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ABSTRACT

Visual tracking is dynamic optimization where time and ob-

ject state simultaneously influence the problem. In this pa-

per, we intend to show that we built a tracker from an evolu-

tionary optimization approach, the PSO (Particle Swarm op-

timization) algorithm. We demonstrated that an extension of

the original algorithm where system dynamics is explicitly

taken into consideration, it can perform an efficient tracking.

This tracker is also shown to outperform SIR (Sampling Im-

portance Resampling) algorithm with random walk and con-

stant velocity model, as well as a previously PSO inspired

tracker, SPSO (Sequential Particle Swarm Optimization). Ex-

periments were performed both on simulated data and real vi-

sual RGB-D information. Our PSO inspired tracker can be a

very effective and robust alternative for visual tracking.

Index Terms— visual tracking, particle swarm, particle

filter, video analysis, RGB-D sensors

1. INTRODUCTION

Visual tracking is one of the most studied topics in the re-

search field of video analysis [1]. It has many uses such as

video surveillance, vision-based control and human-computer

interface. These techniques are more and more used in

human-Machine Interaction (HMI) [2], which needs to fuse

a lot of visual information which is given by many sensors

and/or algorithms, which will also be considered as sensors.

For our application, we need to characterize the user’s will to

communicate with a machine also known as ”awareness” in

Human-Machine Interaction community [3].

In visual tracking, two kinds of tracking algorithms are

mainly used. They are Kalman filters and Particle filters.

Kalman filters are widespread in industry and research for

multiple use such as 3D-modeling, path following and object

tracking. Chen in [4] has made a survey on different tech-

niques and algorithm implementations. However the origi-

nal Kalman algorithm is limited to linear problems and be-
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comes more complex if we need to apply variants of this al-

gorithm (unscented, extended) on multimodal and non-linear

cases. Meanwhile, particle filtering is a very simple algo-

rithm adapted to multimodal and non-linear target tracking.

Nevertheless, it requires an increase in the number of parti-

cles to perform efficient estimation, raising its complexity ex-

ponentially with the dimension of the estimated state vector.

This effect, known as dimensionality curse, is very impor-

tant in particle filtering techniques. This becomes a problem

in visual tracking task since we need to approach real time

tracking by decreasing the computing time, i.e. decreasing

the number of particles.

For many years, Particle Swarm Optimization (PSO) has

been gaining attention [5], [6], since this algorithm is able to

solve non-linear, multimodal and high-dimensional optimiza-

tion problems. Contrary to other particle-based algorithms,

particles interact with each other with a ”social” and ”cogni-

tive” component in the update equation. This leads to finer

particle behaviour during the process of optimization. Fur-

thermore, the computation cost remains low since only one

computation of fitness function per iteration and per particle is

needed, which is, usually, the bottle-neck part in visual track-

ing problems.

In this paper, a new approach on PSO based tracking is

proposed, merging particle filter versatility with a lower com-

putational cost, adapting to real time constraints. The idea

is also to keep the ”PSO behaviour” of particles which seems

more interesting than the usual ”particle filter behaviour”. Be-

cause of its social and cognitive components, particles of PSO

algorithm interact with each other, contrary to particle filter.

We think that this behaviour could lead to a more efficient es-

timation of the target as there is no particle degeneration in

PSO. Therefore, a resampling step becomes needless and we

can boost the algorithm execution. Finally, like the particle

filter with constant velocity model, the PSO has an implicit

estimation of state vector speed, which seems to model the

system dynamics better than a standard particle filter. But

contrary to the former particle filter, we do not need to dou-

ble the state vector dimension to perform the estimation, since

only the speed in PSO has a random component.



In a first section we will present some related works, then,

we will focus on the formalism of the Particle Swarm Op-

timization algorithm and our new PSO-based tracker. Next,

we will implement and compare four algorithms on simu-

lated data to evaluate the robustness and efficiency of our new

tracker. Finally we will perform tracking on real recorded

RGB-D data with ground truth in our applicative context, hu-

man awareness characterisation in HMI. We used two modal-

ities outputs which worked for us as ”sensors”. The first one

was provided by OpenNI/NITE library [7] for the shoulder

orientation and the detection of head position. The second

sensor was developed by Fanelli in [8] for research purposes

and enables the full head pose detection on depth informa-

tions.

2. RELATED WORKS

Particle Swarm Optimization algorithms has been used in a

wide range of application for many years. Poli in [5] pro-

posed an overview of them, and it appears to have been

implemented for parameter tuning in particle filter, fuzzy

systems, video analysis, and image analysis. This algorithm

presents good performances with high dimension problems,

and seems to suffer less from dimensionality curse. More-

over, it is computationally lower than Sequential Monte-Carlo

(alias SMC) methods such as particle filtering applied in op-

timization problems. However, this algorithm belongs to the

meta-heuristics branch such as genetic algorithms, and its

convergence cannot be proven.

For past years some investigations have aimed at adapt-

ing PSO in a tracking framework. Zhang first implemented

it in [9], where he added PSO iterations in a particle filter-

ing framework. However, the computation cost is propor-

tional to iteration numbers and the algorithm finally become

much more costly than particle filtering techniques, despite

the fact that it performs a more precise tracking. Recently, Li

in [10] replaced the resampling step in particle filter by one

PSO iteration. This is as computationally costly as particle

filters. However, they lose the formalism of the resampling

step which has to conserve the estimated MMSE while repo-

sitioning particles.

Particle filter is also one of the only particle based tracker,

and is widely used in the vision literature for visual track-

ing problems. There are many variants of this algorithm and

one of them is used by Sedai in [11] for human pose tracking

which is getting closer to our context. The Annealed Gaus-

sian Process Guided Particle Filter (AGP-PF) that they used

is better than basic Particle Filter, but much heavier computa-

tionally speaking and complicated to implement.

Thus, a PSO-based tracker is created, more in origi-

nal PSO algorithm respect, mainly in terms of particles be-

haviour. It is also wanted lighter in computational resources

than a particle filter while being more efficient. Finally, the

algorithm aims to remain simple, while some improved Par-

ticle Filter implementations become very heavy in code and

processing cost.

3. FORMALISM

Four algorithms are compared for this work. Two SIR track-

ers with two different dynamic models, and two PSO based

trakers namely [9] and ours.

SIR-RW: The first one, the more usual, is a SIR-RW

where ”RW” stands for Random Walk dynamic model.

SIR-CV: The second one is a SIR-CV, where ”CV” ab-

breviates Constant Velocity dynamic model. Contrary to the

previous one, the state vector dimension is doubled in order

to add its first derivative as a component of the state vector.

Thus, the state vector velocity is also estimated. When s
(i)
t is

the state vector in SIR-RW algorithm, we have to model the

SIR-CV state vector by x
(i)
t = [s

(i)
t

˙
s
(i)
t ], where t is time and

i the particle index. The update equations become
˙

s
(i)
t =

˙
s
(i)
t−1+vt where vt is a gaussian noise and

˙
s
(i)
t the state

vector velocity part. s
(i)
t = s

(i)
t−1 + ω ∗

˙
s
(i)
t−1 + wt where wt

is gaussian noise as well, s
(i)
t is the state vector position part

and ω is a multiplicative constant modelling inertia.

SPSO: The third algorithm is the SPSO (Sequential Par-

ticle Swarm Optimization) as formalised by Zhang in [9], and

its implementation will not be recalled in this paper.

TPSO: Finally, the fourth one is our modified PSO for

tracking (alias TPSO). This algorithm is described in details

in this section after a short reminder on PSO algorithm for a

better understanding of our contribution.

In our approach, optimization and tracking are partially

the same problem: in optimization, the algorithm has to con-

verge to a fixed global maximum in a certain number of iter-

ations. However, in tracking, also called dynamic optimiza-

tion, the algorithm has to converge to a moving global max-

imum (the target), and iterations are represented by frames

(one frame = one iteration). Regarding this, SPSO is not a

proper tracker since it iterates more than once for each frame.

Considering this, we took the PSO and modified the parts

were the target is mentionned in the equations to take into

account the target motion. In algorithm 1, the PSO algorithm

principe is reminded. This algorithm being adapted for reg-

ular optimization and not dynamic optimization, algorithm 2

shows our adaptations to tracking.

In algorithms 1 and 2, U(a, b) is a uniform distribution

between a and b, N is the number of particles, blo and bup
are lower and upper boundaries of search space, f(.) is a fit-
ness function, or likelihood for SIR algorithms. rp and rg are

factors that respectively ponderate social and cognitive terms

randomly in the next line. ω models particles inertia. φp and

φg are constant weights of cognitive and social factors respec-

tively. The criterion can be a maximum number of iterations

or a threshold on the MAP estimate fitness f(g).



Algorithm 1: Particle Swarm Optimization (PSO)

Result: MAP estimate : x̂ = g
for i=0 to N (initialization) do1

xi ∼ U(blo, bup)2

pi ← xi, g ← argmax(f(pi))3

vi ∼ U(−|bup − blo|, |bup − blo|)4

while criterion is not met (iterations for optimization)5

do

for i=0 to N do6

rp, rg ∼ U(0, 1)7

vi ← ωvi + ψprp(pi − xi) + ψgrg(g − xi)8

xi ← xi + vi9

if f(xi) > f(pi) then10

pi ← xi11

if(f(pi) > f(g)) g ← pi12

In our algorithm 2, lines 8 and 10 of PSO are modified

to add a ”prediction” component represented by a dynamic

model, and there is now only one iteration per frame as

explained before. The d(.) function represents the filter dy-

namic model. For our experiments, a random walk was

considered(d(pi) = pi + w where w is a gaussian noise).

We could have set the dynamics model differently like the

constant velocity model used in the second particle filter pre-

sented in this paper but chose not to. We added this function

assuming that the optimal positions relative pi, and global

g change, as the target position changes each frame. Then,

f(pi) has to be re-computed as it will have moved since the

last measurement. These two minor changes allowed us to

create a robust dynamic optimizer (or tracker), using PSO

formalism, keeping the algorithm extremely simple.

4. EVALUATIONS ON SYNTHETIC DATA

Our new tracker was then processed on synthetic signals

while one free parameter was changed at a time, to evaluate

and compare its accuracy versus the other algorithms. The

synthetic signal is a multidimensionnal signal constructed

from concatenation of sinus functions, fast value changes and

straight lines, in order to make a challenging target to follow.

Our observation model is a multivariate gaussian with a

diagonal covariance matrix. The measurements are samples

of synthetic signals added to a gaussian random noise with

the same covariance matrix as the observation model, to make

this optimal. The similar parameters of the four trackers are

set equals: number of particlesN , process noise σ in dynamic

model for the four algorithms; ω for SPSO, TPSO and SIR

with constant velocity model; ψp and ψg for SPSO and TPSO.

The following effects of parameters are evaluated on

tracking process: particle number, noise power added to the

observations and finally, dimension of the state vector. More-

Algorithm 2: PSO based Tracker

Result: MAP or MMSE estimate for each frame

for i=0 to N (initialisation) do1

x
(0)
i ∼ U(blo, bup)2

p
(0)
i ← x

(0)
i , g(0) ← argmax(f(p

(0)
i ))3

v
(0)
i ∼ U(−|bup − blo|, |bup − blo|)4

for t=1 to frame M (iterations on video sequence) do5

for i=0 to N do6

rp, rg ∼ U(0, 1)7

v
(t)
i ← ωv

(t−1)
i + ψprp(d(p

(t−1)
i )− xi) +8

ψgrg(d(g
(t−1))− xi)

x
(t)
i ← x

(t−1)
i + v

(t)
i9

if f(x
(t)
i ) > f(p

(t−1)
i ) then10

p
(t)
i ← x

(t−1)
i11

if(f(p
(t)
i ) > f(g(t−1))) g(t) ← p

(t)
i12

MAP estimator : x̂(t) = g(t) or13

MMSE estimator : x̂(t) =
∑N

i=0
f(pi)

(t)

∑
N

i=0 f(pi)(t)
x
(t)
i14

over, we computed the Neff estimate (Number of efficient

particles), in SIR and TPSO. In SIR, it is given by the equa-

tion

Neff = 1/(
∑N

i=1 w
2
i ). In TPSO, an equivalent to Neff is

the equation Neff = (
∑N

i=1 f(x
(i)
p ))2/

∑N

i=1 f(x
(i)
p )2. We

did not implement this estimator in SPSO as there is more

than one X
(i)
p estimation per iteration and, therefore, no true

equivalent to usual Neff .

In Fig. 1. are displayed the RMSE error means of 50 runs.

TPSOmap and TPSOmmse are respectively MAP andMMSE

estimator of the same TPSO run due to the stochastic nature

of the process.

Noise: First we can see (Fig. 1 (c)) that our tracker re-

acts better to noise, with a tracking error divided by 2 for low

SNR, where SNR is Signal to Noise Ratio in dB: SNR =
10log(PowerSignal/PowerNoise).

Particles: Then, we can notice (Fig. 1 (a)) that the num-

ber of particles can be divided by 5 while keeping the same

precision as SIR algorithms. Thus, even tough we have to

compute likelihood two times by iteration and particle, we

can have a reduced complexity by reducing tremendously the

number of particles.

Dimension: Moreover, we can see (Fig. 1 (b)) that our

tracker also better reacts when state vector dimension in-

creases, and estimates the target state vector with a reduced

variance in high dimensions.

Neff: Finally, we can explain these results with Neff
estimator for TPSO and SIR algorithms (Fig. 1 (d)). For 500

particles, SIR-RW Neff degenerates to 50, while SIR-CV

acts better with 450 particles, and ours achieve the best with
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Fig. 1. Simulation results

Fig. 2. RGB-D sequence capture: Red markers represent

shoulder detection, green markers are head pose detections.

490 particles. This result is very interesting considering that

our algorithm has a simpler dynamic model than SIR-CV and

does not need any resampling step to avoid degeneration.

5. APPLICATION TO VISUAL TRACKING

In our context (cf. Fig. 2), we want to track head pose (yaw,

pitch, roll), and shoulder orientation in space as they are key

information of machine awareness. Full video sequences can

be found here 1. These modalities are given by OpenNI [7]

for shoulder orientation and head position, and Fanelli [8] for

head pose. However we had a problem with angles as they

vary from -180 to +180 and can jump between these extremes

values. We needed to take care of it during sampling phase.

This led us to a 7-state vector s = [x y z θhead φhead ψhead

θshoulders].
The observation model is a multivariate gaussian model

with a diagonal covariance matrix diag(Σ) = [diag(Σposition)

1https://projects.laas.fr/riddle/riddle-project/papers/
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Fig. 3. Tracking results

diag(Σangles)]. The dynamic model is a random walk for all

filters, excepted for the SIR-CV, where there is a speed com-

ponent. The process gaussian noise is modelled by a diagonal

covariance matrix as well. Parameters defined in previous

sections are set to: ω = 0.9, ψp = 0.8, ψg = 1, andN = 100
particles. Finally, data acquisition was performed by a cal-

ibrated RGB-D sensor. The ground truth was created with

a marker-based Motion Capture (Mocap) disposal which is

also calibrated and synchronized temporally with the RGB-D

sensor.

A set of 100 runs for each tracker were carried out on the

same path, and results are plotted on Fig. 3, representing the

tracking error means. The plot (a) displays RMSE mean po-

sition error in mm, and (b), the RMSE mean angular error

in degrees, since a global error on position and angles would

have no sense. We can see that our algorithm achieved better

performances on both position and angles, while particle fil-

tering techniques had problems to perform an accurate track-

ing jointly on position and angles. These results came to com-

fort our simulation results and showed that our tracker was a

suitable solution for robust tracking, keeping a low computa-

tional cost with only 100 particles and a relative complexity

of 2/5 of the SIR, based on how often the observation function

is called in a loop.

6. CONCLUSION

In this paper, we proposed a new tracking framework based on

Particle Swarm Optimization formalism and, demonstrated

on both, synthetic and real data, that our algorithm outper-

forms SIR algorithm while remaining as simple in implemen-

tation, and faster than SPSO. Our algorithm also seems to be

more robust to state vector dimensionality, noise in observa-

tions, and an efficient tracking can be performed with fewer

particles, as each one of them carries more information. All of

these aspects present our PSO-inspired tracker as a promising

alternative for visual tracking and others applications.

In future work, we intend to evaluate the influence of each

TPSO parameter on tracking performance and will try to ap-

ply it to multi-target tracking.
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