..(NC -1)) [type = LITTLE_T]

33 ;NC*NC*NC

35 BODY
{

37

_geqrt_stair (&m, &n, &ib ,
39 & stair [offa], &ofsa ,

A_kk + ofs , &lda ,
41 T_kk , &ldt ,

work , &info);
43 }

END

Figure 7.3: Code for the GEQRT task in the 2D dense QR factorization with PaRSEC.

0

5

10

15

20

25

4 5 6 7 8 9 11

Matrix #

Speedups -- dude

PaRSEC 1D

PaRSEC 2D

StarPU 1D

StarPU 2D

Figure 7.4: Speedup for the qr starpu and qr parsec on dude system (24 cores).

119

7. Associated work

7.2 Simulation of qrm starpu with StarPU SimGrid

The development of scientific software that aims to be portable across different archi-
tectures requires a considerable amount of performance analysis and tuning. This is a
very challenging task to achieve for large and complex codes which feature an irregular
workload and which are designed for modern computing platforms equipped with het-
erogeneous processing units. This is even more difficult if one considers that access to
computing platforms with the desired characteristics may be limited if at all possible. In
the case of runtime-based software, this issue can be addressed by taking advantage of
the fact that the runtime has full control over the execution of the tasks in which the
workload is decomposed: the runtime system can be instructed not to actually execute
the tasks, but instead to simulate their execution reproducing their resource consumption
(be it PU time or memory) on the target architecture. Because the tasks are not actually
executed, and therefore the resources are not actually consumed, this technique allows the
simulation of the execution of very large workloads on large and complex architectures
even on systems with a relatively limited amount of resources like a laptop computer.

Researchers from the MESCAL project at the LIG Laboratory of Grenoble have re-
alized a coarse-grain hybrid simulation/emulation of StarPU applications [107] on top of
SimGrid[36], a simulation toolkit specifically designed for distributed system simulation.
In this approach the application (i.e., the work of the master thread) and runtime are
emulated as their actual code is executed and the tasks submission and scheduling are
therefore done as in a real execution; tasks, however, are not actually executed but simu-
lated. An initial calibration of the target machine is run first to derive performance profiles
and models (interconnect topology, data transfers, computation kernels) that are given as
input to SimGrid. Subsequent simulations can then be performed in a reproducible way on
personal commodity laptops without requiring any further access to the target machines.

This approach was proved capable of achieving accurate performance prediction of
two dense linear algebra algorithms on a number of heterogeneous systems [108], yet
its effectiveness on more irregular and heterogeneous workloads had to be assessed. For
this purpose, we collaborated [0] with the authors of the StarPU-SimGrid platform to
evaluate the accuracy of this simulation engine on the qrm starpu solver, precisely on
the 1D STF variant presented in Section 4.2. Compared to the abovementioned study on
the simulation of dense linear algebra applications with StarPU and SimGrid, the main
difficulty arises from the application structure and from the larger variety of computation
tasks or kernels called with a wide variety of input parameters. When working with dense
matrices, it is common to use a global fixed block size and a given kernel type (e.g.,
gemm) is therefore always called with the same parameters throughout the execution,
which makes its duration on the same processing unit very stable and easy to model. In
the qrm starpu factorization, the amount of work that has to be done by a given kernel
greatly depends on its input parameters. These parameters may or may not be explicitly
given to the StarPU runtime and we thus had to rework the qrm starpu task submission
model to ensure StarPU can propagate this information to SimGrid. The modelling of the
different kernels used in qrm starpu was done using the following assumptions:

• geqrt: this kernel is a simple wrapper around the corresponding LAPACK routine
and thus it can be completely characterized by the size m×n of the block it operates
on. This information is readily available to StarPU through the task parameters nb

(the column width), mb (the block-column height) and bk (the front factorization
stage or panel number). Given that m = mb − (bk − 1) × nb and n = nb, the

120

7.2. Simulation of qrm starpu with StarPU SimGrid

complexity of this kernel is

Tgeqrt = a + 2b(nb2 × mb) − 2c(nb3 × bk) +
4d

3
nb3,

where a, b, c and d are machine and memory hierarchy dependent constant coeffi-
cients.

• gemqrt: The duration of the gemqrt kernel also depends on the geometry of the
data it operates upon, defined by the same mb, nb, and bk parameters. This kernels
simply wraps the LAPACK gemqrt routine which applies k Householder reflections
of size m, m − 1, ..., m − k+1 on a matrix of size m × n where m, n and k are equal
to mb − (bk − 1) × nb, nb and nb, respectively. Therefore, its a priori complexity is
defined as:

Tgemqrt = a′ + 4b′(nb2 × mb) − 4c′(nb3 × bk) + 3d′nb3

• init: the execution time of this kernel depends on the number of coefficients in the
fronts (because they have to be initialized to zero) #Zeros and the number #Aasm
of coefficients from the input sparse matrix that have to be assembled in the front.
These parameters had to be added to the signature of the task submission routine
in order to make their value available to StarPU.

• assemble: the execution time of tihs kernel solely depends on the number #Casm of
coefficients from the block-column that have to be assembled into the parent front.
This parameter had to be added to the signature of the task submission routine in
order to make its value available to StarPU.

• do subtree: the execution time of this kernel mostly depends on the number of flops
performed therein and on the number of fronts in the subtree (this gives a measure
of the granularity of operations and thus their efficiency). These parameters had to
be added to the signature of the task submission routine in order to make their value
available to StarPU. Note that this data is computed during the analysis phase and
thus already available.

• deactivate: this kernel is considered negligible as it only acounts for less than 1%
of the total execution time.

To evaluate the quality of our approach, we used two different kinds of nodes from
the Plafrim1 platform. The fourmi nodes feature 2 Quad-core Nehalem Intel Xeon X5550
with a frequency of 2.66 GHz and 24 GB of RAM memory and the riri nodes comprise 4
Deca-core Intel Xeon E7-4870 with a frequency of 2.40 GHz and 1 TB of RAM memory.
The fourmi nodes proved to be easier to model as their CPU architecture is well balanced
with 4 cores sharing L3 cache on each of the 2 NUMA nodes. Such a configuration leads
to little cache contention. However, the RAM of these nodes is limited and thereby limits
the matrices that can be factorized to a certain size. Although the huge memory of the
riri machine puts almost no restriction on the matrix choice, its memory hierarchy with
10 cores sharing the same L3 cache lead to cache contention that can be tricky to model.

The execution time of a single kernel on a certain machine greatly depends on the ma-
chine characteristics (namely CPU frequency, memory hierarchy, compiler optimization,
etc.). Obtaining accurate timing is thus a critical step of the modelling. To predict the

1https://plafrim.bordeaux.inria.fr/

121

7. Associated work

performance of the factorization of a set of matrices on a given experimental platform, we
first benchmark the kernels identified in the previous section.

For the kernels that have clear dependency on the matrix geometry (geqrt and
gemqrt), we wrote simple sequential benchmarking scripts, that pseudo-randomly choose
different parameter values, allocate the corresponding matrix and finally run the kernel,
capturing its execution time. However, for kernels (do sutree, init and assemble) whose
code is much more complex and depends on many factors, including even dependencies on
previously executed tasks, creating a simplistic artificial program that would mimic such
a sophisticated code is very difficult. Since each sparse matrix has a unique structure, the
corresponding DAG is very different and the kernel parameters (such as height and width)
greatly vary from one matrix factorization to another. Consequently, it is very hard to
construct a single linear model that is appropriate for every use cases. The inaccuracies
caused by such model imperfection can produce either underestimation or overestimation
of the kernel duration and thus of the whole application makespan as well. Therefore,
to benchmark such kernels we rely on traces generated by a real qrm starpu execution
(possibly on different matrices than those that need to be studied) instead of a careful
experiment design.

The result of this benchmark is analyzed with R to obtain linear models that are then
provided to the simulation. Table 7.1 presents a summary of the prediction quality for each
kernel as well as the minimal number of parameters that have to be taken into account
for all the tasks in the factorization of matrix #7 on the fourmi system. For all of them,
the adjusted R2 value2 is close to 1, which indicates an excellent predictive power.

geqrt gemqrt do subtree init assemble

1. nb nb #Flops #Zeros #Casm
2. mb mb #Nodes #Aasm /
3. bk bk / / /

R2 0.99 0.99 0.99 0.99 0.86

Table 7.1: Summary of the modeling of each kernel based on matrix #7 on fourmi.

At each step of the regression, we check that the models are adequate through a
careful inspection of the regression summaries and of the residual plots. These models are
then linked with the simulator and the experimental platform is then no longer of use
as qrm starpu can be run in simulation mode on a commodity laptop. Using a recent
and more powerful machine only improves the simulation speed and possibly allows for
running several simulations in parallel. In such simulations, we recall that the code of
qrm starpu and of StarPU is run for real (the application and the runtime are emulated)
but all computation intensive and memory consuming operations are faked and converted
into simple simulation delays. SimGrid is used for managing the simulated time and the
synchronization between the different threads.

Figure 7.5 tracks the execution of the geqrt kernel and indicates the duration of
the tasks at each time. To ease the correspondence between the real execution and the
simulation, the colour of each point is related to the job id of the task. Both colours and the
pattern of the points suggest that the traces match quite well. Even though the scheduling
is not exactly the same, it is still very close. Similar analysis have been performed for all
the other kernels as well and the results were very much alike.

2The coefficient of determination, denoted R
2, indicates how well data fit a statistical model and ranges

from 0 to 1. An R
2 of 0 indicates that the model explains none of the variability of the response data

around its mean while an R
2 of 1 indicates that the regression line perfectly fits the data.

122

7.2. Simulation of qrm starpu with StarPU SimGrid

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●
●●
●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●
●●
●●
●
● ●●

●
●●
●●
●●
●●
●●
●●
●●●

●●
●

● ●●
●●●

●●●●
●●●

●●●
●●

●

● ●●
●●
●●
●●
●●
●●
●●
●●
●●
● ●●

●●
●● ●●●

●●●
● ●●●

●●●●
●●●●

●●
●●●
●●
●●●●
●

●

●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
● ●●

● ●●
●●
●●
● ●●

● ●●
● ●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●
●●
●●
●●
●●
● ●●

●●
●●
●●
●●

●●
●●●
●●●●●●

●●●
●●●
●●●
●●●●
● ● ●●●

●●●
●●●
●●●
●●●
●●●●

Native, Panel

SimGrid, Panel

0

25

50

75

0

25

50

75

0 10,000 20,000 30,000 40,000 50,000

Time [ms]

K
e

rn
e

l
D

u
ra

ti
o

n
 [

m
s
]

Figure 7.5: Native vs simulated execution time of geqrt tasks in the factorization of
matrix #7 as a time sequence on the Fourmi system. Colour is related to the task id.

Figure 7.6 shows the ratio between the simulated makespan and the makespan of an
actual execution on the Fourmi and Riri systems. On the first system the simulation is
extremely accurate since the error is, on average, around only 3%; on this machine the
actual execution time for matrices #9, #10 and #11 could not be measured because
of the limited available memory. This obviously reveals one advantage of the simulation
platform which allows for evaluating the performance of a code or an algorithm on a
hypothetical architecture with larger memory than is actually available. On the Riri system
the simulation is not as accurate as the error is, on average, around 8.5% when ten cores
are used. This is mostly due to the pressure on the L3 cache which is shared by all the
ten cores on a socket; the simulation engine is not currently capable of adjusting the
performance model to this effect. On 40 cores the error increases again but the results
can still be considered accurate and useful for the purpose of performance profiling and
evaluation. In all cases the simulated makespan is systematically a slight underestimation
of the actual execution time as our approach ignores the runtime overhead and a few cache
effects.

0.8

1.0

1.2

1 2 3 4 6 7 9 10 11

Matrix #

Relative makespan - native vs simulation

fourmi 8 cores

 riri 10 cores

 riri 40 cores

Figure 7.6: Native vs simulated makespan on the Fourmi system

123

7. Associated work

By the same token, the StarPU-SimGrid simulation engine can be used to reproduce
the memory consumption of a StarPU based code. Because in the simulation the tasks are
not actually executed, the simulation engine cannot directly track the memory consump-
tion (for example, by intercepting the calls to allocation and free routines). For this reason
it was necessary to provide StarPU with the memory consumption associated to the differ-
ent tasks. In qrm starpu the only three tasks that allocate or free memory are the init,
do subtree and deactivate. A parameter whose value corresponds to the memory con-
sumption of the task was added to the submission routine for these three types. Figure 7.7
presents a comparison between the simulated memory consumption against the actual
memory consumption in three consecutive runs for matrix #6; yellow and blue show the
memory allocated within the do subtree and init tasks, respectively. The figure clearly
shows that the simulation is quite accurate in estimating the peak memory consumption
as well as the memory consumption throughout the whole factorization. It must be noted
that, because the scheduling of tasks is completely dynamic, even two actual runs may
differ slightly in their memory profile, as it can be seen in Figure 7.7.

Native 2

Native 3

0
1
2
3

Native 1

0
1
2
3

SimGrid

0
1
2
3

0
1
2
3

0 10,000 20,000 30,000 40,000

Time [ms]

A
llo

c
a

te
d

 M
e

m
o

ry
 [

G
iB

]

Figure 7.7: Native and simulated memory consumption for matrix #6 on the Fourmi
system.

7.3 StarPU contexts in qrm starpu

The memory system of modern multicore systems is typically arranged in a Non Uniform
Memory Access (NUMA) configuration: the memory is physically split into several mod-
ules and each module is commonly associated with a socket or processor. All the modules
share the same address space which means that every core in every processor can access
transparently any data in any module, yet the speed of access to data may vary consid-
erably depending on where the data is actually located. Access to remote data implies
transfers from one socket to another whose costs are far from being negligible. Figure 4.13
measures this effect on task efficiency. The cost of these implicit transfers can be more or
less expensive depending on the connectivity between the memory modules and in some
cases can seriously harm the scalability of a multithreaded code.

The StarPU team has recently developed a feature that aims at addressing this issues
through the use of scheduling contexts [71]. A scheduling context can be

124

7.3. StarPU contexts in qrm starpu

defined as a structure able to encapsulate a parallel code and restrict its ex-
ecution on a section of the machine. By means of the scheduling contexts, a
parallel code runs on top of an abstract machine, whose set of resources can
be dynamically changed during its execution. This allows the programmers to
control the distribution of computing resources (i.e. CPUs and GPUs) over
co-executing parallel kernels (Hugo [72])

Scheduling contexts can be used for efficiently composing StarPU based applications.
Imagine a scenario where two applications have to be executed concurrently on the same
machine. Two contexts can be created, one for each application, and each of them can be
assigned an amount of resources (e.g., processing units) proportional to the relative weight
of the associated application; all the tasks related to one application will be submitted to,
and handled by the corresponding scheduling context and, as a consequence, executed by
the associated resources. This will prevent the two applications from interfering with each
other (for example polluting each others caches) and from competing for resources.

Scheduling contexts were later used to improve the scalability of qrm starpu on NUMA
architectures by Hugo et al. [70]. This idea stems from the observation that separate
branches of the elimination tree are independent and can thus be assigned to different
contexts including disjoint subsets of resources whose size is established depending on
their relative weight. Resources within each context share some level of memory (e.g.,
cache or NUMA module), which allows the reduction the cache miss rate or the transfer
of data among NUMA modules and thus improves performance.

The analysis phase of the qrm starpu solver has been extended with a proportional
mapping [92] step. This algorithm consists in a top-down traversal: all the available re-
sources are mapped on the root node of the elimination tree and then they are partitioned
into bundles and each bundle assigned to a set of child nodes. The amount of resources
in each bundle depends on the relative weight of the subtrees rooted at the child nodes.
This process is applied recursively until all the bundles contain a minimum, non divisible
amount of resources (for instance, one core). The weight of each subtree can be computed
as the time needed to process the entire subtree, according to a given performance model.
Each bundle is then mapped to context. This results in a tree of contexts which matches
the memory hierarchy as shown in Figure 7.8: all the resources in a context/bundle share
some level of memory (say, L2 cache) and all those in the higher level context, obtained
by merging all the contexts in a set of siblings, share a lower level memory (L3 cache).

L3

L2

Module

Figure 7.8: Mapping of tree nodes to contexts.

Note that the initial mapping of resources may be inaccurate due to inaccuracies of the
performance model or because it cannot take into account conditions that are related to the
load of the machine. In order to address this issue a hypervisor process constantly monitors

125

7. Associated work

the execution of the factorization collecting information about its progress and updating
the performance model. Whenever the hypervisor detects that the actual execution has
excessively (according to a tolerance parameter) deviated from the ideal processing speed,
it triggers a resource reallocation: the resources assigned to a set of sibling contexts are
redistributed as established by the solution of a linear program that aims at minimizing
the time to process the subtrees within each of these contexts. This reallocation is applied
to all the yet unprocessed levels of the tree. Note that the fact that the resources are only
redistributed within a set of siblings allows for maintaining a good data locality.

The use of contexts has been integrated in the qrm starpu variant described in Sec-
tion 3 and evaluated on the test matrices listed in Table 7.2. These matrices were column-
permuted with the METIS v5.0.2 ordering tool and the tests were run on a ccNUMA
platform equipped with 8 Intel E7-8837 processors having 8 cores clocked at 2.67 GHz
and having 24 MB of L3 cache for a total of 64 cores. The platform is equipped with 300
GB of memory organized in groups of 100 GB each interconnected with a relatively slow
memory bus.

Mat. name m n nz op. count
(Gflops)

1 TF15 7742 6334 80057 93.90
2 tp-6 142752 1014301 11537419 381.82
3 pre2 659033 659033 5834044 777.67
4 esoc 37830 327062 6019939 891.58
5 Rucci1 1977885 109900 7791168 5316.94

6 ultrasound80 130228 130228 2032536 64777.40
7 conv3d64 836550 836550 12548250 108491.50

Table 7.2: Matrices test set. The operation count is related to the matrix factorization
with METIS column permutation. All the matrices are from the University of Florida
collection except the conv3d64 which is provided by CEA-CESTA and the ultrasound80
(Propagation of 3D ultrasound waves) provided by M. Sosonkina.

Figure 7.9 plots the execution times for the contexts-based variant relative to the
standard implementation. The figure shows that the use of contexts brings a considerable
benefit to the scaling of the qrm starpu factorization due to a much better locality of
reference to data. This was also assessed by explicitly measuring the number of local
accesses to data. Figure 7.10 plots, for matrices #5 and #7 on 32 cores, the fraction
of fronts with respect to the percentage of related tasks that are executed locally. For
example, for the Rucci1 matrix, the figure shows that for roughly 65% of the fronts,
90 to 100% of the related tasks have been executed on the NUMA module where the
fronts are actually stored. For both matrices, this figure shows that the use of contexts is
effective in reducing the amount of data transfers between NUMA modules and, therefore,
in improving performance.

126

7.3. StarPU contexts in qrm starpu

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7

Matrix #

Relative time ctxs vs no ctxs

8 cores

16 cores

24 cores

32 cores

40 cores

64 cores

Figure 7.9: Relative execution times for the version with contexts.

10

20

30

40

50

60

70

80

90

100

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

F
r
o
n
t
s

(
%
)

NUMA module hits (%)

Rucci1 -- locality of reference

Without contexts

With contexts

10

20

30

40

50

60

70

80

90

100

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

F
r
o
n
t
s

(
%
)

NUMA module hits (%)

conv3d64 -- locality of reference

Without contexts

With contexts

Figure 7.10: Locality of references with and without contexts.

127

Chapter 8

Conclusion

8.1 General conclusion

In this thesis we have addressed the design of a sparse direct solver, capable of efficiently
exploiting multicore and heterogeneous architectures, using modern runtime systems.

The first issue we addressed in Chapter 3 is to prove the relevance of our approach by
porting the multifrontal method implemented in qr mumps on top of StarPU. In this chap-
ter the StarPU based version of qr mumps, referred to as qrm starpu, is experimentally
validated by performing a comparative study with the original solver which, essentially,
assesses the validity of the approach and the usability of runtime systems for the imple-
mentation of sparse, direct methods.

Although capable of achieving good performance this implementation relies on a mix-
ture of parallel programming models (see Section 1.4.1) which constitutes a hindrance
to the development of new features. For this reason, we redesigned the implementation
qrm starpu using a pure Sequential Task Flow model. In Chapter 4, we first presented a
STF-parallelization of the multifrontal method using the original 1D block-column par-
titioning scheme (the same as in the qr mumps solver and in the approach described in
Chapter 3), showed the expressiveness and simplicity of use of this parallel programming
model and proved the efficiency of the resulting code. Based on this, we improved the
solver by integrating 2D communication avoiding front factorization algorithms and show
how this is relatively easy to implement, thanks to simplicity of the programming model.
The superior performance and scalability of the resulting solver is assessed through a rich
set of experimental results and a finely detailed performance analysis. Furthermore we
developed and present in Chapter 5 a memory-aware algorithm which allows us to control
the memory consumption of the parallel multifrontal method. We showed on a set of test
matrices that we were able to obtain the same performance results as the non constrained
case when enforcing a memory limit equal to the minimal memory consumption associated
with the sequential algorithm.

In compliance with the STF parallel programming model, we moved forward to het-
erogeneous architectures in Chapter 6 and addressed the data partitioning and scheduling
issues that are critical to achieve performance on these architectures. We extended the
1D block-column partitioning into a hierarchical block partitioning allowing to generate
both fine and coarse granularity tasks suited to the processing unit capabilities. We de-
velop a scheduling strategy capable of handling the task heterogeneity in the DAG and
the diversity of resources on heterogeneous architectures. A performance analysis on a
set of test matrices indicates that we are capable of efficiently exploiting heterogeneous
architectures.

129

8. Conclusion

The validity and efficiency of all the methods presented in this thesis are assessed
through experimental results. Considering the complexity of algorithms and computer
architectures, this challenged us with the difficulty of profiling and analysing the per-
formance of our implementations as well as the difficulty of identifying and quantifying
potential sources of inefficiency. For this purpose, we developed a performance analysis
approach, presented in Chapter 2, capable of measuring and separately analysing several
factors that play a role in performance and scalability such as locality issues and task
pipelining. Additionally, this analysis allows us to measure the cost of the runtime system
and thus provides a further proof of the efficiency and usability of these tools.

Finally we presented in Chapter 7 some collaborative work done in the context of
qrm starpu. First we implemented another version of qr mumps using an alternative pro-
gramming model, namely a parametrized task graph. Then we focused on reproducing
and simulating parallel executions in qrm starpu. Lastly, we briefly presented the use of
scheduling contexts with StarPU that enhances the exploitation of data locality in the
multifrontal method.

Although our work clearly benefited from the features, the performance and the re-
liability of modern runtime systems, it must be noted that it also provided a valuable
feedback to the developers of these tools. The results achieved by our work led to the de-
velopment and implementation of novel features within the StarPU runtime system such
as commutable tasks, dynamic partitioning/unpartitioning tasks and methods for guiding
the submission of tasks based on the memory consumption.

8.2 Perspectives and future work

The work achieved in this thesis opens up a large number of opportunities for future
developments both from an algorithmic (novel methods and algorithms for improving the
performance and reliability of the solver) and from the software performance optimization
points of view.

In our study on heterogeneous architectures, we presented experimental results on
GPU-accelerated architectures. We believe that the strategies that we have developed to
exploit these architectures can be used to exploit systems equipped with other types of
accelerators such as the Intel Xeon Phi coprocessors. The techniques that we proposed are
designed for heterogeneous architectures in general and thus are independent from GPUs.
The algorithms that we presented are implemented using a high-level programming model
while the runtime system handles the underlying architecture. Provided that we give the
specific kernels to the runtime system, we should be able to exploit Xeon Phi-accelerated
architectures.

Thanks to the runtime system approach, the current version of qrm starpu is capable
of exploiting multiple GPUs. However it is unlikely to have good performance because it
does not address potential problems coming from GPU-to-GPU data transfers. Therefore,
we need to address data locality issues by developing an appropriate scheduling policy.

In this thesis we focused on single node, multicore and heterogeneous architectures al-
though modern runtime systems like StarPU and PaRSEC are capable of using distributed-
memory architectures. Implementing the multifrontal QR factorization on such systems
represents a hard challenge and requires special care in developing appropriate data dis-
tribution and mapping as well as tasks scheduling methods in order to minimize the cost
of data transfers through the network that connects the nodes of the system.

The qrm starpu solver developed in this thesis provides a reliable and efficient platform
for algorithmic developments and opens up opportunities for developing novel numerical

130

8.2. Perspectives and future work

methods with a relatively limited implementation effort.
The performance of the methods presented in this thesis, depends on the value of a

number of parameters, most notably the block-sizes for either the 1D, 2D or hierarchical
fronts partitioning. In the experimental results presented in the previous chapters, we
simply tested a range of values for each of these parameters and only reported performance
for the best cases. Nonetheless, it should be possible to automatically select the values
that yield optimal or close to optimal performance depending on the properties of the
workload (shape of the elimination tree and/or of the DAG, granularity of tasks, shape
and size of the frontal matrices) and the machine (number and type of processing units,
speed of memory, performance of BLAS routines). This is an extremely challenging task
to achieve but may lead to a much better ease of use of the qrm starpu solver. Moreover,
it should be noted that the value of these blocking sizes does not have to be the same for
all the frontal matrices in the elimination tree. For example, at the bottom of the tree,
where much tree parallelism is available, node parallelism can be reduced by choosing
larger block sizes or even a 1D partitioning in order to improve the efficiency of single
tasks. By the same token, the panel reduction method in 2D factorization algorithms,
may be chosen depending on the shape of every single front. This is clearly a very difficult
challenge to tackle but may lead to considerable performance improvements.

One critical task we plan to pursue in future work is the extension of the qrm starpu

solver to support rank-deficient systems. Techniques like the Heath [63] method (also used
in the spqr solver) can be employed to handle this type of problem and possibly be im-
proved through the use of restricted pivoting techniques. It must be noted, though, that
these techniques require special care in the task submission and scheduling. The detection
of rank deficiency within a frontal matrix implies modifications of the structure of its an-
cestors (potentially up to the root of the elimination tree). Because rank deficiencies can
only be detected during the matrix factorization, it is not possible to submit the whole
DAG solely relying on the information from the symbolic analysis phase. The submission
of some tasks is subordinated to the result of previous ones and therefore the DAG dy-
namically changes at runtime. Special strategies must be designed and implemented to
cope with this issue.

Regarding the extremely good performance results obtained with our memory-aware
algorithm in qrm starpu, it should be noted that our approach is very conservative in
terms of memory and may limit the exploitation of tree parallelism which could severely
reduce the scalability of our solver on larger scale platforms. In addition, the proposed
algorithm is especially suited to the multifrontal QR factorization for the reasons that
we enumerated in our study and might not be as efficient in the context of other types
of multifrontal methods. We could thus refine our algorithm with strategies such as the
memory booking heuristics proposed by Eyraud-Dubois et al. [50].

This thesis essentially focused on the factorization of a sparse matrix. As explained
in the introduction, this is only one of the three main phases of a sparse direct solver.
The factorization is commonly followed by one or more solve operations with one or more
right-hand sides. Although all the techniques presented in this thesis can readily be applied
to the solve phase, it must be noted that in the case of a single right-hand side the solve
phase becomes memory-bound. This means that the relative weight of tasks is very small
(much smaller than in the factorization phase) and therefore the runtime overhead is likely
to increase. A different parallelization scheme may have to be employed in this case to
overcome this issue. As for the analysis, no floating-point computations are performed in
the various steps of this analysis which are all, inherently, memory bound. Although this
phase is relatively light with respect to the factorization and the solve, its weight becomes
more significant as these are accelerated by exploiting parallelism. The use of runtime

131

8. Conclusion

systems for parallelizing the analysis phase may be challenging due to the nature of the
operations performed therein.

132

Submitted articles

Publications

Submitted articles

[S1] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez. Implementing multifrontal
sparse solvers for multicore architectures with Sequential Task Flow runtime sys-
tems. Tech. rep. IRI/RT–2014-03–FR. Submitted to ACM Transactions On Math-
ematical Software. IRIT, Nov. 2014. url: http://buttari.perso.enseeiht.fr/

stuff/IRI-RT--2014-03--FR.pdf.

Conference proceedings

[C1] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez. “Multifrontal QR Factoriza-
tion for Multicore Architectures over Runtime Systems”. In: Euro-Par 2013 Parallel
Processing. Springer Berlin Heidelberg, 2013, pp. 521–532. isbn: 978-3-642-40046-9.
url: http://dx.doi.org/10.1007/978-3-642-40047-6_53.

[C2] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez. Task-based multifrontal QR
solver for GPU-accelerated multicore architectures. Tech. rep. IRI/RT–2015–02–
FR. Accepted at the HiPC 2015 conference. IRIT, June 2015. url: https://hal.

archives-ouvertes.fr/hal-01166312v2.

Posters

[P1] E. Agullo et al. Matrices Over Runtime Systems at Exascale. Poster at the Super-
Computing 2015 conference. 2015.

Conference talks

[T1] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez. Multifrontal QR Factorization
for Multicore Architectures over Runtime Systems. Presentation at the Euro-Par
2013 international conference, Aachen August 26-30 2013. 2013.

[T2] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez. Sparse direct solvers on top
of a runtime system. Presentation at the PMAA 2014 international conference,
Lugano July 2-4 2014. 2014.

[T3] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez. Sparse direct solvers on
top of a runtime system. Presentation at the SIAM Computational Science and
Engineering international conference, Salt Lake City, March 14-18 2015. 2015.

[T4] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez. Task-based multifrontal QR
solver for GPU-accelerated multicore architectures. Presentation at the Sparse Days
in St Girons international conference, St Girons, June 29 - July 2 2015. 2015.

[T5] A. Decollas and F. Lopez. Direct methods on GPU-based systems, preliminary work
towards a functioning code. Presentation at the Sparse Days workshop, Toulouse,
June 2012. 2012.

133

References

[1] E. Agullo. “On the out-of-core factorization of large sparse matrices”. PhD thesis.
École Normale Supérieure de Lyon, Nov. 2008.

[2] E. Agullo, P. R. Amestoy, A. Buttari, A. Guermouche, J.-Y. L’Excellent, and
F.-H. Rouet. Robust memory-aware mappings for parallel multifrontal factoriza-
tions. Submitted to SIAM SISC. 2012.

[3] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, J. Langou, H. Ltaief, and S. To-
mov. “LU factorization for accelerator-based systems”. In: AICCSA. 2011, pp. 217–
224. doi: http://dx.doi.org/10.1109/AICCSA.2011.6126599.

[4] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, S. Thibault, and S. To-
mov. “QR Factorization on a Multicore Node Enhanced with Multiple GPU Accel-
erators”. In: Proceedings of 25th International Parallel and Distributed Processing
Symposium (IPDPS’11). 2011, pp. 932–943. doi: http://doi.ieeecomputersociety.

org/10.1109/IPDPS.2011.90.

[5] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault, and S.
Tomov. “A Hybridization Methodology for High-Performance Linear Algebra Soft-
ware for GPUs”. In: in GPU Computing Gems, Jade Edition 2 (2011), pp. 473–
484.

[6] E. Agullo, O. Beaumont, L. Eyraud-Dubois, J. Herrmann, S. Kumar, L. Marchal,
and S. Thibault. “Bridging the Gap between Performance and Bounds of Cholesky
Factorization on Heterogeneous Platforms”. In: Heterogeneity in Computing Work-
shop 2015. Hyderabad, India, May 2015. url: https://hal.inria.fr/hal-

01120507.

[7] E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and T. Takahashi. Task-
based FMM for heterogeneous architectures. Research Report RR-8513. Inria, Apr.
2014, p. 29. url: https://hal.inria.fr/hal-00974674.

[8] E. Agullo, C. Coti, J. Dongarra, T. Herault, and J. Langou. “QR factorization of
tall and skinny matrices in a grid computing environment”. In: Parallel Distributed
Processing (IPDPS), 2010 IEEE International Symposium on. Apr. 2010, pp. 1–11.
doi: 10.1109/IPDPS.2010.5470475.

[9] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P.
Luszczek, and S. Tomov. “Numerical linear algebra on emerging architectures: The
PLASMA and MAGMA projects”. In: Journal of Physics: Conference Series 180.1
(2009), p. 012037. url: http://stacks.iop.org/1742-6596/180/i=1/a=012037.

[10] E. Agullo, J. Dongarra, R. Nath, and S. Tomov. “Fully Empirical Autotuned QR
Factorization For Multicore Architectures”. In: CoRR abs/1102.5328 (2011).

[11] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann, 2002.

135

References

[12] P. R. Amestoy, T. A. Davis, and I. S. Duff. “Algorithm 837: AMD, an approxi-
mate minimum degree ordering algorithm”. In: ACM Transactions On Mathemat-
ical Software 33(3) (2004), pp. 381–388.

[13] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. “MUMPS: a general
purpose distributed memory sparse solver”. In: Proceedings of PARA2000, the Fifth
International Workshop on Applied Parallel Computing, Bergen, June 18-21. Ed. by
A. H. Gebremedhin, F. Manne, R. Moe, and T. Sørevik. Lecture Notes in Computer
Science 1947. Springer-Verlag, 2000, pp. 122–131.

[14] P. R. Amestoy, I. S. Duff, and C. Puglisi. “Multifrontal QR factorization in a
multiprocessor environment”. In: Int. Journal of Num. Linear Alg. and Appl. 3(4)
(1996), pp. 275–300.

[15] E. Anderson et al. LAPACK Users’ Guide. Third. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 1999. isbn: 0-89871-447-8 (paperback).

[16] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer. “Communication-Avoiding
QR Decomposition for GPUs”. In: Proceedings of the 2011 IEEE International
Parallel & Distributed Processing Symposium. IPDPS ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 48–58. isbn: 978-0-7695-4385-7. doi: 10.1109/

IPDPS.2011.15. url: http://dx.doi.org/10.1109/IPDPS.2011.15.

[17] K. Asanovic et al. The Landscape of Parallel Computing Research: A View from
Berkeley. Tech. rep. UCB/EECS-2006-183. TECHNICAL REPORT, UC BERKE-
LEY, 2006.

[18] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. “StarPU: A Unified
Platform for Task Scheduling on Heterogeneous Multicore Architectures”. In: Con-
currency and Computation: Practice and Experience, Special Issue: Euro-Par 2009
23 (2 Feb. 2011), pp. 187–198. doi: 10.1002/cpe.1631. url: http://hal.inria.

fr/inria-00550877.

[19] E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and E. S. Quintana-
Ort́ı. “An Extension of the StarSs Programming Model for Platforms with Multiple
GPUs”. In: Euro-Par. 2009, pp. 851–862. doi: 10.1007/978-3-642-03869-3_79.

[20] R. M. Badia, J. R. Herrero, J. Labarta, J. M. Pérez, E. S. Quintana-Ort́ı, and
G. Quintana-Ort́ı. “Parallelizing dense and banded linear algebra libraries using
SMPSs”. In: Concurrency and Computation: Practice and Experience 21.18 (2009),
pp. 2438–2456.

[21] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz.
“Communication lower bounds and optimal algorithms for numerical linear alge-
bra”. In: Acta Numerica 23 (May 2014), pp. 1–155. issn: 1474-0508. doi: 10 .

1017/S0962492914000038. url: http://journals.cambridge.org/article_

S0962492914000038.

[22] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. “Minimizing Communication in
Numerical Linear Algebra”. In: SIAM Journal on Matrix Analysis and Applications
32.3 (2011), pp. 866–901. doi: 10.1137/090769156. eprint: http://dx.doi.org/

10.1137/090769156. url: http://dx.doi.org/10.1137/090769156.

[23] Å. Björck. Numerical methods for Least Squares Problems. Philadelphia: SIAM,
1996.

[24] T. O. architecture review board. OpenMP 4.0 Complete specifications. 2013.

136

References

[25] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and J. J. Dongarra.
“PaRSEC: Exploiting Heterogeneity to Enhance Scalability”. In: Computing in
Science and Engineering 15.6 (2013), pp. 36–45. doi: 10.1109/MCSE.2013.98.
url: http://dx.doi.org/10.1109/MCSE.2013.98.

[26] G. Bosilca, A. Bouteiller, A. Danalis, T. Hérault, P. Lemarinier, and J. Dongarra.
“DAGuE: A generic distributed DAG engine for High Performance Computing”.
In: Parallel Computing 38.1-2 (2012), pp. 37–51. doi: 10.1016/j.parco.2011.

10.003.

[27] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Luszczek, and J. Dongarra.
“Dense Linear Algebra on Distributed Heterogeneous Hardware with a Symbolic
DAG Approach”. In: Scalable Computing and Communications: Theory and Prac-
tice (2013), pp. 699–733.

[28] G. Bosilca et al. “Distibuted Dense Numerical Linear Algebra Algorithms on mas-
sively parallel architectures: DPLASMA”. In: Proceedings of the 25th IEEE Inter-
national Symposium on Parallel and Distributed Processing Workshops and Phd Fo-
rum (IPDPSW’11), PDSEC 2011. Anchorage, United States, May 2011, pp. 1432–
1441. url: https://hal.inria.fr/hal-00809680.

[29] H. Bouwmeester, M. Jacquelin, J. Langou, and Y. Robert. “Tiled QR Factoriza-
tion Algorithms”. In: Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. SC ’11. Seattle, Washington:
ACM, 2011, 7:1–7:11. isbn: 978-1-4503-0771-0. doi: 10.1145/2063384.2063393.
url: http://doi.acm.org/10.1145/2063384.2063393.

[30] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier, S.
Thibault, and R. Namyst. “hwloc: A Generic Framework for Managing Hardware
Affinities in HPC Application”. In: Parallel, Distributed and Network-Based Pro-
cessing (PDP), 2010 18th Euromicro International Conference. Feb. 2010, pp. 180–
186. doi: 10.1109/PDP.2010.67.

[31] A. Buttari. “Fine granularity sparse QR factorization for multicore based systems”.
In: Proceedings of the 10th international conference on Applied Parallel and Scien-
tific Computing - Volume 2. PARA’10. Reykjavik, Iceland: Springer-Verlag, 2012,
pp. 226–236. isbn: 978-3-642-28144-0. url: http://dx.doi.org/10.1007/978-

3-642-28145-7_23.

[32] A. Buttari. “Fine-Grained Multithreading for the Multifrontal QR Factorization of
Sparse Matrices”. In: SIAM Journal on Scientific Computing 35.4 (2013), pp. C323–
C345. eprint: http://epubs.siam.org/doi/pdf/10.1137/110846427. url:
http://epubs.siam.org/doi/abs/10.1137/110846427.

[33] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov. “The
impact of multicore on math software”. In: Proceedings of the 8th international
conference on Applied parallel computing: state of the art in scientific computing.
PARA’06. Ume̊a;, Sweden: Springer-Verlag, 2007, pp. 1–10. isbn: 3-540-75754-6,
978-3-540-75754-2. url: http : / / dl . acm . org / citation . cfm ? id = 1775059 .

1775061.

[34] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. “A class of parallel tiled linear
algebra algorithms for multicore architectures”. In: Parallel Comput. 35 (1 Jan.
2009), pp. 38–53. issn: 0167-8191. doi: 10.1016/j.parco.2008.10.002. url:
http://dl.acm.org/citation.cfm?id=1486274.1486415.

137

References

[35] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. “Parallel tiled QR factorization
for multicore architectures”. In: Concurr. Comput. : Pract. Exper. 20.13 (2008),
pp. 1573–1590. issn: 1532-0626. doi: 10.1002/cpe.v20:13.

[36] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter. “Versatile, Scal-
able, and Accurate Simulation of Distributed Applications and Platforms”. Anglais.
In: Journal of Parallel and Distributed Computing 74.10 (June 2014), pp. 2899–
2917. doi: 10.1016/j.jpdc.2014.06.008.

[37] E. Chan, F. G. V. Zee, P. Bientinesi, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı, and
R. A. van de Geijn. “SuperMatrix: a multithreaded runtime scheduling system for
algorithms-by-blocks”. In: PPOPP. 2008, pp. 123–132.

[38] M. Cosnard and M. Loi. “Automatic task graph generation techniques”. In: System
Sciences, 1995. Proceedings of the Twenty-Eighth Hawaii International Conference
on. Vol. 2. Jan. 1995, 113–122 vol.2. doi: 10.1109/HICSS.1995.375471.

[39] E. J. Craig. “The N-step iteration procedures”. In: Journal of Mathematics and
Physics 34 (1955), pp. 64–73.

[40] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. “A column approximate
minimum degree ordering algorithm”. In: ACM Trans. Math. Softw. 30.3 (Sept.
2004), pp. 353–376. issn: 0098-3500. doi: 10.1145/1024074.1024079. url: http:

//doi.acm.org/10.1145/1024074.1024079.

[41] T. Davis. Direct Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, 2006. doi: 10.1137/1.9780898718881. eprint: http://

epubs.siam.org/doi/pdf/10.1137/1.9780898718881. url: http://epubs.

siam.org/doi/abs/10.1137/1.9780898718881.

[42] T. A. Davis. “Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-
revealing sparse QR factorization”. In: ACM Trans. Math. Softw. 38.1 (Dec. 2011),
8:1–8:22. issn: 0098-3500. doi: 10.1145/2049662.2049670. url: http://doi.

acm.org/10.1145/2049662.2049670.

[43] T. A. Davis and Y. Hu. “The university of Florida sparse matrix collection”. In:
ACM Trans. Math. Softw. 38.1 (Dec. 2011), 1:1–1:25. issn: 0098-3500. url: http:

//doi.acm.org/10.1145/2049662.2049663.

[44] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. “Communication-optimal
Parallel and Sequential QR and LU Factorizations”. In: SIAM J. Sci. Comput.
34.1 (Feb. 2012), pp. 206–239. issn: 1064-8275. url: http://dx.doi.org/10.

1137/080731992.

[45] E. W. Dijkstra. “Een algorithme ter voorkoming van de dodelijke omarming”. cir-
culated privately. 1965. url: http://www.cs.utexas.edu/users/EWD/ewd01xx/

EWD108.PDF.

[46] E. W. Dijkstra. “The Mathematics Behind the Banker’s Algorithm”. English. In:
Selected Writings on Computing: A personal Perspective. Texts and Monographs in
Computer Science. Springer New York, 1982, pp. 308–312. isbn: 978-1-4612-5697-7.
doi: 10.1007/978-1-4612-5695-3_54. url: http://dx.doi.org/10.1007/978-

1-4612-5695-3_54.

[47] J. Dongarra, M. Faverge, T. Hérault, M. Jacquelin, J. Langou, and Y. Robert. “Hi-
erarchical QR factorization algorithms for multi-core clusters”. In: Parallel Com-
puting 39.4-5 (2013), pp. 212–232. url: http://hal.inria.fr/hal-00809770.

138

References

[48] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
New York, NY, USA: Oxford University Press, Inc., 1986. isbn: 0-198-53408-6.

[49] I. S. Duff and J. K. Reid. “The multifrontal solution of indefinite sparse symmet-
ric linear systems”. In: ACM Transactions On Mathematical Software 9 (1983),
pp. 302–325.

[50] L. Eyraud-Dubois, L. Marchal, O. Sinnen, and F. Vivien. “Parallel Scheduling of
Task Trees with Limited Memory”. In: ACM Trans. Parallel Comput. 2.2 (June
2015), 13:1–13:37. issn: 2329-4949. doi: 10.1145/2779052. url: http://doi.

acm.org/10.1145/2779052.

[51] L. Eyraud-Dubois, L. Marchal, O. Sinnen, and F. Vivien. “Parallel scheduling of
task trees with limited memory”. In: CoRR abs/1410.0329 (2014). url: http:

//arxiv.org/abs/1410.0329.

[52] M. Garland, S. L. Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E.
Phillips, Y. Zhang, and V. Volkov. “Parallel Computing Experiences with CUDA”.
In: IEEE Micro 28.4 (2008), pp. 13–27.

[53] T. Gautier, F. Le Mentec, V. Faucher, and B. Raffin. “X-kaapi: A Multi Paradigm
Runtime for Multicore Architectures”. In: 42nd International Conference on Par-
allel Processing, ICPP 2013, Lyon, France, October 1-4, 2013. 2013, pp. 728–735.
doi: 10.1109/ICPP.2013.86. url: http://dx.doi.org/10.1109/ICPP.2013.86.

[54] A. Geist and E. G. Ng. “Task scheduling for parallel sparse Cholesky factorization”.
In: Int J. Parallel Programming 18 (1989), pp. 291–314.

[55] A. J. George. “Nested dissection of a regular finite-element mesh”. In: SIAM J.
Numer. Anal. 10.2 (1973), pp. 345–363.

[56] T. George, V. Saxena, A. Gupta, A. Singh, and A. R. Choudhury. “Multifrontal
Factorization of Sparse SPD Matrices on GPUs”. In: Proceedings of 25th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’11). 2011, pp. 372–
383.

[57] W. Givens. “Computation of Plane Unitary Rotations Transforming a General
Matrix to Triangular Form”. English. In: Journal of the Society for Industrial and
Applied Mathematics 6.1 (1958), pp. 26–50. issn: 03684245. url: http://www.

jstor.org/stable/2098861.

[58] G. Golub. “Numerical methods for solving linear least squares problems”. English.
In: Numerische Mathematik 7.3 (1965), pp. 206–216. issn: 0029-599X. doi: 10.

1007/BF01436075. url: http://dx.doi.org/10.1007/BF01436075.

[59] G. H. Golub and C. F. Van Loan. Matrix Computations. 4th ed. Baltimore, MD.:
Johns Hopkins Press, 2012.

[60] A. Guermouche, J.-Y. L’Excellent, and G. Utard. “Impact of Reordering on the
Memory of a Multifrontal Solver”. In: Parallel Computing 29.9 (2003), pp. 1191–
1218.

[61] B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra. “Tile QR factorization with parallel
panel processing for multicore architectures”. In: IPDPS. IEEE, 2010, pp. 1–10.
url: http://dx.doi.org/10.1109/IPDPS.2010.5470443.

[62] T. D. R. Hartley, E. Saule, and Ü. V. Çatalyürek. “Improving performance of
adaptive component-based dataflow middleware”. In: Parallel Computing 38.6-7
(2012), pp. 289–309.

139

References

[63] M. T. Heath. “Some Extensions of an Algorithm for Sparse Linear Least Squares
Problems”. In: SIAM Journal on Scientific and Statistical Computing 3.2 (1982),
pp. 223–237. doi: 10.1137/0903014. eprint: http://dx.doi.org/10.1137/

0903014. url: http://dx.doi.org/10.1137/0903014.

[64] P. Hénon, P. Ramet, and J. Roman. “PaStiX: A High-Performance Parallel Direct
Solver for Sparse Symmetric Definite Systems”. In: Parallel Computing 28.2 (Jan.
2002), pp. 301–321.

[65] H. P. Hofstee. “Power Efficient Processor Architecture and The Cell Processor”. In:
Proceedings of the 11th International Symposium on High-Performance Computer
Architecture. HPCA ’05. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 258–262. isbn: 0-7695-2275-0. doi: 10 . 1109 / HPCA . 2005 . 26. url: http :

//dx.doi.org/10.1109/HPCA.2005.26.

[66] J. D. Hogg and J. A. Scott. An indefinite sparse direct solver for large problems
on multicore machines. Tech. rep. RAL-TR-2010-011. Rutherford Appleton Labo-
ratory, 2010.

[67] J. Hogg, E. Ovtchinnikov, and J. Scott. A sparse symmetric indefinite direct solver
for GPU architectures. Tech. rep. RAL-P-2014-006. STFC Rutherford Appleton
Lab., 2014. url: https://epubs.stfc.ac.uk/work/12189719.

[68] J. Hogg, J. K. Reid, and J. A. Scott. “Design of a Multicore Sparse Cholesky Fac-
torization Using DAGs”. In: SIAM J. Scientific Computing 32.6 (2010), pp. 3627–
3649.

[69] A. S. Householder. “Unitary Triangularization of a Nonsymmetric Matrix”. In: J.
ACM 5.4 (Oct. 1958), pp. 339–342. issn: 0004-5411. doi: 10.1145/320941.320947.
url: http://doi.acm.org/10.1145/320941.320947.

[70] A. Hugo, A. Guermouche, P.-A. Wacrenier, and R. Namyst. “A Runtime Approach
to Dynamic Resource Allocation for Sparse Direct Solvers”. In: Parallel Processing
(ICPP), 2014 43rd International Conference on. Sept. 2014, pp. 481–490. doi:
10.1109/ICPP.2014.57.

[71] A. Hugo, A. Guermouche, P.-A. Wacrenier, and R. Namyst. “Composing multiple
StarPU applications over heterogeneous machines: A supervised approach”. In:
International Journal of High Performance Computing Applications 28.3 (2014),
pp. 285–300. doi: 10.1177/1094342014527575. eprint: http://hpc.sagepub.

com/content/28/3/285.full.pdf+html. url: http://hpc.sagepub.com/

content/28/3/285.abstract.

[72] A.-E. Hugo. “Composability of parallel codes on heterogeneous architectures”. The-
ses. Université de Bordeaux, Dec. 2014. url: https://tel.archives-ouvertes.

fr/tel-01162975.

[73] F. D. Igual, E. Chan, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı, R. A. van de Geijn,
and F. G. V. Zee. “The FLAME approach: From dense linear algebra algorithms
to high-performance multi-accelerator implementations”. In: J. Parallel Distrib.
Comput. 72.9 (2012), pp. 1134–1143.

[74] M. Jacquelin, L. Marchal, Y. Robert, and B. Uçar. “On Optimal Tree Traversals
for Sparse Matrix Factorization”. In: Proceedings of 25th International Parallel and
Distributed Processing Symposium (IPDPS’11). IEEE Computer Society, 2011.

[75] L. V. Kalé and S. Krishnan. “CHARM++: A Portable Concurrent Object Oriented
System Based On C++”. In: OOPSLA. 1993, pp. 91–108.

140

References

[76] K. Kim and V. Eijkhout. “A Parallel Sparse Direct Solver via Hierarchical DAG
Scheduling”. In: ACM Trans. Math. Softw. 41.1 (Oct. 2014), 3:1–3:27. issn: 0098-
3500.

[77] K. Kim and V. Eijkhout. “Scheduling a Parallel Sparse Direct Solver to Multiple
GPUs”. In: Parallel and Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), 2013 IEEE 27th International. May 2013, pp. 1401–1408.

[78] D. M. Kunzman and L. V. Kalé. “Programming heterogeneous clusters with accel-
erators using object-based programming”. In: Scientific Programming 19.1 (2011),
pp. 47–62.

[79] J. Kurzak and J. Dongarra. “Fully Dynamic Scheduler for Numerical Computing
on Multicore Processors”. In: LAPACK working note lawn220 (2009).

[80] X. Lacoste. “Scheduling and memory optimizations for sparse direct solver on multi-
core/multi-gpu cluster systems”. PhD thesis. Talence, France: LaBRI, Université
Bordeaux, Feb. 2015. url: http://www.labri.fr/˜ramet/restricted/these_

lacoste_preprint.pdf.

[81] J.-Y. L’Excellent. “Multifrontal methods for large sparse systems of linear equa-
tions: parallelism, memory usage, performance optimization and numerical issues”.
Habilitation. École Normale Supérieure de Lyon, 2012.

[82] J. W. H. Liu. “An Application of Generalized Tree Pebbling to Sparse Matrix
Factorization”. In: SIAM J. Algebraic Discrete Methods 8.3 (July 1987), pp. 375–
395. issn: 0196-5212. doi: 10.1137/0608031. url: http://dx.doi.org/10.1137/

0608031.

[83] J. W. H. Liu. “On the storage requirement in the out-of-core multifrontal method
for sparse factorization”. In: ACM Transactions On Mathematical Software 12
(1986), pp. 127–148.

[84] J. W. H. Liu. “The Role of Elimination Trees in Sparse Factorization”. In: SIAM
Journal on Matrix Analysis and Applications 11 (1990), pp. 134–172.

[85] H. Ltaief, S. Tomov, R. Nath, P. Du, and J. Dongarra. “A Scalable High Performant
Cholesky Factorization for Multicore with GPU Accelerators”. In: VECPAR. 2010,
pp. 93–101.

[86] R. F. Lucas, G. Wagenbreth, D. M. Davis, and R. Grimes. “Multifrontal compu-
tations on GPUs and their multi-core hosts”. In: Proceedings of the 9th interna-
tional conference on High performance computing for computational science. VEC-
PAR’10. Berkeley, CA: Springer-Verlag, 2011, pp. 71–82. isbn: 978-3-642-19327-9.
url: http://dl.acm.org/citation.cfm?id=1964238.1964249.

[87] C.-K. Luk, S. Hong, and H. Kim. “Qilin: exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping”. In: MICRO. 2009, pp. 45–55.

[88] J. D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance
Computers. Tech. rep. Charlottesville, Virginia: University of Virginia, 1991-2007.
url: http://www.cs.virginia.edu/stream/.

[89] R. Nath, S. Tomov, and J. Dongarra. “Accelerating GPU Kernels for Dense Linear
Algebra”. In: VECPAR. 2010, pp. 83–92.

[90] R. Nath, S. Tomov, and J. Dongarra. “An Improved MAGMA GEMM For Fermi
Graphics Processing Units”. In: IJHPCA 24.4 (2010), pp. 511–515.

141

References

[91] C. C. Paige and M. A. Saunders. “LSQR: An Algorithm for Sparse Linear Equations
and Sparse Least Squares”. In: ACM Trans. Math. Softw. 8.1 (Mar. 1982), pp. 43–
71. issn: 0098-3500. doi: 10.1145/355984.355989. url: http://doi.acm.org/

10.1145/355984.355989.

[92] A. Pothen and C. Sun. “A mapping algorithm for parallel sparse Cholesky factor-
ization”. In: SIAM Journal on Scientific Computing 14 (1993), pp. 1253–1253.

[93] G. Quintana-Ort́ı, F. D. Igual, E. S. Quintana-Ort́ı, and R. A. van de Geijn. “Solv-
ing dense linear systems on platforms with multiple hardware accelerators”. In:
PPOPP. 2009, pp. 121–130.

[94] G. Quintana-Ort́ı, E. S. Quintana-Ort́ı, R. A. V. D. Geijn, F. G. V. Zee, and E.
Chan. “Programming matrix algorithms-by-blocks for thread-level parallelism”. In:
ACM Trans. Math. Softw. 36.3 (2009).

[95] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-Core Pro-
cessor Parallelism. O’Reilly, 2007.

[96] S. C. Rennich, D. Stosic, and T. A. Davis. “Accelerating Sparse Cholesky Fac-
torization on GPUs”. In: Proceedings of the Fourth Workshop on Irregular Ap-
plications: Architectures and Algorithms. IA3 ’14. New Orleans, Louisiana: IEEE
Press, 2014, pp. 9–16. isbn: 978-1-4799-7056-8. doi: 10.1109/IA3.2014.6. url:
http://dx.doi.org/10.1109/IA3.2014.6.

[97] F.-H. Rouet. “Memory and performance issues in parallel multifrontal factoriza-
tions and triangular solutions with sparse right-hand sides”. anglais. Thèse de doc-
torat. Toulouse, France: Institut National Polytechnique de Toulouse, Oct. 2012.
url: http://tel.archives-ouvertes.fr/tel-00785748.

[98] P. Sao, X. Liu, R. Vuduc, and X. Li. “A Sparse Direct Solver for Distributed
Memory Xeon Phi-Accelerated Systems”. In: Parallel and Distributed Processing
Symposium (IPDPS), 2015 IEEE International. May 2015, pp. 71–81. doi: 10.

1109/IPDPS.2015.104.

[99] P. Sao, R. W. Vuduc, and X. S. Li. “A Distributed CPU-GPU Sparse Direct Solver”.
In: Euro-Par 2014 Parallel Processing. 2014, pp. 487–498.

[100] E. Schmidt. “Über die Auflösung linearer Gleichungen mit Unendlich vielen un-
bekannten”. German. In: Rendiconti del Circolo Matematico di Palermo (1884-
1940) 25.1 (1908), pp. 53–77. doi: 10.1007/BF03029116. url: http://dx.doi.

org/10.1007/BF03029116.

[101] R. Schreiber and C. Van Loan. “A storage-efficient WY representation for products
of Householder transformations”. In: SIAM J. Sci. Stat. Comput. 10 (1989), pp. 52–
57.

[102] R. Schreiber. “A new implementation of sparse Gaussian elimination”. In: ACM
Transactions On Mathematical Software 8 (1982), pp. 256–276.

[103] R. Sethi. “Complete Register Allocation Problems”. In: Proceedings of the Fifth
Annual ACM Symposium on Theory of Computing. STOC ’73. Austin, Texas, USA:
ACM, 1973, pp. 182–195. doi: 10.1145/800125.804049. url: http://doi.acm.

org/10.1145/800125.804049.

[104] R. Sethi and J. D. Ullman. “The Generation of Optimal Code for Arithmetic
Expressions”. In: J. ACM 17.4 (Oct. 1970), pp. 715–728. issn: 0004-5411. doi:
10.1145/321607.321620. url: http://doi.acm.org/10.1145/321607.321620.

142

References

[105] F. Song, H. Ltaief, B. Hadri, and J. Dongarra. “Scalable Tile Communication-
Avoiding QR Factorization on Multicore Cluster Systems”. In: Proceedings of the
2010 ACM/IEEE International Conference for High Performance Computing, Net-
working, Storage and Analysis. SC ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 1–11. isbn: 978-1-4244-7559-9. doi: 10.1109/SC.2010.48. url:
http://dx.doi.org/10.1109/SC.2010.48.

[106] F. Song, A. YarKhan, and J. Dongarra. “Dynamic task scheduling for linear alge-
bra algorithms on distributed-memory multicore systems”. In: Proceedings of the
ACM/IEEE Conference on High Performance Computing, SC’09. 2009.

[107] L. Stanisic, S. Thibault, A. Legrand, B. Videau, and J.-F. Méhaut. “Faithful Per-
formance Prediction of a Dynamic Task-Based Runtime System for Heterogeneous
Multi-Core Architectures”. In: Concurrency and Computation: Practice and Expe-
rience (May 2015). doi: 10.1002/cpe.

[108] L. Stanisic, S. Thibault, A. Legrand, B. Videau, and J. Méhaut. “Modeling and
Simulation of a Dynamic Task-Based Runtime System for Heterogeneous Multi-
core Architectures”. In: Euro-Par 2014 Parallel Processing - 20th International
Conference, Porto, Portugal, August 25-29, 2014. Proceedings. 2014, pp. 50–62.
doi: 10.1007/978-3-319-09873-9_5. url: http://dx.doi.org/10.1007/978-

3-319-09873-9_5.

[109] S. Tomov, J. Dongarra, and M. Baboulin. “Towards dense linear algebra for hy-
brid GPU accelerated manycore systems”. In: Parallel Computing 36.5-6 (2010),
pp. 232–240.

[110] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. “Dense linear algebra solvers for
multicore with GPU accelerators”. In: IPDPS Workshops. 2010, pp. 1–8.

[111] H. Topcuouglu, S. Hariri, and M.-Y. Wu. “Performance-effective and low-complexity
task scheduling for heterogeneous computing”. In: IEEE Transactions on Paral-
lel and Distributed Systems 13.3 (Mar. 2002), pp. 260–274. issn: 1045-9219. doi:
10.1109/71.993206.

[112] S. Treichler, M. Bauer, and A. Aiken. “Realm: an event-based low-level runtime
for distributed memory architectures”. In: International Conference on Parallel
Architectures and Compilation, PACT ’14, Edmonton, AB, Canada, August 24-
27, 2014. 2014, pp. 263–276. doi: 10.1145/2628071.2628084. url: http://doi.

acm.org/10.1145/2628071.2628084.

[113] F. Van Zee, E. Chan, R. van de Geijn, E. Quintana, and G. Quintana-Orti. “In-
troducing: The Libflame Library for Dense Matrix Computations”. In: Computing
in Science Engineering PP.99 (2009), p. 1. issn: 1521-9615. doi: 10.1109/MCSE.

2009.154.

[114] V. Volkov and J. Demmel. “Benchmarking GPUs to tune dense linear algebra”. In:
SC08. 2008, p. 31.

[115] S. Williams, A. Waterman, and D. Patterson. “Roofline: An Insightful Visual Per-
formance Model for Multicore Architectures”. In: Commun. ACM 52.4 (Apr. 2009),
pp. 65–76. issn: 0001-0782. doi: 10.1145/1498765.1498785. url: http://doi.

acm.org/10.1145/1498765.1498785.

[116] W. Wu, A. Bouteiller, G. Bosilca, M. Faverge, and J. Dongarra. “Hierarchical DAG
scheduling for Hybrid Distributed Systems”. In: 29th IEEE International Parallel &
Distributed Processing Symposium (IPDPS). Hyderabad, India, May 2015, pp. 156–
165.

143

[117] A. YarKhan, J. Kurzak, and J. Dongarra. QUARK Users’ Guide: QUeueing And
Runtime for Kernels. Tech. rep. Innovative Computing Laboratory, University of
Tennessee, 2011.

[118] S. Yeralan, T. Davis, and S. Ranka. Sparse QR factorization on the GPU. Tech.
rep. University of Florida, 2015.

[119] C. D. Yu, W. Wang, and D. Pierce. “A CPU-GPU hybrid approach for the unsym-
metric multifrontal method”. In: Parallel Comput. 37 (12 Dec. 2011), pp. 759–770.
issn: 0167-8191. doi: http://dx.doi.org/10.1016/j.parco.2011.09.002. url:
http://dx.doi.org/10.1016/j.parco.2011.09.002.

[120] D. Zou, Y. Dou, S. Guo, R. Li, and L. Deng. “Supernodal sparse Cholesky factoriza-
tion on graphics processing units”. In: Concurrency and Computation: Practice and
Experience 26.16 (2014), pp. 2713–2726. issn: 1532-0634. doi: 10.1002/cpe.3158.
url: http://dx.doi.org/10.1002/cpe.3158.

