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Resolution enhancement in medical ultrasound
imaging

Marie Ploquin,a Adrian Basarab,b and Denis Kouaméb,*
aUniversity of Toulouse, Toulouse, France
bUniversity of Toulouse, IRIT UMR CNRS 5505, Toulouse, France

Abstract. Image resolution enhancement is a problem of considerable interest in all medical imaging modalities.
Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhance-
ment has been based on optimization of the imaging devices. Although some recent works purport to deal with
image postprocessing, much remains to be done regarding medical image enhancement via postprocessing,
especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound
imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting
that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation
of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multi-
dimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is
estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and
the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the pro-
posed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression
that links the theoretical image resolution to both the image acquisition features (such as the point spread func-
tion) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is three-
fold. First, it allows for automatic resolution improvement. Through a simple model and without any specific
manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclu-
sively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for
the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before
actual processing. Finally, to achieve the previous goal, while classical parametric methods would first estimate
the model order and then the model parameters, our approach estimates the model parameters and the order
simultaneously. The effectiveness of the methodology is validated using two-dimensional synthetic and in vivo
data. We show that, compared to other techniques, our method provides better results from a qualitative and a
quantitative viewpoint.

Keywords: autoregressive; multidimensional processing; super-resolution; ultrasound.

1 Introduction

Ultrasound imaging is one of the most commonly used medical

imaging modalities. Its low cost, nonionizing characteristics,

ease of use, and real-time nature make it the gold standard for

many crucial diagnostic exams, especially in obstetrics and car-

diology. However, there is a compromise to find between imag-

ing depth and resolution. This compromise directly results from

the fundamental principles of ultrasound imaging. Classically,

the resolution of an imaging system is its ability to separate

two close source points. A medical ultrasound image of a struc-

ture consists of a collection of individual signatures of the

elementary components (echoes) of the tissue (scatterers). An

individual signature can be captured through the point spread

function (PSF) of the imaging system. The separability of

two point sources is restricted by the Rayleigh diffraction

limit.1 For years, the enhancement of the resolution has been

based on the optimization of either the transducers, e.g., Refs. 2

and 3, or the devices, e.g., Refs. 4–6. The basic idea is that the

resolution of the ultrasound imaging system depends mainly on

the characteristics of the transducer, such as its center frequency,

bandwidth, and focusing properties. For example, considering

two-dimensional ultrasound imaging, these resolutions in

each spatial dimension are referred to as lateral (rl) and axial

(ra) resolutions and can be expressed by:6

rl ¼ λfnumber ¼ λ
L

D
; ra ¼

1

2

c

Bw

; (1)

where λ is the average ultrasound wavelength, c is the speed of

sound, and fnumber ¼ L∕D, where D and L are, respectively, the

diameter and the focal length of the transducer (sensor). Bw is

the bandwidth of the transducer. rl and ra are the actual spatial

resolution accessible through the PSF of the imaging system.

The higher the frequency, the better is the resolution; thus, the

ultrasound frequency or bandwidth have to be increased to

improve the spatial resolution of ultrasound images, e.g., Ref. 6.

Unfortunately, increasing the ultrasound frequency results in a

decreased imaging depth, thus, one way to improve image
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resolution without decreasing its depth is to use image process-

ing techniques. Recently, this problem of resolution enhance-

ment by the postprocessing of images rather than by device

engineering has received a lot of interest. Investigations have

been mostly limited to general purpose deconvolution tech-

niques, e.g., Refs. 5 and 7–10. This paper is a deepening of pre-

liminary studies introduced in Refs. 11 and 12. The aim of this

paper is twofold. The first aim is to predict, a priori, the achiev-

able improvement in resolution from an image, given the asso-

ciated imaging system. The second objective is to introduce an

effective method for improving the resolution of ultrasound

images. We show that autoregressive (AR) modeling is a tech-

nique that is pertinent in the context of resolution improvement

in ultrasound imaging. However, two problems have to be

solved. The first is the presence of colored or correlated artifact

noise on the radio frequency (RF) lines. The second originates

from the difficulty of simultaneously estimating both the param-

eters and orders of the AR model for real-time purposes.

Interestingly, as shown in this paper, noise does not change any-

thing regarding the resolution, provided the parameters of the

model are estimated correctly. Otherwise, the parameters are

biased if an unsuitable parameter estimation technique is

used (for instance, if a classical least-square-type algorithm13

is used). We present a multidimensional instrumental matrix

estimation technique to overcome these issues of correct param-

eter estimation. Thus, the contribution of this work is threefold:

first it allows for automatic resolution improvement. No estima-

tion of the PSF of an imaging system is needed. This also means

that no specific manual algorithmic parameter tuning is used as

is the case with common methods. Consequently, our technique

simply and exclusively uses the ultrasound RF signal as input

and provides the improved B-mode as output. Second, it allows

the a priori prediction of the resolution improvement via the

knowledge of the parametric model order before actual process-

ing. To the best of our knowledge, no existing ultrasound res-

olution improvement technique has this ability. Third, to achieve

the previous goal, while classical parametric methods would

first estimate the model order and then the model parameters,

our approach estimates the model parameters and orders simul-

taneously. This simultaneous estimation of the model parame-

ters and orders is done through relevant factorization of the

regression matrix. The remainder of this paper is arranged as

follows. Section 2 presents the framework and the models

used to analyze the problem of resolution. In Sec. 3, the RF sig-

nal processing is presented and the results of resolution

improvement are shown in Sec. 4. Finally, Sec. 5 is devoted

to the conclusion and general discussions.

2 Framework and Models

2.1 Background on Ultrasound Imaging and
Resolution Quantification Through a Model

One of the most common ultrasound imaging representations is

known as B-mode. The envelopes of individual signals received

from structures to be imaged or RF signals are computed after

beamforming, filtered, log-compressed, and, finally, displayed

in gray levels (Fig. 1). Given an individual baseband RF

echo gðzÞ, its envelope is, thus, defined by:

P0ðzÞ ¼ jgI∕QðzÞj; (2)

with

gI∕QðzÞ ¼ gðzÞ þ jHT½gðzÞ'; (3)

where j2 ¼ −1 and gI∕Q is referred to as the complex analytical

signal [or nondemodulated In-phase and Quadrature (I∕Q) sig-

nal]. The envelope is obtained through step B of Fig. 1 and HT½ '
denotes the Hilbert transform used in step A of Fig. 1. In step B,

the magnitude of gI∕Q is computed. For a real-value narrowband

(echo) signal gðtÞ, the Hilbert transform is defined by:

HT½gðzÞ' ¼ −gðzÞ ⊗
1

πz
; (4)

where⊗ stands for the convolution product. Step C of Fig. 1 is a

log compression and step D is a conversion to gray levels. All

the B-mode echoes are then juxtaposed to be displayed as an

image. Here, we are interested in post-beamforming imaging.

2.2 Proposed Parametric Spectral Like
Super-Resolution Approach

Starting from Eq. (2) giving the B-mode representation, we will

show hereafter that an analogy may be done between the

envelope estimation and the classical Fourier-based power spec-

trum density. In the following, the classical Fourier-based power

spectrum density will be referred to as PSD. It is known that the

PSD estimates have poor frequency resolution. One main sol-

ution to improve the resolution of the PSD is to use parametric

methods, such as AR, to estimate the PSD.13,14

Let us begin by recalling a classical result from parametric

AR spectral modeling. The interested reader may refer to, e.g.,

Refs. 13 and 14. Let a given real- or complex-number signal

yðnÞ defined by N samples be modeled by an AR process.

The signal yðnÞ may be rewritten as:

Fig. 1 Principle of B-mode imaging. Like the original ultrasound image, which is a collection of gðzÞ
echoes, the B-mode image is a collection of B-mode echoes.



blue yðnÞ ¼ −
X

M

i¼1

aiyðn − iÞ þ ωðnÞ; (5)

where M is the number of parameters, also referred to as the

model order, ωðnÞ is a zero mean white noise, with variance

σ2, and the parameters ai are complex number parameters.

The methodology also stands for nonwhite noise.

From Eq. (5), it can be shown that the PSD is given by:

PSDyðfÞ ¼
σ2

j1þ
P

M
m¼1 am expð−2πjfmÞj2

; (6)

where j2 ¼ −1 and f stands for the normalized frequency such

that −ð1∕2Þ ≤ f ≤ ð1∕2Þ. From Eq. (6), it can be seen that since

PSDyðfÞ is directly linked to the frequency variable f via the

exponential function, the frequency resolution may be theoreti-

cally not limited, provided the am coefficients and the model

order M are known. The classical spectral analysis may be

resumed as follows. We consider for better readability, without

loss of generality, a noiseless signal yðnÞ (when the signal is

noisy, the results are valid, the signal is split on some short win-

dows, and the PSD is averaged on these windows). To obtain

the PSD of a time or space-varying signal yðnÞ, two possible

paths exist.

• Path 1: From the time or space-varying signal yðnÞ, first
compute the Fourier transform; then take the magnitude

(possibly averaged on short windows) to obtain the PSD,

say PðfÞ.

• Path 2: From the time or space-varying signal yðnÞ, per-
form an AR analysis by first estimating the AR parameter

ai in Eq. (5); then estimate the PSD using Eq. (6).

It is well known that parametric spectral methods (as com-

pared to some classical Fourier spectral analyses) improve the

frequency resolution of a PSD estimation. Moreover, it results

from Fig. 1 that the ultrasound B-mode computation is based

on the estimation of the envelope image. Thus, obtaining the

envelope of an ultrasound signal is very similar to obtaining

the classical PSD (path 1). That is, they are the magnitudes

of, respectively, the complex analytical signal [Eq. (2)] and

the Fourier transform. To improve the resolution of the envelope

of an ultrasound signal, we propose to use the AR modeling as

in classical spectral (PSD) analysis, by following (path 2)

through a domain change.

This is achieved by computing the inverse Fourier transform

of the received echo signal. This is explained by the fact that in

spectral analysis, the time or space signal and the PSD are in two

differents domains (respectively, the time or space domain and

frequency domain), whereas in the envelope estimation, the time

or space signal and the envelope are in the same domain. Thus,

for envelope estimation with AR modeling, we need to change

the processing domain so that this processing domain differs

from the envelope domain. To do so, we go from the time or

space domain to the inverse Fourier domain so that applying

AR modeling yields the original time or space domain. The

parametric spectral model is, thus, applied to the result of the

inverse Fourier transform of the time or space signals, and

gives us an estimation of envelope of the ultrasound signal

(instead of the PSD). This is the dual part of Eqs. (5) and

(6). Equation (5) is in the time or space domain and Eq. (6)

in the frequency domain. Thus, performing an inverse Fourier

transform of the RF signal and then using Eqs. (5) and (6) on this

inverse Fourier transform leads to a new (better resolved)

envelope signal.

The domain change and the super-resolved envelope estima-

tion method are further detailed below.

Let us consider the spatial resolution analysis problem and,

especially, the evaluation of the resolution. Consider two point

objects, separated by a distance d, receiving a beam and reflect-

ing ultrasound toward the emitting transducer. Assume the PSF

of this imaging system is g, and assume its envelope has an abso-

lute maximum, causal and zero at infinity.

Also assume all the parameters of the ultrasound imaging

system (speed of sound, frequency, attenuation, etc.) are fixed.

The two point sources located at d1 and d2 ¼ d1 þ d produce

the echoes gðz − d1Þ and gðz − d1 − dÞ, respectively (see

Fig. 2).

Performing a trivial variable change and sampling above the

Nyquist frequency, the received echo signal can be written as:

yðzkÞ ¼ α1g

"

zk þ
d

2

#

þ α2g

"

zk −
d

2

#

þ wðzkÞ; (7)

where α1 and α2 denote the uncorrelated random magnitude of

each point and are related to the acoustic properties of the point

sources. wðzkÞ is an additive zero mean Gaussian white noise

with variance σ2w. Each point’s response is, thus, a convolution

of a band-limited PSF envelope with a Dirac peak located at

d1 ¼ −ðd∕2Þ and d2 ¼ ðd∕2Þ.
Applying the inverse Fourier transform to Eq. (7), we obtain:

YðukÞ ¼ α1GðukÞ exp

"

−j2π
d

2
uk

#

þα2GðukÞ exp

"

j2π
d

2
uk

#

þWðukÞ: (8)

The AR model is then applied to Eq. (8) to improve the

envelope resolution.

In the following, we consider different assumptions:

• The speed of sound is constant over the imaged tissues.

• The two point sources are sufficiently close to have the

same attenuation.

• We consider, without loss of generality, that the PSF has a

unit energy.

Fig. 2 Two-point sources.



What we are interested in here is finding a practical way to

access the resolution.

Let us summarize the proposed method. From the received

ultrasound RF signal yðzkÞ, we first perform an inverse Fourier

transform to obtain YðukÞ, then we apply an AR model using

YðukÞ [that is, we replace yðnÞ in Eq. (5) by YðukÞ instead of

yðzkÞ], and, finally, we estimate the envelope by using Eq. (6) as

shown below:

yðzkÞ !
FT−1

YðukÞ !
ARmodel

SARðzÞ;

where zk and z are time or space variables. zk is discrete time (or

space), whereas z is the continuous-time (or space) variable

according to Eq. (6); SARðzÞ ∈ R
þ. Instead of providing an esti-

mated PSD, the parametric spectral method gives us SARðzÞ, an
estimated envelope of yðzÞ, thanks to the inverse Fourier trans-

form previously computed. SARðzÞ is, thus, a parametric spectral

like an envelope. Note that any other high-resolution spectral

analysis method can be used instead of AR modeling, which

is used here for convenience and simple derivations.

We now investigate the relevance of the method by analyzing

the relationship among the resolution, signal-to-noise ratio

(SNR), and the model features.

Let us, thus, define

θ ¼ ½a1; a2; : : : ; aM'
T : (9)

The estimate of θ will be further denoted by θ̂.

In this context, by ignoring the constant, which is not useful

here, Eq. (6) can be rewritten as

SARðzÞ ¼
1

AðzÞ
; (10)

where SAR is the super-resolved envelope of the RF signal, and

AðzÞ ¼ ð1 − zH θ̂Þ)ð1 − zH θ̂Þ; (11)

where T and H stand, respectively, for the transpose and trans-

pose conjugate operators, and

z ¼ ½expðjzÞ; expðj2zÞ: : : expðjmzÞ'T : (12)

A practical condition15–17 for determining the resolution abil-

ity is analyzing AðzÞ [rather than SARðzÞ] at the center location

of the interval d, i.e., compare Að0Þ with the average of the

envelope evaluated at locations d1 and d2. To do so, it is

common to define the quantity

R ¼ Að−d∕2Þ þ Aðd∕2Þ − 2 Að0Þ; (13)

and the resolution problem comes to the point of hypothesis test-

ing:
%

R < 0: the two points are resolved

R ≥ 0: the two points are not resolved
: (14)

Actually, the resolution limit case corresponds to

R ¼ 0: (15)

From Eqs. (5) and (8), let us define

ϕðuk − 1Þ ¼ ½Yðuk − 1Þ: : : :Yðuk −MÞ'T ; (16)

Cy ¼ E½ϕðuk − 1ÞϕHðuk − 1Þ'; (17)

Ψ ¼ E½ϕðuk − 1ÞY)ðukÞ'; (18)

z̄p ¼ ½expðjz̄pÞ; expðj2z̄pÞ: : : expðjMz̄pÞ'
T ; (19)

with p ¼ f1;2; 3g and z̄1 ¼ −
d

2
; z̄2 ¼

d

2
; z̄3 ¼ 0;

(20)

where Cy is the data covariance matrix. Note that Cy explicitly

depends on the model order M.

These provide the least square estimate given by

θ̂ ¼ C−1y Ψ: (21)

Thus, when θ̂ is estimated, R in Eq. (13) can be estimated

using Eq. (11). Thus, solving Eq. (15) makes it possible to estab-

lish a nonlinear relation among the resolution limit, the SNR,

and the model order (see Sec. 2.3).

2.3 Resolution Analysis

Here, we perform resolution analysis with respect to the imaging

features. For readability, from Eq. (7), we set α1 ¼ α2, and

SNR ¼ α21∕σ
2
w in all the following. Here, we perform an analysis

with different kinds of PSF.

2.3.1 Ideal case

First, we consider the ideal case in which we set gðzÞ ¼ δðzÞ in
Eq. (7), which means y is wide-band. When y is wide-band, i.e.,

GðuÞ ∼ 1, an explicit nonlinear expression, can be provided.

Indeed, from Eqs. (8) and (17) comes

Cy ¼ α21z̄
H
1 z̄1 þ α22z̄

H
2 z̄2 þ σ2wI: (22)

Define

τkl ¼
z̄kz̄

H
l

M
; (23)

with k; l ∈ f1;2; 3g. Using either the matrix inversion lemma or

eigenvalue/vector decomposition,16,17 it can be shown that R in

Eq. (13) yields

RðM;Δ; SNRÞ ¼ jB1j
2 þ jB2j

2 − 2jB3j
2; (24)

where

B1 ¼ β1M þ β2Mτ12 − 1;

B2 ¼ β1Mτ21 þ β2M − 1;

B3 ¼ β1Mτ31 þ β2Mτ32 − 1;

β1 ¼ SNRþ
MðSNRÞ2½MðSNRÞðjτ12j

2 − 1Þ − ð1þ τ12Þ'

½MðSNRÞ þ 1'2 − ½MðSNRÞjτ12j'
2

;

β2 ¼ SNRþ
MðSNRÞ2½MðSNRÞðjτ12j

2 − 1Þ − ð1þ τ21Þ'

½MðSNRÞ þ 1'2 − ½MðSNRÞjτ12j'
2

:



This particular case is similar to the work reported in Ref. 17.

Solving this nonlinear equation provides the resolution. The

results are shown in Fig. 3. Thus, the resolution increases

with the model order and the SNR. However, this relation is

not clear for a low SNR (<0 dB). This means better resolution

may not be achieved for a very low SNR. In practical applica-

tions, one does not consider an SNR <0 dB.

2.3.2 Gaussian envelope

Let us now consider the PSF as gðuÞ ¼ e−ðu
2∕2χ2Þ cosð2πf0uÞ.

We define B ¼ ð1∕2πχÞ. The relative (frequency) bandwidth of

g is then defined by B∕f0, with f0 the center frequency of the

transducer. In ultrasound imaging, this is an important parameter

that is used to characterize the transducers.

We consider here relative bandwidths of 30, 50, 100, and

150%. As can be seen in Figs. 4–7, the resolution is directly

related to the bandwidth and the model order.

The curves in Fig. 4 have the same shape as in the ideal case,

but with a lower resolution for a given SNR.

As expected, the resolution increases when the AR model

order increases. Compared to the ideal case, the resolution is

globally worse when the band is taken into account.

From this, and by interpolation, we can give a simple empir-

ical expression for the resolution distance d:

d ¼
KBð1þ 1∕BÞθB

SNRθSð1þMÞθM
; (25)

with KB ¼ 0.29; θB ¼ 0.25; θS ¼ 0.31; θM ¼ 0.52. This

expression shows the relation among resolution, SNR, model

order, and bandwidth. Typically, for ultrasound systems, the

bandwidth is constant. So the higher the order, the better is

the resolution. However, an optimal order should be chosen to

avoid artifacts.

Fig. 3 Signal-to-noise ratio (SNR) versus resolution and order for an
ideal point spread function (PSF). The SNR goes from 25 dB at the top
to −30 dB for the bottom line.

Fig. 4 SNR versus resolution and order for a Gaussian PSF of 30%
relative bandwidth.

Fig. 5 SNR versus resolution and order for a Gaussian PSF of 50%
relative bandwidth.

Fig. 6 SNR versus resolution and order for a Gaussian PSF of 100%
relative bandwidth.



2.3.3 Nonsymmetric ultrasound echo

In ultrasound imaging, ultrasound is emitted through a pulse

which is not symmetrical. In this section, we, hence, use a

nonsymmetric PSF in order to more closely approximate the

medical ultrasound imaging conditions. In this case, based on

the example in Sec. 2.3.2, the PSF is assumed to be gðuÞ ¼
u3e−ðu

2∕2χ2Þ cosð2πf0uÞ, see Fig. 8.

The results in Fig. 9 are similar to the Gaussian envelope

case. This confirms the relationship among the resolution,

model order, and bandwidth of the system (PSF).

The relationship between AR model order and the character-

istics of the transducer PSF is direct but nonlinear. This relation

suggests that finding the order is an important issue for the res-

olution improvement of an ultrasound image processed using an

AR model. A solution is provided in the following sections with

the practical application to ultrasound images.

3 Ultrasound Radio Frequency Signal
Processing

3.1 New Multidimensional Instrumental Matrix
Estimation Technique

As stated above, the B-mode ultrasound image consists of RF

line envelopes. In order to increase the resolution of B-mode

images, these envelopes have to be improved. In this study,

instead of directly estimating the envelopes of the RF signals,

we used specific AR modeling to achieve this via the inverse

Fourier transform of analytical signal gI∕QðzÞ introduced in

Eq. (3). In the following, we will dentote it by y.

Let us consider a second-order stationary multidimensional

complex AR process (ND-AR) defined as follows:

yðn1; n2; : : : ; nNÞ ¼
X

ðk1;k2;: : : ;kNÞ∈I

X

aðk1; k2; : : : ; kNÞ

× yðn1 − k1; n2 − k2; : : : ; nN − kNÞ þ wðn1; n2; : : : ; nNÞ;

(26)

where wðn1; n2; : : : ; nNÞ is a field of random colored or corre-

lated noise, and the parameters aðk1; k2; : : : ; kNÞ are complex

numbers and provide a stable system. We consider here an ND-

model to make our method general and applicable to three-

dimensional (3-D) or four-dimensional (4-D) images. As in

Ref. 18, we focus on the first hyperplane model without loss

of generality. The methodology may be applied to other hyper-

planes, i.e., the set of neighbors is I ¼ fðk1; k2; : : : ; kNÞj
ki ¼ 1;2; : : : ; pi; i ¼ 1;2; : : : ; Ng. For convenience, we

assume that p1 ¼ p2 ¼ : : : pN ¼ m, meaning that the model

orders are identical in all directions. The well known one-dimen-

sional (1-D) instrumental variable technique is a simple and effi-

cient way to overcome basic least-square estimations, which are

biased in the presence of colored noise or correlated data.13 We

propose here a generalization of the 1-D case to a multidimen-

sional structure based on UDVH factorization, allowing access

to recursive estimates of parameters of orders 0 to m. The

approach is based on investigating multiple-dimensional signals

through long vectors, which makes it very simple. In addition,

Fig. 7 SNR versus resolution and order for a Gaussian PSF of 150%
relative bandwidth.

0 10 20 30 40 50 60 70 80 90 100
3

2

1

0

1

2

3

Fig. 8 Example of an asymmetric echo function for g.

Fig. 9 SNR versus resolution and order for symmetrical and nonsym-
metrical PSF.



the algorithm is defined for complex numbers. First, we define

the following vectors where elements of y and a are stacked:

ϕT
mðn1; n2; : : : ; nNÞ ¼

½yðn1; n2; : : : ; nN − 1Þ: : : yðn1; n2; : : : ; nN −mÞ: : :

yðn1; n2 − 1; : : : ; nNÞ: : : yðn1; n2 −m; : : : ; nNÞ: : :

yðn1 −m; n2 −m; : : : ; nN −mÞ: : : yðn1; n2; : : : ; nNÞ%;

(27)

θTmðn1; n2; : : : ; nNÞ ¼

½að0;0; : : : 1; Þ: : : að0;0; : : : mÞað0;1; : : : 0; Þ: : :

að0; m; : : : 0; Þ: : : aðm; 0; : : : ; 0Þ: : : aðm;m;m: : : mÞ: : : 1%:

(28)

Note that yðn1; n2; : : : ; nNÞ and 1 are parts of these vectors.

Defining

xTmðn1; n2; : : : ; nNÞ ¼

½yðn1; n2; : : : ; nN − 1Þ: : : yðn1; n2; : : : ; nN −mÞ: : :

yðn1; n2 − 1; : : : ; nNÞ: : : yðn1; n2 −m; : : : ; nNÞ: : :

yðn1 −m; n2 −m; : : : ; nN −mÞ% (29)

means that

ϕT
mðn1; n2; : : : ; nNÞ ¼ ½xTmðn1; n2; : : : ; nNÞyðn1; n2; : : : ; nNÞ%:

(30)

The instrumental data structure can be defined as

ζTmðn1; n2; : : : ; nNÞ ¼

½zðn1; n2; : : : ; nN − 1Þ: : : zðn1; n2; : : : ; nN −mÞ: : :

zðn1; n2 − 1; : : : ; nNÞ: : : zðn1; n2 −m; : : : ; nNÞ: : :

zðn1 −m; n2 −m; : : : ; nN −mÞ: : : zðn1; n2; : : : ; nNÞ%:

(31)

Different approaches can be used to select the instrument z,

see, e.g., Ref. 19, for example, a solution consists of introducing

a delay for each component of x.

ψT
mðn1; n2; : : : ; nNÞ ¼ ½ζTmðn1; n2; : : : ; nNÞzðn1; n2; : : : ; nNÞ%:

(32)

Defining the data regression matrix as

Pmðn1; n2; : : : ; nNÞ ¼
 

X

n1

i1¼1

: : :
X

nN

iN¼1

ψmðn1; n2; : : : ; nNÞϕH
mðn1; n2; : : : ; nNÞ

"−1

(33)

and assuming that p ¼ ðm þ 1ÞN , the size of this matrix is

p × p. For convenience, the following notations can be used

when no confusion is possible:

• n ¼ ðn1; n2; : : : ; nNÞ

• k ¼ ðk1; k2; : : : ; kNÞ

• and more generally, for any index variable ðt1; t2; : : : ; tNÞ:
t ¼ ðt1; t2; : : : ; tNÞ.

In addition, we denote

•

P

n
i¼1 instead of

Pn1
i1¼1 : : :

PnN
iN¼1

•

P

n−i
i¼1 instead of

Pn1−i
i1¼1 : : :

PnN−i
iN¼1.

We can then write Pm in its factorized form as follows:

PmðnÞ ¼ UmðnÞDmðnÞVH
mðnÞ; (34)

where ð ÞH denotes the Hermitian matrix transpose. The differ-

ence between this and the case presented in Ref. 18 is that the

noise considered in Eq. (26) is a colored or correlated noise.

Thus, through instrumental data as in Eq. (31), we used a matrix

decomposition such as in Eq. (34) in which U ≠ V (taking U ¼
V would have resulted in biased parameter estimates, as in the

case of classical estimation theory). As in Eq. (34),U is an upper

triangular matrix with all its diagonal elements equal to one. The

elements of this upper triangular matrix are column vectors of

dimensions 1 to p defined as follows:

UmðnÞ ¼ ½1 colfϑ0;pðnÞ 1g : : : colfϑp−i;iðnÞ 1g : : :

colfϑp−1;1ðnÞ 1g : : : colfϑp;0ðnÞ 1g %: (35)

Remark:

• ϑp−i;iðnÞ is a column vector of dimension p − i.

• colfϑp−i;iðnÞ 1 g ¼

 

ϑp−i;iðnÞ
1

"

is the ðp − i þ 1Þ’th
column.

• Due to the model structure in Eq. (28), ϑp−i;iðnÞ consists

of parts or all of the instrumental variable estimates of the

true parameters of the model, depending on whether the

model order is smaller or larger than the dimension

of ϑp−i;iðnÞ.

Similarly, V is an upper triangular matrix with all its diagonal

elements equal to one. The other elements of V are different

from those of U. These elements are the intermediate variables

necessary to obtain the matrix decomposition. They also consist

of column vectors of dimensions 1 to p, defined as follows:

VmðnÞ ¼ ½ 1 colf χ0;pðnÞ 1 g : : : f χp−i;iðnÞ 1 g : : :

colf χp−1;1ðnÞ 1 g : : : f χp;0ðnÞ 1 g %: (36)

DmðnÞ in Eq. (34) is a diagonal matrix. Equation (34) is

obtained from successive decompositions. Using Eq. (30) in

Eq. (33), we obtain

P−1m ðnÞ ¼

 
P

n
j¼1 ζmðjÞxHmðjÞ

P

n
j¼1 ζmðjÞyðjÞ

P

n
j¼1 zðjÞx

H
mðjÞ

P

n
j¼1

P

n
j¼1 yðjÞzðjÞ

"

:

(37)

The methodology developed in Ref. 18 may be used to esti-

mate the matrices U, V, and D, and select the estimated param-

eters and orders of the model presented in Eq. (26). The

difference here is that the elements of D are generalized loss

functions for orders 1 to m. The first component of D is then:



Jp;0ðnÞ ¼
X

n

j¼1

½yðjÞ − ŷðjÞ%½zðjÞ − ẑðjÞ%; (38)

where ŷðnÞ ¼
X

n

j¼1

xHmðjÞϑp;0ðnÞ ẑðnÞ ¼
X

n

j¼1

zHmðjÞχp;0ðnÞ

and its p − i column is:

Jp−i;iðnÞ ¼
X

n

j¼1

½yðjÞ − ŷðjÞ%½zðjÞ − ẑðjÞ%.

Note that the result of this last equation is a complex number.

By taking its magnitude value, a cost function is provided. Also,

note that all elements of the matrices are stacked and Dm has

ðmþ 1ÞN × ðmþ 1ÞN elements. Thus, to find the true order

of the model, the following steps may be used:

1. Split elements of Dm into successive segments of m þ
1 elements, and create a new vector, M1, consisting of

the minima of the segments.

2. Repeat step 1 using the above set of minima.

3. Stop when the size of the vector of minima is m þ 1.

This vector is called MN . This procedure needs

N steps.

4. Finally, the minimum of MN gives the true order m0.

Depending on the organization of xHmðnÞ in Eq. (29), the true

parameters may be accessed following the methodology devel-

oped in Ref. 18. The decomposition of Eq. (34) may be per-

formed by batch, or recursively. In this last case, the main

step of the recursion is defined as follows. From Eq. (33), it

can be written as

PmðnÞ ¼ ½P−1m ðn − 1Þ þ ψmðnÞϕH
mðnÞ%−1: (39)

The variables can be defined as follows:

f1 ¼ UT
mðn − 1ÞϕmðnÞ

f2 ¼ VT
mðn − 1ÞψmðnÞ

g1 ¼ Dmðn − 1Þf)
1

g2 ¼ Dmðn − 1Þf)
2

βðnÞ ¼ 1 þ fT1 g2;

where the asterisk denotes the complex conjugate. PmðnÞ can

now be expressed by:

PmðnÞ ¼ UmðnÞDmðnÞVH
mðnÞ

¼ Umðn − 1Þ

 

Dmðn − 1Þ −
g2g

H
1

βðnÞ

"

VH
mðn − 1Þ: (40)

From these recursions, only elements of Um with physical

meanings are retained.

The choice of model order is highly important: the higher the

order, the better is the resolution; this is also the case for noise

artifacts. Thus, this methodology makes it possible to simultane-

ously access the order and the parameters of theN −DARmodel.

3.2 Improvement of Ultrasound Image Resolution

3.2.1 Power spatial density

We consider the model described by Eq. (26) with N ¼ 2. We

also recall13,14 that the PSD is defined in the first quadrant by

Par1ðf1; f2Þ ¼
σ21ðf1; f2Þ

jA1ðf1; f2Þj
2
;

where A1ðf1; f2Þ ¼
X

p1

k1¼0

X

p2

k2¼0

a1½k1; k2%e
−j2πðf1k1þf2k2Þ;

(41)

and in the fourth quadrant by

Par4ðf1; f2Þ ¼
σ24ðf1; f2Þ

jA4ðf1; f2Þj
2

where A4ðf1; f2Þ ¼
X

p1

k1¼0

X

0

k2¼−p2

a4½k1; k2%e
−j2πðf1k1þf2k2Þ:

(42)

To account for the causality and due to the equivalence

between planes,13 the overall PSD is:

Par1;4ðf1; f2Þ ¼
σ2ðf1; f2Þ

1
2
½jA1ðf1; f2Þj

2 þ jA4ðf1; f2Þj
2%
; (43)

where jA1ðf1; f2Þj
2 and jA4ðf1; f2Þj

2 are the denominators in

Eqs. (41) and (43). We used the parametric modeling developed

in Sec. 3.1 to estimate the model parameter. Instead of the PSD,

we obtained an image envelope estimate which is equivalent to

PSD. Thus, to improve the spatial resolution, we applied this

technique to the inverse Fourier transform of the demodulated

Fig. 10 Cost function: the curve shows the loss function after extrac-
tion of the minima. As can be seen, the minimum is achieved for
m0 ¼ 2.



I/Q signal given by the RF signals. Our methodology can, thus,

be summarized as follows:

1. Obtain the Fourier transform of the nondemodulated I/

Q signal in order to be in the Fourier domain.

2. Perform parametric modeling (using the approach pro-

posed in Sec. 3.1).

3. Then estimate PSD and get an envelope of the

demodulated I/Q signal with better resolution.

4 Results

4.1 Example of N-D Model Order and Parameters
Estimation

To illustrate the method presented through Eqs. (26) to (40), we

set N ¼ 2, since our aim is to deal with images, m ¼ 4 and

m0 ¼ 2. We consider the following two-dimensional (2-D) com-

plex AR model as defined in Eq. (28), where the model param-

eters aðk1; k2Þ, k1 ¼ 0;1; 2; k2 ¼ 0;1; 2 are defined as follows.

að0;0Þ ¼ 1 is not estimated.

yðn1; n2Þ ¼
X

2

k1¼0

X

2

k2¼0;ðk1;k2Þ≠ð0;0Þ

aðk1; k2Þyðn1 − k1; n2 − k2Þ

þ wðn1; n2Þ;

with wðn1; n2Þ ¼ eðn1; n2Þ þ ð1 þ 3iÞeðk1 − 1; k2Þ, where y is

a 64 × 64 complex field driven by a complex colored noise

wðn1; n2Þ obtained via eðn1; n2Þ, a Gaussian random field

with variance 0.1. Following the same order determination as

in Ref. 18, we find an order of 2, as can be seen in Fig. 10.

The parameter estimates are shown in Table 1.

4.1.1 Application to ultrasound images

The proposed method was applied to simulation (Fig. 11), in

vitro (Fig. 13) and in vivo images (Fig. 14). For our simulation,

we first generate a synthetic ultrasound image, representing a

homogeneous medium crossed by a vessel, using the Field II

simulation program.20 The simulation parameters were as fol-

lows: central frequency = 3 MHz, number of RF lines simulated

= 256, number of scatterers = 10,000. Then we generate the

same image at a central frequency = 6 MHz, in order to double

the image spatial resolution. The 3 MHz image was processed

using our approach and the result was compared with the 6 MHz

image. As can be seen qualitatively, the results are close to

Fig. 11, last row (from top to bottom). Moreover, a profile of

the envelope is extracted from the same RF lines of these

images. As can be seen in Fig. 12, the profile obtained from

Table 1 Theoretical parameters (top) and estimated parameters
(bottom) aðk1; k2Þ.

1 −1.0000 − 1.0000i 0.0625þ 0.5000i

−1.0000 − 1.0000i 0 þ 2.0000i 0.4375 − 0.5625i

0.0625þ 0.5000i 0.4375 − 0.5625i −0.2461þ 0.0625i

1 −1.0049 − 1.0022i 0.0632þ 0.4833i

−1.0477 − 1.0386i 0.0031þ 2.0308i 0.4373 − 0.5749i

0.0528þ 0.5580i 0.4524 − 0.5728i −0.2447þ 0.0699i

Fig. 11 Comparison between synthetic original and processed images: (a) original 3 MHz image,
(b) 6 MHz image, which is the ground truth, and (c) the processed image obtained from the original
3 MHz image, with our method.



our approach is close to that of the 6 MHz image. Figure 13

shows, for illustration purposes, the results on an in vitro

image using a phantom made of a thread embedded in a gel.

To give an indication of what an expected synthetic image

should look like, the theoretical image is arbitrarily drawn

and shown at the top of Fig. 13. The bottom-left image is

the original 20 MHz ultrasound image, and the bottom right

shows the resulting image after using the proposed method.

The processed image is closer to the expected theoretical

image. We also show, in Fig. 14, the results on an in vivo ultra-

sound image of, from top to bottom, the bladder of a mouse (first

row), a rabbit eye (second row), the uterus of a pregnant mouse

(third row), and a simulation image (fourth row). Qualitatively,

as can be seen in each processed image, the edges are sharpened

by the processing technique, which indicates that the spatial res-

olution has been improved. For spatial resolution estimation, we

use Eq. (25). From this equation, we can compute the improve-

ment in resolution. Given an image and device characteristics,

this equation empirically indicates the theoretical minimal

achievable resolution. This resolution depends on the SNR,

model order, and bandwidth of the ultrasound probe. From

images in Fig. 14, we performed 1-D analysis on individual

RF lines of the images. The estimated axial bandwidth of the

PSF of the probe used to obtain images in Fig. 14 (first three

rows) was 60%. In Table 2, for these images, we evaluated

the improvement in resolution defined by the ratio

Rest∕Ract;

where Ract is the actual resolution [Eq. (1)] for the ultrasound

frequency f0 and Rest is the a posteriori resolution estimated by

our approach. Note that this ratio should be <1 to show resolu-

tion enhancement. The theoretical axial improvement in resolu-

tion obtained for Fig. 14, from top to bottom, first row, second

row, third row, and fourth row, is, respectively, 0.9, 0.7, 0.6, and

0.5, as is shown in Table 2. To evaluate the improvement in lat-

eral resolution, we also performed a 2-D analysis. For the

images in Fig. 13, the estimated bandwith in the axial direction

was 60% and that in the lateral direction was 11%. The orders

found in axial and lateral directions were respectiveley 5 and 5.

The axial and lateral resolution improvements were 0.6 and 0.3,

respectively. We also compared our technique to classical ones,

namely, homomorphic filering, e.g., Ref. 7, and parametric

inverse filtering via hybrid approach (HYPIF) filtering.8 For

this comparison, we used the classical gain in resolution param-

eter, e.g., Refs. 8 and 9, since these methods do not allow the

estimation of the improvement in resolution introduced here.

The results are shown in Table 3. As can be seen, our technique

Fig. 12 Comparison between profiles: profiles of the log-envelope of
an extracted radio frequency line located in the top of Fig. 11 (solid
line) from the synthetic 3 MHz image (solid), the synthetic 6 MHz
image (dash dot), and processed images (dash).

Fig. 13 Comparison between the expected theoretical image (a), the original ultrasound image of a
phantom consisting of a thread embedded in a gel (b), and the processed image (c) obtained from
the original ultrasound image. The thread edge is sharper on the processed image.



outperforms these methods. Moreover, although the primary

goal of the proposed method was not to enhance the contrast

(but the resolution), we also compare our method with the

existing methods in terms of contrast-to-noise ratio (CNR),

see, e.g., Ref. 21. The CNR is defined as

CNR ¼
jμ1 − μ2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ21 þ σ22

p ;

where μ1, μ2, σ1, and σ2 are, respectively, the mean and the vari-

ance of the pixels in two chosen regions of interest highlighted

by the square boxes in Fig. 14. The higher the CNR, the better is

the contrast. As can be seen in Table 4, even if the CNR is not

high for all the images, our method outperforms the existing

ones in all the cases. Finally, Table 5 shows the computation

times of the different methods for an image of size

1024 × 256, using a 2.1 MHz dual core Xeon PC. As can be

Fig. 14 Comparison of visual appreciation of different methods on different images. From left to right, first
column: the original images, second column: the results for homorphic filtering, third column: the results
for HYPIF, and fourth column: the results of the proposed method. From top to bottom, first row: a mouse
bladder image, second row: rabbit eye image, third row: uterus of a pregnant mouse, and fourth row: a
synthetic image.

Table 2 Improvement in resolution. The bandwidth of the used trans-
ducer was 60% except for the simulation one, which was 90%.

Mouse
bladder

Pregnant
mouse Rabbit eye

Synthetic
image

f 0 ¼ 20MHz f 0 ¼ 20MHz f 0 ¼ 20 MHz f 0 ¼3.5MHz

Found
order

79 82 70 70

Rest∕Ract 0.9 0.6 0.7 0.5

Table 3 Empirical gain in resolution.

Mouse
bladder

Pregnant
mouse

Rabbit
eye

Synthetic
image

G (proposed) 11.97 2.76 4.20 3.71

G (HYPIF) 1.1 1.26 1.16 0.49

G (Homorphic) 1 0.99 1.00 0.36

G 3.5 MHz versus
7 MHz

— — — 1.5



seen, the computation time of our method is reasonably low

(although higher than the one of homomorphic filtering).

5 Conclusion and General Remarks

In this work, we first revisited super-resolution theory in the

framework of ultrasound imaging. The improvement of resolu-

tion can be quantified, given the PSF shape, the SNR, and the

AR model order. For better readability, all results and deriva-

tions were presented in 1-D. Then we presented a way to

improve ultrasound image resolution. The methodology devel-

oped is based on specific spectral analysis like modeling, which

fits ultrasound images. Applied to synthetic, in vitro, and in vivo

images, this methodology shows a qualitative and quantitative

resolution improvement. An important characteristic of the pro-

posed approach is its ability to estimate a priori the improve-

ment in resolution. The improvement in resolution achieved

here is up to a ratio of two. To our knowledge, this work is

the first to deal with the a priori estimation of the gain in res-

olution in ultrasound imaging. Finally, comparisons with

existing techniques were provided. The results show that the

proposed method outperforms existing techniques, both in

terms of subjective visual quality and in terms of quantitative

evaluation using the classical gain in resolution. Although we

focus here on the 1-D and 2-D cases and show improvement

of the resolution of ultrasound images using the proposed

method, the methodology proposed may be applied whatever

be the imaging processing dimension (3-D or 4-D).
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Table 4 Contrast-to-noise ratio in decibels. The higher, the better.

Mouse
bladder

Pregnant
mouse

Rabbit
eye

Synthetic
image

G (proposed) 9.2 3.6 −4.9 9.9

G (HYPIF) −15.3 −26.6 −12.8 9.6

G (Homorphic) 07.8 2.9 −5.2 3.8

Original −20.3 −35 −14.3 8.7

Table 5 Computation time (in seconds) for an image of size
1024 × 256.

Method Homomorphic HYPIF Proposed

Computation time (s) 0.04 185.40 0.71




